Fasting enhances the response of glioma to chemo- and radiotherapy

Fernando Safdie, Sebastian Brandhorst, Min Wei, Weijun Wang, Changhan Lee, Saewon Hwang, Peter S Conti, Thomas C Chen, Valter D Longo, Fernando Safdie, Sebastian Brandhorst, Min Wei, Weijun Wang, Changhan Lee, Saewon Hwang, Peter S Conti, Thomas C Chen, Valter D Longo

Abstract

Background: Glioma, including anaplastic astrocytoma and glioblastoma multiforme (GBM) are among the most commonly diagnosed malignant adult brain tumors. GBM is a highly invasive and angiogenic tumor, resulting in a 12 to 15 months median survival. The treatment of GBM is multimodal and includes surgical resection, followed by adjuvant radio-and chemotherapy. We have previously reported that short-term starvation (STS) enhances the therapeutic index of chemo-treatments by differentially protecting normal cells against and/or sensitizing tumor cells to chemotoxicity.

Methodology and principal findings: To test the effect of starvation on glioma cells in vitro, we treated primary mouse glia, murine GL26, rat C6 and human U251, LN229 and A172 glioma cells with Temozolomide in ad lib and STS mimicking conditions. In vivo, mice with subcutaneous or intracranial models of GL26 glioma were starved for 48 hours prior to radio- or chemotherapy and the effects on tumor progression and survival were measured. Starvation-mimicking conditions sensitized murine, rat and human glioma cells, but not primary mixed glia, to chemotherapy. In vivo, starvation for 48 hours, which causes a significant reduction in blood glucose and circulating insulin-like growth factor 1 (IGF-1) levels, sensitized both subcutaneous and intracranial glioma models to radio-and chemotherapy.

Conclusion: Starvation-induced cancer sensitization to radio- or chemotherapy leads to extended survival in the in vivo glioma models tested. These results indicate that fasting and fasting-mimicking interventions could enhance the efficacy of existing cancer treatments against aggressive glioma in patients.

Conflict of interest statement

Competing Interests: The authors have read the journal’s policy and have the following conflicts: VDL has founded L-Nutra and is a consultant for Amore Pacific. This does not alter the authors' adherence to all the PLoS ONE policies on sharing data and materials. All other authors declare no competing interests.

Figures

Figure 1. Glucose restriciton sensitizes Glioma Cells…
Figure 1. Glucose restriciton sensitizes Glioma Cells to Temozolomide Treatment in vitro.
Glioma cell lines GL26, C6, LN229, A172 and U251 as well as murine primary mixed glial cell lines were tested for glucose-restriction induced sensitization to Temozolomide. Cells were incubated in low glucose (0.5 g/L) or normal glucose (2.0 g/L) media, supplemented with 1% FBS for 24 hours. Low glucose modeling STS conditions sensitized murine GL26 glioma cells (A), rat C6 glioma cells (B) and human A172 (C), LN229 (D), U251 glioma cells (E) to TMZ in vitro. (F) Murine primary mixed glial cells were used to represent matching normal cells. Percent cell death was determined based on quantitative measurements of lactate dehydrogenase (LDH) release after 24 hour treatment with 0–8 mM TMZ. All data presented as mean ± SEM; ** p<0.01; *** p<0.001, Student’s t-test, two-tailed.
Figure 2. Enhanced Chemotherapy by Fasting in…
Figure 2. Enhanced Chemotherapy by Fasting in a murine GL26 Glioma Model extends onset of Morbidity in Tumor-bearing Animals.
(A) Subcutaneous tumor progression of murine GL26 glioma is shown as total tumor volume in mm3. Tumor measurement was started once the tumor became palpable under skin at day 12. Control animals (N = 12) received no treatment and tumor progressed rapidly. STS (N = 12) and STS+TMZ group (N = 6) were deprived of food for two 48 hour cycles (day 13 to day 15 and day 20 to day 22, grey area). TMZ animals (N = 5) received 15 mg/kg/day TMZ (red lines), totalling 30 mg/kg for each treatment cycle. STS+TMZ animals were injected at 24 hours and 48 hours of fasting with 15 mg/kg TMZ per injection, totalling 30 mg/kg/cycle. Animals from STS and STS+TMZ groups showed reduced tumor progression and could therefore be monitored for a prolonged period compared to animals from the control and TMZ group. All data presented as mean ± SEM; ** p<0.01, ANOVA, Tukey’s multiple comparison, compared to control. (B) Morbidity of animals inoculated subcutaneous with GL26 glioma. Animals were euthanized once tumor volume exceeded 2500 mm3 or based on overall appearance and health status. Curve comparison with Log-Rank test (Mantel-Cox, *** p<0.05).
Figure 3. Enhanced Radiotherapy (RTP) by Fasting…
Figure 3. Enhanced Radiotherapy (RTP) by Fasting in a murine GL26 Glioma Model.
(A) Subcutaneous tumor progression of murine GL26 glioma is shown by total tumor volume in mm3. Tumor measurement was started once the tumor became palpable under skin at day 12. Control animals (N = 12) received no treatment and tumor progressed rapidly. STS (N = 12) and STS+RTP group (N = 9) were deprived of food for two 48 hour cycles (day 13 to day 15 and day 20 to day 22, grey area). RTP and STS+RTP animals (N = 9) were treated with 5 Gy at day 15 and 2.5 Gy at day 22, totalling 7.5 Gy for the combined radiotherapy treatment; 2nd dose was lowered to 2.5 Gy to reduce radiotoxicity. Animals from STS, RTP and STS+RTP groups showed reduced tumor progression and could therefore be monitored for a prolonged period compared to animals from the control group. All data presented as mean ± SEM; *** p<0.001, ANOVA, Tukey’s multiple comparison, compared to control at day 22. (B) Morbidity of animals inoculated subcutaneously with GL26 glioma and treated with either radiotherapy, two 48 hour fasting cycles or the combination of both (STS+RTP). Animals were considered moribund once tumor volume exceeded 2500 mm3 or based on overall appearance and health status. Curve comparison with Log-Rank test (Mantel-Cox; ** p<0.01).
Figure 4. Fasting augments Effects of TMZ-Chemotherapy…
Figure 4. Fasting augments Effects of TMZ-Chemotherapy in the intracranial GL26luc Glioma Model.
(A) Bioluminescence expression at day 6 vs. day 12 after tumor inoculation. Animals at day 6 were randomized into the four experimental groups (Control, N = 6; TMZ, N = 5; STS, N = 11; or STS+TMZ, N = 12) and treatment was initiated. Tumor progression was monitored at day 12 to determine treatment benefits. Bioluminescence signaling measured as photons/sec. All data presented as mean ± SEM; * p<0.05, ANOVA, Tukey’s multiple comparison, compared to control at day 12. (B) Bioluminescence imaging of GL26luc glioma bearing C57BL/6 mice at day 12 after intracranial tumor implantation. Animals are shown according to experimental group. (C) Morbididty rate comparison of animals inoculated intracranially with GL26luc glioma cells. STS and STS+TMZ animals were fasted for 48 hours starting at day 6 (grey area). TMZ and STS+TMZ animals received i.v. injections of 15 mg/kg Temozolomide at day 7 and day 8 (red lines), totalling 30 mg/kg/cycle. Curve comparison with Log-Rank test (Mantel-Cox; * p<0.05).
Figure 5. Two fasting cycles augment effects…
Figure 5. Two fasting cycles augment effects of TMZ-Chemotherapy in the intracranial GL26 Glioma Model.
(A) Morbidity rate comparison of animals inoculated intracranially with GL26luc glioma cells. Animals at day 4 were randomized into the four experimental groups (Control, N = 7; TMZ, N = 7; STS, N = 10; or STS+TMZ, N = 8). Treatment of all experimental groups was initiated earlier to allow increased response to short-term starvation and/or TMZ. STS and STS+TMZ animals were fasted for 48 hours starting at day 4 followed by a second 24 hour fasting regiment at day 10 (grey areas). TMZ and STS+TMZ animals received i.p. injections of 15 mg/kg Temozolomide at day 5 and day 6 to match the first STS cycle and at day 11 to match the shorter second cycle (red lines), totalling 45 mg/kg. Curve comparison with Log-Rank test (Mantel-Cox; *** p<0.001). (B) Body weight profile for glioma-bearing animals receiving multiple rounds of either short-term starvation, TMZ-treatment or both. STS and STS+TMZ animals initially reduce body weight during STS cycles (grey area) but regain the weight of untreated control and TMZ-treated animals rapidly after refeeding.

References

    1. Ohgaki H, Kleihues P (2005) Epidemiology and etiology of gliomas. Acta Neuropathol 109: 93–108.
    1. Purow B, Schiff D (2009) Advances in the genetics of glioblastoma: are we reaching critical mass? Nat Rev Neurol 5: 419–426.
    1. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, et al. (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352: 987–996.
    1. Stupp R, Dietrich PY, Ostermann Kraljevic S, Pica A, Maillard I, et al. (2002) Promising survival for patients with newly diagnosed glioblastoma multiforme treated with concomitant radiation plus temozolomide followed by adjuvant temozolomide. J Clin Oncol 20: 1375–1382.
    1. Zimmerman HM (1955) The nature of gliomas as revealed by animal experimentation. Am J Pathol 31: 1–29.
    1. Gupta T, Sarin R (2002) Poor-prognosis high-grade gliomas: evolving an evidence-based standard of care. Lancet Oncol 3: 557–564.
    1. Fisher PG, Buffler PA (2005) Malignant gliomas in 2005: where to GO from here? JAMA 293: 615–617.
    1. Villano JL, Seery TE, Bressler LR (2009) Temozolomide in malignant gliomas: current use and future targets. Cancer Chemother Pharmacol 64: 647–655.
    1. Friedman HS, Kerby T, Calvert H (2000) Temozolomide and treatment of malignant glioma. Clin Cancer Res 6: 2585–2597.
    1. Stevens MF, Hickman JA, Langdon SP, Chubb D, Vickers L, et al. (1987) Antitumor activity and pharmacokinetics in mice of 8-carbamoyl-3-methyl-imidazo[5,1-d]-1,2,3,5-tetrazin-4(3H)-one (CCRG 81045; M & B 39831), a novel drug with potential as an alternative to dacarbazine. Cancer Res 47: 5846–5852.
    1. Newlands ES, Stevens MF, Wedge SR, Wheelhouse RT, Brock C (1997) Temozolomide: a review of its discovery, chemical properties, pre-clinical development and clinical trials. Cancer Treat Rev 23: 35–61.
    1. Mutter N, Stupp R (2006) Temozolomide: a milestone in neuro-oncology and beyond? Expert Rev Anticancer Ther 6: 1187–1204.
    1. Srivastava DK, Berg BJ, Prasad R, Molina JT, Beard WA, et al. (1998) Mammalian abasic site base excision repair. Identification of the reaction sequence and rate-determining steps. J Biol Chem 273: 21203–21209.
    1. Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, et al. (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352: 997–1003.
    1. Hegi ME, Liu L, Herman JG, Stupp R, Wick W, et al. (2008) Correlation of O6-methylguanine methyltransferase (MGMT) promoter methylation with clinical outcomes in glioblastoma and clinical strategies to modulate MGMT activity. J Clin Oncol 26: 4189–4199.
    1. Lewis C (1994) A review of the use of chemoprotectants in cancer chemotherapy. Drug Saf 11: 153–162.
    1. Raffaghello L, Lee C, Safdie FM, Wei M, Madia F, et al. (2008) Starvation-dependent differential stress resistance protects normal but not cancer cells against high-dose chemotherapy. Proc Natl Acad Sci U S A 105: 8215–8220.
    1. Safdie FM, Dorff T, Quinn D, Fontana L, Wei M, et al. (2009) Fasting and cancer treatment in humans: A case series report. Aging (Albany NY) 1: 988–1007.
    1. Lee C, Safdie FM, Raffaghello L, Wei M, Madia F, et al. (2010) Reduced levels of IGF-I mediate differential protection of normal and cancer cells in response to fasting and improve chemotherapeutic index. Cancer Res 70: 1564–1572.
    1. Kirkwood TB (2005) Understanding the odd science of aging. Cell 120: 437–447.
    1. Lee C, Longo VD (2011) Fasting vs dietary restriction in cellular protection and cancer treatment: from model organisms to patients. Oncogene.
    1. Fontana L, Partridge L, Longo VD (2010) Extending healthy life span–from yeast to humans. Science 328: 321–326.
    1. Warburg O (1956) On respiratory impairment in cancer cells. Science 124: 269–270.
    1. Aronen HJ, Pardo FS, Kennedy DN, Belliveau JW, Packard SD, et al. (2000) High microvascular blood volume is associated with high glucose uptake and tumor angiogenesis in human gliomas. Clin Cancer Res 6: 2189–2200.
    1. Fearon KC, Borland W, Preston T, Tisdale MJ, Shenkin A, et al. (1988) Cancer cachexia: influence of systemic ketosis on substrate levels and nitrogen metabolism. Am J Clin Nutr 47: 42–48.
    1. Oudard S, Boitier E, Miccoli L, Rousset S, Dutrillaux B, et al. (1997) Gliomas are driven by glycolysis: putative roles of hexokinase, oxidative phosphorylation and mitochondrial ultrastructure. Anticancer Res 17: 1903–1911.
    1. Roslin M, Henriksson R, Bergstrom P, Ungerstedt U, Bergenheim AT (2003) Baseline levels of glucose metabolites, glutamate and glycerol in malignant glioma assessed by stereotactic microdialysis. J Neurooncol 61: 151–160.
    1. Stocks T, Rapp K, Bjorge T, Manjer J, Ulmer H, et al. (2009) Blood glucose and risk of incident and fatal cancer in the metabolic syndrome and cancer project (me-can): analysis of six prospective cohorts. PLoS Med 6: e1000201.
    1. Rapp K, Schroeder J, Klenk J, Ulmer H, Concin H, et al. (2006) Fasting blood glucose and cancer risk in a cohort of more than 140,000 adults in Austria. Diabetologia 49: 945–952.
    1. Jee SH, Ohrr H, Sull JW, Yun JE, Ji M, et al. (2005) Fasting serum glucose level and cancer risk in Korean men and women. JAMA 293: 194–202.
    1. Apontes P, Leontieva OV, Demidenko ZN, Li F, Blagosklonny MV (2011) Exploring long-term protection of normal human fibroblasts and epithelial cells from chemotherapy in cell culture. Oncotarget 2: 222–233.
    1. Lee C, Raffaghello L, Brandhorst S, Safdie FM, Bianchi G, et al. (2012) Fasting cycles retard growth of tumors and sensitize a range of cancer cell types to chemotherapy. Sci Transl Med 4: 124ra127.
    1. Prins RM, Odesa SK, Liau LM (2003) Immunotherapeutic targeting of shared melanoma-associated antigens in a murine glioma model. Cancer Res 63: 8487–8491.
    1. Wen PY, Kesari S (2008) Malignant gliomas in adults. N Engl J Med 359: 492–507.
    1. Pyrko P, Schonthal AH, Hofman FM, Chen TC, Lee AS (2007) The unfolded protein response regulator GRP78/BiP as a novel target for increasing chemosensitivity in malignant gliomas. Cancer Res 67: 9809–9816.
    1. Kreisl TN (2009) Chemotherapy for malignant gliomas. Semin Radiat Oncol 19: 150–154.
    1. Kroger N, Hoffknecht M, Hanel M, Kruger W, Zeller W, et al. (1998) Busulfan, cyclophosphamide and etoposide as high-dose conditioning therapy in patients with malignant lymphoma and prior dose-limiting radiation therapy. Bone Marrow Transplant 21: 1171–1175.
    1. Mohanti BK, Rath GK, Anantha N, Kannan V, Das BS, et al. (1996) Improving cancer radiotherapy with 2-deoxy-D-glucose: phase I/II clinical trials on human cerebral gliomas. Int J Radiat Oncol Biol Phys 35: 103–111.
    1. Singh SP, Singh S, Jain V (1990) Effects of 5-bromo-2-deoxyuridine and 2-deoxy-D-glucose on radiation-induced micronuclei in mouse bone marrow. Int J Radiat Biol 58: 791–797.
    1. Greenspan RJ (2001) The flexible genome. Nat Rev Genet 2: 383–387.
    1. Strohman R (2002) Maneuvering in the complex path from genotype to phenotype. Science 296: 701–703.
    1. Yu H, Rohan T (2000) Role of the insulin-like growth factor family in cancer development and progression. J Natl Cancer Inst 92: 1472–1489.
    1. Kari FW, Dunn SE, French JE, Barrett JC (1999) Roles for insulin-like growth factor-1 in mediating the anti-carcinogenic effects of caloric restriction. J Nutr Health Aging 3: 92–101.
    1. Seyfried TN, Sanderson TM, El-Abbadi MM, McGowan R, Mukherjee P (2003) Role of glucose and ketone bodies in the metabolic control of experimental brain cancer. Br J Cancer 89: 1375–1382.
    1. Mitchell JR, Verweij M, Brand K, van de Ven M, Goemaere N, et al. (2010) Short-term dietary restriction and fasting precondition against ischemia reperfusion injury in mice. Aging Cell 9: 40–53.
    1. Zitvogel L, Kepp O, Kroemer G (2011) Immune parameters affecting the efficacy of chemotherapeutic regimens. Nat Rev Clin Oncol 8: 151–160.

Source: PubMed

3
Sottoscrivi