Choline Supplementation Normalizes Fetal Adiposity and Reduces Lipogenic Gene Expression in a Mouse Model of Maternal Obesity

Chauntelle Jack-Roberts, Yaelle Joselit, Khatia Nanobashvili, Rachel Bretter, Olga V Malysheva, Marie A Caudill, Anjana Saxena, Kathleen Axen, Ahmed Gomaa, Xinyin Jiang, Chauntelle Jack-Roberts, Yaelle Joselit, Khatia Nanobashvili, Rachel Bretter, Olga V Malysheva, Marie A Caudill, Anjana Saxena, Kathleen Axen, Ahmed Gomaa, Xinyin Jiang

Abstract

Maternal obesity increases fetal adiposity which may adversely affect metabolic health of the offspring. Choline regulates lipid metabolism and thus may influence adiposity. This study investigates the effect of maternal choline supplementation on fetal adiposity in a mouse model of maternal obesity. C57BL/6J mice were fed either a high-fat (HF) diet or a control (NF) diet and received either 25 mM choline supplemented (CS) or control untreated (CO) drinking water for 6 weeks before timed-mating and throughout gestation. At embryonic day 17.5, HF feeding led to higher (p < 0.05) percent total body fat in fetuses from the HFCO group, while the choline supplemented HFCS group did not show significant difference versus the NFCO group. Similarly, HF feeding led to higher (p < 0.05) hepatic triglyceride accumulation in the HFCO but not the HFCS fetuses. mRNA levels of lipogenic genes such as Acc1, Fads1, and Elovl5, as well as the transcription factor Srebp1c that favors lipogenesis were downregulated (p < 0.05) by maternal choline supplementation in the HFCS group, which may serve as a mechanism to reduce fat accumulation in the fetal liver during maternal HF feeding. In summary, maternal choline supplementation improves indices of fetal adiposity in obese dams at late gestation.

Keywords: choline; fetal adiposity; gestation; lipogenesis; obesity.

Conflict of interest statement

The authors declare no conflicts of interest. The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

Figures

Figure 1
Figure 1
Design of the study. Female C57BL/6J mice were divided into four groups and fed the normal fat (NF) normal choline (CO) diet, NF choline supplemented (CS) diet, HFCO diet, or HFCS diet for 6 weeks before timed-mating and throughout gestation. Male mice followed the NFCO diet until timed-mating. The intraperitoneal glucose tolerance test (GTT) was conducted at embryonic day (E) 15.5 and dissection was conducted at E17.5. n is the number of dams in each group from which data and samples were collected.
Figure 2
Figure 2
Weight gain and intraperitoneal glucose tolerance (IGT) of dams fed experimental diets. (a) Weight gain was measured both before timed-mating and during gestation (E0.5–E17.5); (b) Visceral fat was measured at E17.5; (c) IGT tests were conducted at E15.5 with 2 g/kg D-glucose injected; (d) The area under the curve (AUC) of the IGT tests. NFCO (solid bars): n = 10; NFCS (shaded bars): n = 6; HFCO (open bars): n = 8; HFCS (hatched bars): n = 7. Data were analyzed using the general linear model. Posteriori analysis of variance (ANOVA) followed by posthoc Fisher‘s least significant difference (LSD) analysis between groups was conducted with pd×s ≤ 0.2. Values are mean ± standard error of mean (SEM); different letters indicate p < 0.05 in the posthoc analysis. ns: pd, ps, and pd×s, not significant. CO: control; CS: choline supplemented; D: diet; HF: high-fat diet; NF: normal-fat diet; S: supplementation.
Figure 3
Figure 3
Fetal weight and adiposity at E17.5. (a) Fetal weight; (b) percent total body fat of fetuses; (c) fetal liver triglyceride concentrations. Experimental diets were fed to dams from 6 weeks before timed-mating to gestational day 17.5. Data were analyzed using the general linear model. Posteriori analysis of variance (ANOVA) followed by posthoc Fisher‘s least significant difference (LSD) analysis between groups was conducted with pd×s ≤ 0.2. NFCO (solid bars): n = 9; NFCS (shaded bars): n = 6; HFCO (open bars): n = 7; HFCS (hatched bars): n = 6. n is the number of dams. Fetal weight was analyzed with pooled data of all fetuses in each dam (5–10/dam); body fat and liver triglyceride concentrations were analyzed with pooled data of two randomly selected fetuses in each dam. Values are mean ± standard error of mean (SEM); different letters indicate p < 0.05 in the posthoc analysis. ns: pd, pS, and pd×s, not significant. CO: control; CS: choline supplemented; D: diet; HF: high-fat diet; NF: normal-fat diet; S: supplementation.
Figure 4
Figure 4
Fetal liver mRNA abundance at E17.5. Experimental diets were fed to dams from 6 weeks before timed-mating to gestational day 17.5. (a) Genes involved in lipid metabolism; (b) transcription factors; (c) genes involved in choline metabolism. mRNA levels were measured by real-time PCR. Data were analyzed using the general linear model. Data were analyzed using the general linear model. Posteriori analysis of variance (ANOVA) followed by posthoc Fisher's least significant difference (LSD) analysis between groups was conducted with pd×s ≤ 0.2. NFCO (solid bars): n = 9; NFCS (shaded bars): n = 6; HFCO (open bars): n = 7; HFCS (hatched bars): n = 6. n is the number of dams. Data from two fetuses in each dam were pooled and included in the analysis. Values are mean ± standard error of mean (SEM); different letters indicate p < 0.05 in the posthoc analysis; ns: pd, pS, and pd×s, not significant. Acc: acetyl-CoA carboxylase; Acox1: peroxisomal acyl-coenzyme A oxidase 1; Bhmt: betaine-homocysteine S-methyltransferase; Chdh: choline dehydrogenase; Chrebp1: Carbohydrate-responsive element-binding protein; Dgat1: diacylglycerol O-acyltransferase 1; Elovl5: fatty acid elongase 5; Fasn: fatty acid synthase; Fatp1: fatty acid transport protein 1; Mttp: microsomal triglyceride transfer protein; Pcyt1a: choline-phosphate cytidylyltransferase A; Pemt: phosphatidylethanolamine N-methyltransferase; Ppara: Peroxisome proliferator-activated receptor alpha; Scd1: stearoyl-CoA desaturase-1; Srebp1: Sterol regulatory element-binding protein 1; CO: control; CS: choline supplemented; D: diet; HF: high-fat diet; NF: normal-fat diet; S: supplementation.

References

    1. Catalano P.M., Shankar K. Obesity and pregnancy: Mechanisms of short term and long term adverse consequences for mother and child. BMJ. 2017;356 doi: 10.1136/bmj.j1.
    1. Van Hoorn J., Dekker G., Jeffries B. Gestational diabetes versus obesity as risk factors for pregnancy-induced hypertensive disorders and fetal macrosomia. Aust. N. Z. J. Obstet. Gynaecol. 2002;42:29–34. doi: 10.1111/j.0004-8666.2002.00035.x.
    1. Kamana K.C., Shakya S., Zhang H. Gestational diabetes mellitus and macrosomia: A literature review. Ann. Nutr. Metab. 2015;66:14–20.
    1. Wang Y., Gao E., Wu J., Zhou J., Yang Q., Walker M.C., Mbikay M., Sigal R.J., Nair R.C., Wen S.W. Fetal macrosomia and adolescence obesity: Results from a longitudinal cohort study. Int. J. Obes. 2009;33:923–928. doi: 10.1038/ijo.2009.131.
    1. Hermann G.M., Dallas L.M., Haskell S.E., Roghair R.D. Neonatal macrosomia is an independent risk factor for adult metabolic syndrome. Neonatology. 2010;98:238–244. doi: 10.1159/000285629.
    1. Szostak-Węgierek D., Szamotulska K. Fetal development and risk of cardiovascular diseases and diabetes type 2 in adult life. Med. Wieku Rozwoj. 2011;15:203–215.
    1. Sewell M.F., Huston-Presley L., Super D.M., Catalano P. Increased neonatal fat mass, not lean body mass, is associated with maternal obesity. Am. J. Obstet. Gynecol. 2006;195:1100–1103. doi: 10.1016/j.ajog.2006.06.014.
    1. Hull H.R., Thornton J.C., Ji Y., Paley C., Rosenn B., Mathews P., Navder K., Yu A., Dorsey K., Gallagher D. Higher infant body fat with excessive gestational weight gain in overweight women. Am. J. Obstet. Gynecol. 2011;205:211.e1–211.e7. doi: 10.1016/j.ajog.2011.04.004.
    1. Cetin I., Alvino G., Cardellicchio M. Long chain fatty acids and dietary fats in fetal nutrition. J. Physiol. 2009;587:3441–3451. doi: 10.1113/jphysiol.2009.173062.
    1. Qiao L., Guo Z., Bosco C., Guidotti S., Wang Y., Wang M., Parast M., Schaack J., Hay W.W., Moore T.R., et al. Maternal high-fat feeding increases placental lipoprotein lipase activity by reducing SIRT1 expression in mice. Diabetes. 2015;64:3111–3120. doi: 10.2337/db14-1627.
    1. Caudill M.A. Pre- and postnatal health: Evidence of increased choline needs. J. Am. Diet. Assoc. 2010;110:1198–1206. doi: 10.1016/j.jada.2010.05.009.
    1. Zeisel S.H., Da Costa K.A., Franklin P.D., Alexander E.A., Lamont J.T., Sheard N.F., Beiser A. Choline, an essential nutrient for humans. FASEB J. 1991;5:2093–2098. doi: 10.1016/S0899-9007(00)00349-X.
    1. Hebbard L., George J. Animal models of nonalcoholic fatty liver disease. Nat. Rev. Gastroenterol. Hepatol. 2011;8:35–44. doi: 10.1038/nrgastro.2010.191.
    1. Yao Z.M., Vance D.E. The active synthesis of phosphatidylcholine is required for very low density lipoprotein secretion from rat hepatocytes. J. Biol. Chem. 1988;263:2998–3004.
    1. Chakravarthy M.V., Lodhi I.J., Yin L., Malapaka R.R., Xu H.E., Turk J., Semenkovich C.F. Identification of a physiologically relevant endogenous ligand for PPARα in liver. Cell. 2009;138:476–488. doi: 10.1016/j.cell.2009.05.036.
    1. Lee J.M., Lee Y.K., Mamrosh J.L., Busby S.A., Griffin P.R., Pathak M.C., Ortlund E.A., Moore D.D. A nuclear-receptor-dependent phosphatidylcholine pathway with antidiabetic effects. Nature. 2011;474:506–510. doi: 10.1038/nature10111.
    1. Walker A.K., Jacobs R.L., Watts J.L., Rottiers V., Jiang K., Finnegan D.M., Shioda T., Hansen M., Yang F., Niebergall L.J., et al. A conserved SREBP-1/phosphatidylcholine feedback circuit regulates lipogenesis in metazoans. Cell. 2011;147:840–852. doi: 10.1016/j.cell.2011.09.045.
    1. Zhao L.F., Iwasaki Y., Zhe W., Nishiyama M., Taguchi T., Tsugita M., Kambayashi M., Hashimoto K., Terada Y. Hormonal regulation of acetyl-CoA carboxylase isoenzyme gene transcription. Endocr. J. 2010;57:317–324. doi: 10.1507/endocrj.K09E-298.
    1. Joseph S.B., Laffitte B.A., Patel P.H., Watson M.A., Matsukuma K.E., Walczak R., Collins J.L., Osborne T.F., Tontonoz P. Direct and indirect mechanisms for regulation of fatty acid synthase gene expression by liver X receptors. J. Biol. Chem. 2002;277:11019–11025. doi: 10.1074/jbc.M111041200.
    1. Varin A., Thomas C., Ishibashi M., Ménégaut L., Gautier T., Trousson A., Bergas V., de Barros J.P., Narce M., Lobaccaro J.M., et al. Liver X receptor activation promotes polyunsaturated fatty acid synthesis in macrophages: Relevance in the context of atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2015;35 doi: 10.1161/ATVBAHA.115.305539.
    1. Qin Y., Dalen K.T., Gustafsson J.A., Nebb H.I. Regulation of hepatic fatty acid elongase 5 by LXRalpha-SREBP-1c. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2009;1791:140–147. doi: 10.1016/j.bbalip.2008.12.003.
    1. Cordero P., Gomez-Uriz A.M., Campion J., Milagro F.I., Martinez J.A. Dietary supplementation with methyl donors reduces fatty liver and modifies the fatty acid synthase DNA methylation profile in rats fed an obesogenic diet. Genes Nutr. 2013;8:105–113. doi: 10.1007/s12263-012-0300-z.
    1. Wang Z., Yao T., Pini M., Zhou Z., Fantuzzi G., Song Z. Betaine improved adipose tissue function in mice fed a high-fat diet: A mechanism for hepatoprotective effect of betaine in nonalcoholic fatty liver disease. Am. J. Physiol. Gastrointest. Liver Physiol. 2010;298:G634–G642. doi: 10.1152/ajpgi.00249.2009.
    1. Corbin K.D., Zeisel S.H. Choline metabolism provides novel insights into nonalcoholic fatty liver disease and its progression. Curr. Opin. Gastroenterol. 2012;28:159–165. doi: 10.1097/MOG.0b013e32834e7b4b.
    1. Fujiki K., Kano F., Shiota K., Murata M. Expression of the peroxisome proliferator activated receptor gamma gene is repressed by DNA methylation in visceral adipose tissue of mouse models of diabetes. BMC Biol. 2009;7 doi: 10.1186/1741-7007-7-38.
    1. Cai D., Jia Y., Lu J., Yuan M., Sui S., Song H., Zhao R. Maternal dietary betaine supplementation modifies hepatic expression of cholesterol metabolic genes via epigenetic mechanisms in newborn piglets. Br. J. Nutr. 2014;112:1459–1468. doi: 10.1017/S0007114514002402.
    1. Wankhade U.D., Zhong Y., Kang P., Alfaro M., Chintapalli S.V., Thakali K.M., Shankar K. Enhanced offspring predisposition to steatohepatitis with maternal high-fat diet is associated with epigenetic and microbiome alterations. PLoS ONE. 2017;12:12. doi: 10.1371/journal.pone.0175675.
    1. Chmurzynska A., Stachowiak M., Gawecki J., Pruszynska-Oszmalek E., Tubacka M. Protein and folic acid content in the maternal diet determine lipid metabolism and response to high-fat feeding in rat progeny in an age-dependent manner. Genes Nutr. 2012;7:223–234. doi: 10.1007/s12263-011-0253-7.
    1. Dhar M.S., Sommardahl C.S., Kirkland T., Nelson S., Donnell R., Johnson D.K., Castellani L.W. Mice heterozygous for Atp10c, a putative amphipath, represent a novel model of obesity and type 2 diabetes. J. Nutr. 2004;134:799–805.
    1. Pruznak A.M., Kazi A.A., Frost R.A., Vary T.C., Lang C.H. Activation of AMP-activated protein kinase by 5-aminoimidazole-4-carboxamide-1-beta-D-ribonucleoside prevents leucine-stimulated protein synthesis in rat skeletal muscle. J. Nutr. 2008;138:1887–1894.
    1. Nam J., Greenwald E., Jack-Roberts C., Ajeeb T.T., Malysheva O.V., Caudill M.A., Axen K., Saxena A., Semernina E., et al. Choline prevents fetal overgrowth and normalizes placental fatty acid and glucose metabolism in a mouse model of maternal obesity. J. Nutr. Biochem. 2017 doi: 10.1016/j.jnutbio.2017.08.004. in press.
    1. Tai M.M. A mathematical model for the determination of total area under glucose tolerance and other metabolic curves. Diabetes Care. 1994;17:152–154. doi: 10.2337/diacare.17.2.152.
    1. McClive P.J., Sinclair A.H. Rapid DNA extraction and PCR-sexing of mouse embryos. Mol. Reprod. Dev. 2001;60:225–226. doi: 10.1002/mrd.1081.
    1. Folch J., Lees M., Sloane-Stanley G.H. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957;226:497–509.
    1. Yan J., Jiang X., West A.A., Perry C.A., Malysheva O.V., Devapatla S., Pressman E., Vermeylen F., Stabler S.P., Allen R.H., et al. Maternal choline intake modulates maternal and fetal biomarkers of choline metabolism in humans. Am. J. Clin. Nutr. 2012;95:1060–1071. doi: 10.3945/ajcn.111.022772.
    1. Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262.
    1. Chew T.W., Jiang X., Yan J., Wang W., Lusa A.L., Carrier B.J., West A.A., Malysheva O.V., Brenna J.T., Gregory J.F., et al. Folate intake, MTHFR genotype, and sex modulate choline metabolism in mice. J. Nutr. 2011;141:1475–1481. doi: 10.3945/jn.111.138859.
    1. Aldrich M.C., Kumar R., Colangelo L.A., Williams L.K., Sen S., Kritchevsky S.B., Meibohm B., Galanter J., Hu D., Gignoux C.R., et al. Genetic ancestry-smoking interactions and lung function in African Americans: A cohort study. PLoS ONE. 2012;7 doi: 10.1371/journal.pone.0039541.
    1. Thanopoulou A., Karamanos B., Archimandritis A. Glycated hemoglobin, diabetes, and cardiovascular risk in nondiabetic adults. N. Engl. J. Med. 2010;362:2030–2031. doi: 10.1056/NEJMc1003829.
    1. Ou X., Yang H., Ramani K., Ara A.I., Chen H., Mato J.M., Lu S.C. Inhibition of human betaine-homocysteine methyltransferase expression by S-adenosylmethionine and methylthioadenosine. Biochem. J. 2007;401:87–96. doi: 10.1042/BJ20061119.
    1. Zeisel S.H. Metabolic crosstalk between choline/1-carbon metabolism and energy homeostasis. Clin. Chem. Lab. Med. 2013;51:467–475. doi: 10.1515/cclm-2012-0518.
    1. Herrera E., Amusquivar E., López-Soldado I., Ortega H. Maternal lipid metabolism and placental lipid transfer. Horm. Res. 2006;65:59–64. doi: 10.1159/000091507.
    1. Teng Y.W., Ellis J.M., Coleman R.A., Zeisel S.H. Mouse betaine-homocysteine S-methyltransferase deficiency reduces body fat via increasing energy expenditure and impairing lipid synthesis and enhancing glucose oxidation in white adipose tissue. J. Biol. Chem. 2012;287:16187–16198. doi: 10.1074/jbc.M111.303255.
    1. Hu C.C., Qing K., Chen Y. Diet-induced changes in stearoyl-CoA desaturase 1 expression in obesity-prone and -resistant mice. Obes. Res. 2004;12:1264–1270. doi: 10.1038/oby.2004.160.
    1. Oosterveer M.H., van Dijk T.H., Tietge U.J., Boer T., Havinga R., Stellaard F., Groen A.K., Kuipers F., Reijngoud D.J. High fat feeding induces hepatic fatty acid elongation in mice. PLoS ONE. 2009;4 doi: 10.1371/journal.pone.0006066.
    1. Tong X., Zhao F., Mancuso A., Gruber J.J., Thompson C.B. The glucose-responsive transcription factor ChREBP contributes to glucose-dependent anabolic synthesis and cell proliferation. Proc. Natl. Acad. Sci. USA. 2009;106:21660–21665. doi: 10.1073/pnas.0911316106.
    1. Raubenheimer P.J., Nyirenda M.J., Walker B.R. A choline-deficient diet exacerbates fatty liver but attenuates insulin resistance and glucose intolerance in mice fed a high-fat diet. Diabetes. 2006;55:2015–2020. doi: 10.2337/db06-0097.
    1. Caputo M., De Rosa M.C., Rescigno T., Zirpoli H., Vassallo A., De Tommasi N., Torino G., Tecce M.F. Binding of polyunsaturated fatty acids to LXRα and modulation of SREBP-1 interaction with a specific SCD1 promoter element. Cell Biochem. Funct. 2014;32:637–646. doi: 10.1002/cbf.3067.
    1. Howard T.D., Mathias R.A., Seeds M.C., Herrington D.M., Hixson J.E., Shimmin L.C., Hawkins G.A., Sellers M., Ainsworth H.C., Sergeant S., et al. DNA methylation in an enhancer region of the FADS cluster is associated with FADS activity in human liver. PLoS ONE. 2014;9 doi: 10.1371/journal.pone.0097510.
    1. Jiang X., Bar H.Y., Yan J., Jones S., Brannon P.M., West A.A., Perry C.A., Ganti A., Pressman E., Devapatla S., et al. A higher maternal choline intake among third-trimester pregnant women lowers placental and circulating concentrations of the antiangiogenic factor fms-like tyrosine kinase-1 (sFLT1) FASEB J. 2013;27:1245–1253. doi: 10.1096/fj.12-221648.
    1. Jiang X., Jones S., Andrew B.Y., Ganti A., Malysheva O.V., Giallourou N., Brannon P.M., Roberson M.S., Caudill M.A. Choline inadequacy impairs trophoblast function and vascularization in cultured human placental trophoblasts. J. Cell. Physiol. 2014;229:1016–1027. doi: 10.1002/jcp.24526.

Source: PubMed

3
Sottoscrivi