Maternal Choline and Betaine Supplementation Modifies the Placental Response to Hyperglycemia in Mice and Human Trophoblasts

Khatia Nanobashvili, Chauntelle Jack-Roberts, Rachel Bretter, Naudia Jones, Kathleen Axen, Anjana Saxena, Kali Blain, Xinyin Jiang, Khatia Nanobashvili, Chauntelle Jack-Roberts, Rachel Bretter, Naudia Jones, Kathleen Axen, Anjana Saxena, Kali Blain, Xinyin Jiang

Abstract

Gestational diabetes mellitus (GDM) is characterized by excessive placental fat and glucose transport, resulting in fetal overgrowth. Earlier we demonstrated that maternal choline supplementation normalizes fetal growth in GDM mice at mid-gestation. In this study, we further assess how choline and its oxidation product betaine influence determinants of placental nutrient transport in GDM mice and human trophoblasts. C57BL/6J mice were fed a high-fat (HF) diet 4 weeks prior to and during pregnancy to induce GDM or fed a control normal fat (NF) diet. The HF mice also received 25 mM choline, 85 mM betaine, or control drinking water. We observed that GDM mice had an expanded placental junctional zone with an increased area of glycogen cells, while the thickness of the placental labyrinth zone was decreased at E17.5 compared to NF control mice (p < 0.05). Choline and betaine supplementation alleviated these morphological changes in GDM placentas. In parallel, both choline and betaine supplementation significantly reduced glucose accretion (p < 0.05) in in vitro assays where the human choriocarcinoma BeWo cells were cultured in high (35.5 mM) or normal (5.5 mM) glucose conditions. Expression of angiogenic genes was minimally altered by choline or betaine supplementation in either model. In conclusion, both choline and betaine modified some but not all determinants of placental transport in response to hyperglycemia in mouse and in vitro human cell line models.

Keywords: betaine; choline; gestational diabetes; nutrient transport; placental morphology; vasculature.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Study design. BS: betaine supplemented; CO: untreated control; CS: choline supplemented; E: embryonic day; HF: high-fat diet; NF: normal-fat diet.
Figure 2
Figure 2
Placental histology at E12.5 and E17.5. (a,b) Relative thickness of placental layers. (c) Histological appearance of representative placentas at E17.5. (d,e) Glycogen cell area in the junctional zone. Results are presented as glycogen cell area/total junctional zone area. (f) Histological images demonstrate representative junctional zones with glycogen cells (arrowheads) at E17.5. (g) Labyrinth blood space. Results are presented as labyrinth blood space/total labyrinth layer area. Each group contained 5 dams. Different diets were fed to dams from 4 weeks before timed-mating to gestational day 12.5 or E17.5. Placentas from one male and one female embryo in each dam were included in the analysis. Values are mean ± standard error of mean (SEM); a, b: any two groups with no overlapping characters have a statistically significant difference (p < 0.05) between them. D, decidua; J, junctional zone; L, labyrinth zone; NF: normal-fat diet; HF: high-fat diet; BS: betaine supplemented; CO: untreated control; CS: choline supplemented; NS: not significant.
Figure 3
Figure 3
mRNA abundance of angiogenic genes in the placenta at E12.5 (a) and E17.5 (b). Different diets were fed to dams from 4 weeks before timed-mating to gestational day 12.5 or 17.5. mRNA abundance was measured by real-time PCR. Each group contained 5 dams. Different diets were fed to dams from 4 weeks before timed-mating to gestational day 12.5 or E17.5. Placentas from one male and one female embryo in each dam were included in the analysis. Values are mean ± standard error of mean (SEM); a, b, c: any two groups with different characters have a statistically significant difference (p < 0.05) between them. Solid bars: NF-CO; shaded bars: HF-CO; open bars: HF-CS; hatched bars: HF-BS. Casp3: caspase 3; Pcna: proliferating cell nuclear antigen; Pgf: placental growth factor; sFLT1: soluble fms-like tyrosine kinase 1; Vegfa: vascular growth factor A. NF: normal-fat diet; HF: high-fat diet; BS: betaine supplemented; CO: untreated control; CS: choline supplemented; NS: not significant.
Figure 4
Figure 4
mRNA abundance in BeWo cells. (a) Proliferative and apoptotic genes; (b) Angiogenic and anti-angiogenic genes; (c) macronutrient transporters. BeWo cells were treated with 1mM choline (CS), 1 mM betaine (BS), or saline control and with 30 mM glucose (HG) or 30 mM mannose (NG) in the Minimum Essential Medium for 48 h. mRNA expression was analyzed with real-time PCR. Each experiment was done in triplicate and repeated 3 times. Values are mean ± standard error of mean (SEM); a, b, c: any two groups with no overlapping characters have a statistically significant difference (p < 0.05) between them. Solid bars: NG-CO; shaded bars: HG-CO; open bars: HG-CS; hatched bars: HG-BS. CASP3: caspase 3; FATP1: fatty acid transporter 1; FATP4: fatty acid transporter 4; GLUT1: glucose transporter 1; GLUT3: glucose transporter 3; PCNA: proliferating cell nuclear antigen; PGF: placental growth factor; sFLT1: soluble fms-like tyrosine kinase 1; SNAT2: Sodium-dependent neutral amino acid transporter-2; VEGFA: vascular growth factor A; NG: normal glucose; HG: high glucose; BS: betaine supplemented; CO: untreated control; CS: choline supplemented; NS: not significant.
Figure 5
Figure 5
Glucose and fatty acid accumulation by BeWo cells after 1-h incubation. (a) The luminescence intensity of labeled glucose that was accumulated in the BeWo cells; (b) The fluorescence intensity of labeled fatty acids that were accumulated in the BeWo cells. BeWo cells were treated with 1 mM choline (CS), 1mM betaine (BS), or saline control and with 30 mM glucose (HG) or 30 mM mannose (NG) in the Minimum Essential Medium for 48 h, followed by 1-h incubation with the labeled glucose or fatty acid probes. Each experiment was done in triplicate and repeated 3 times. Values are mean ± standard error of mean (SEM); a, b, c: any two groups with no overlapping characters have a statistically significant difference (p < 0.05) between them. Solid bars: NG-CO; shaded bars: HG-CO; open bars: HG-CS; hatched bars: HG-BS. NG: normal glucose; HG: high glucose; BS: betaine supplemented; CO: untreated control; CS: choline supplemented.

References

    1. Chu S.Y., Callaghan W.M., Kim S.Y., Schmid C.H., Lau J., England L.J., Dietz P.M. Maternal obesity and risk of gestational diabetes mellitus. Diabetes Care. 2007;30:2070–2076. doi: 10.2337/dc06-2559a.
    1. Hunt K.J., Schuller K.L. The increasing prevalence of diabetes in pregnancy. Obstet. Gynecol. Clin. N. Am. 2007;34:173–199. doi: 10.1016/j.ogc.2007.03.002.
    1. Bain E., Crane M., Tieu J., Han S., Crowther C.A., Middleton P. Diet and exercise interventions for preventing gestational diabetes mellitus. Cochrane Database Syst. Rev. 2015;4:CD010443. doi: 10.1002/14651858.CD010443.pub2.
    1. Hermann G.M., Dallas L.M., Haskell S.E., Roghair R.D. Neonatal macrosomia is an independent risk factor for adult metabolic syndrome. Neonatology. 2010;98:238–244. doi: 10.1159/000285629.
    1. Kc K., Shakya S., Zhang H. Gestational diabetes mellitus and macrosomia: A literature review. Ann. Nutr. Metab. 2015;66:14–20. doi: 10.1159/000371628.
    1. Brett K.E., Ferraro Z.M., Yockell-Lelievre J., Gruslin A., Adamo K.B. Maternal-fetal nutrient transport in pregnancy pathologies: the role of the placenta. Int. J. Mol. Sci. 2014;15:16153–16185. doi: 10.3390/ijms150916153.
    1. Desoye G., Gauster M., Wadsack C. Placental transport in pregnancy pathologies. Am. J. Clin. Nutr. 2011;94:S1896–S1902. doi: 10.3945/ajcn.110.000851.
    1. Rosario F.J., Powell T.L., Jansson T. Activation of placental insulin and mTOR signaling in a mouse model of maternal obesity associated with fetal overgrowth. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016;310:R87–R93. doi: 10.1152/ajpregu.00356.2015.
    1. Bell A.W., Ehrhardt R.A. Regulation of placental nutrient transport and implications for fetal growth. Nutr. Res. Rev. 2002;15:211–230. doi: 10.1079/NRR200239.
    1. Malassiné A., Frendo J.L., Evain-Brion D. A comparison of placental development and endocrine functions between the human and mouse model. Hum. Reprod. Update. 2003;9:531–539. doi: 10.1093/humupd/dmg043.
    1. Aires M.B., Dos Santos A.C. Effects of maternal diabetes on trophoblast cells. World J. Diabetes. 2015;6:338–344. doi: 10.4239/wjd.v6.i2.338.
    1. Taricco E., Radaelli T., Nobile de Santis M.S., Cetin I. Foetal and placental weights in relation to maternal characteristics in gestational diabetes. Placenta. 2003;24:343–347. doi: 10.1053/plac.2002.0913.
    1. Akison L.K., Nitert M.D., Clifton V.L., Moritz K.M., Simmons D.G. Review: Alterations in placental glycogen deposition in complicated pregnancies: Current preclinical and clinical evidence. Placenta. 2017;54:52–58. doi: 10.1016/j.placenta.2017.01.114.
    1. Shafrir E., Barash V. Placental glycogen metabolism in diabetic pregnancy. Isr. J. Med. Sci. 1991;27:449–461.
    1. Cvitic S., Desoye G., Hiden U. Glucose, insulin, and oxygen interplay in placental hypervascularisation in diabetes mellitus. BioMed Res. Int. 2014;2014:145846. doi: 10.1155/2014/145846.
    1. Gaither K., Quraishi A.N., Illsley N.P. Diabetes alters the expression and activity of the human placental GLUT1 glucose transporter. J. Clin. Endocrinol. Metab. 1999;84:695–701. doi: 10.1210/jc.84.2.695.
    1. Jones H.N., Woollett L.A., Barbour N., Prasad P.D., Powell T.L., Jansson T. High-fat diet before and during pregnancy causes marked up-regulation of placental nutrient transport and fetal overgrowth in C57/BL6 mice. FASEB J. 2009;23:271–278. doi: 10.1096/fj.08-116889.
    1. Castillo-Castrejon M., Powell T.L. Placental Nutrient Transport in Gestational Diabetic Pregnancies. Front. Endocrinol. (Lausanne) 2017;8:306. doi: 10.3389/fendo.2017.00306.
    1. Chakravarthy M.V., Lodhi I.J., Yin L., Malapaka R.R., Xu H.E., Turk J., Semenkovich C.F. Identification of a physiologically relevant endogenous ligand for PPARalpha in liver. Cell. 2009;138:476–488. doi: 10.1016/j.cell.2009.05.036.
    1. Xing J., Kang L., Jiang Y. Effect of dietary betaine supplementation on lipogenesis gene expression and CpG methylation of lipoprotein lipase gene in broilers. Mol. Biol. Rep. 2011;38:1975–1981. doi: 10.1007/s11033-010-0319-4.
    1. Du J., Shen L., Tan Z., Zhang P., Zhao X., Xu Y., Gan M., Yang Q., Ma J., Jiang A., et al. Betaine Supplementation Enhances Lipid Metabolism and Improves Insulin Resistance in Mice Fed a High-Fat Diet. Nutrients. 2018;10:131. doi: 10.3390/nu10020131.
    1. Lee I. Betaine is a positive regulator of mitochondrial respiration. Biochem. Biophys. Res. Commun. 2015;456:621–625. doi: 10.1016/j.bbrc.2014.12.005.
    1. Jack-Roberts C., Joselit Y., Nanobashvili K., Bretter R., Malysheva O.V., Caudill M.A., Saxena A., Axen K., Gomaa A., Jiang X. Choline Supplementation Normalizes Fetal Adiposity and Reduces Lipogenic Gene Expression in a Mouse Model of Maternal Obesity. Nutrients. 2017;9:899. doi: 10.3390/nu9080899.
    1. Nam J., Greenwald E., Jack-Roberts C., Ajeeb T.T., Malysheva O.V., Caudill M.A., Axen K., Saxena A., Semernina E., Nanobashvili K., et al. Choline prevents fetal overgrowth and normalizes placental fatty acid and glucose metabolism in a mouse model of maternal obesity. J. Nutr. Biochem. 2017;49:80–88. doi: 10.1016/j.jnutbio.2017.08.004.
    1. Joselit Y., Nanobashvili K., Jack-Roberts C., Greenwald E., Malysheva O.V., Caudill M.A., Saxena A., Jiang X. Maternal betaine supplementation affects fetal growth and lipid metabolism of high-fat fed mice in a temporal-specific manner. Nutr. Diabetes. 2018;8:41. doi: 10.1038/s41387-018-0035-z.
    1. Jiang X., Jones S., Andrew B.Y., Ganti A., Malysheva O.V., Giallourou N., Brannon P.M., Roberson M.S., Caudill M.A. Choline Inadequacy Impairs Trophoblast Function and Vascularization in Cultured Human Placental Trophoblasts. J. Cell. Physiol. 2014;229:1016–1027. doi: 10.1002/jcp.24526.
    1. Jiang X., Bar H.Y., Yan J., Jones S., Brannon P.M., West A.A., Perry C.A., Ganti A., Pressman E., Devapatla S., et al. A higher maternal choline intake among third-trimester pregnant women lowers placental and circulating concentrations of the antiangiogenic factor fms-like tyrosine kinase-1 (sFLT1) FASEB J. 2013;27:1245–1253. doi: 10.1096/fj.12-221648.
    1. Jiang X., Yan J., West A.A., Perry C.A., Malysheva O.V., Devapatla S., Pressman E., Vermeylen F., Caudill M.A. Maternal choline intake alters the epigenetic state of fetal cortisol-regulating genes in humans. FASEB J. 2012;26:3563–3574. doi: 10.1096/fj.12-207894.
    1. Kwan S.T.C., King J.H., Yan J., Wang Z., Jiang X., Hutzler J.S., Klein H.R., Brenna J.T., Roberson M.S., Caudill M.A. Maternal Choline Supplementation Modulates Placental Nutrient Transport and Metabolism in Late Gestation of Mouse Pregnancy. J. Nutr. 2017;147:2083–2092. doi: 10.3945/jn.117.256107.
    1. Kwan S.T.C., King J.H., Grenier J.K., Yan J., Jiang X., Roberson M.S., Caudill M.A. Maternal Choline Supplementation during Normal Murine Pregnancy Alters the Placental Epigenome: Results of an Exploratory Study. Nutrients. 2018;10:417. doi: 10.3390/nu10040417.
    1. Mellott T.J., Williams C.L., Meck W.H., Blusztajn J.K. Prenatal choline supplementation advances hippocampal development and enhances MAPK and CREB activation. FASEB J. 2004;18:545–547. doi: 10.1096/fj.03-0877fje.
    1. Wang Z., Yao T., Pini M., Zhou Z., Fantuzzi G., Song Z. Betaine improved adipose tissue function in mice fed a high-fat diet: a mechanism for hepatoprotective effect of betaine in nonalcoholic fatty liver disease. Am. J. Physiol. Gastrointest. Liver Physiol. 2010;298:G634–G642. doi: 10.1152/ajpgi.00249.2009.
    1. McClive P.J., Sinclair A.H. Rapid DNA extraction and PCR-sexing of mouse embryos. Mol. Reprod. Dev. 2001;60:225–226. doi: 10.1002/mrd.1081.
    1. Kim D.W., Young S.L., Grattan D.R., Jasoni C.L. Obesity during pregnancy disrupts placental morphology, cell proliferation, and inflammation in a sex-specific manner across gestation in the mouse. Biol. Reprod. 2014;90:130. doi: 10.1095/biolreprod.113.117259.
    1. Coan P.M., Conroy N., Burton G.J., Ferguson-Smith A.C. Origin and characteristics of glycogen cells in the developing murine placenta. Dev. Dyn. 2006;235:3280–3294. doi: 10.1002/dvdy.20981.
    1. Cuffe J.S., Walton S.L., Singh R.R., Spiers J.G., Bielefeldt-Ohmann H., Wilkinson L., Little M.H., Moritz K.M. Mid- to late term hypoxia in the mouse alters placental morphology, glucocorticoid regulatory pathways and nutrient transporters in a sex-specific manner. J. Physiol. 2014;592:3127–3141. doi: 10.1113/jphysiol.2014.272856.
    1. Jiang X., Greenwald E., Jack-Roberts C. Effects of Choline on DNA Methylation and Macronutrient Metabolic Gene Expression in In Vitro Models of Hyperglycemia. Nutr. Metab. Insights. 2016;9:11–17. doi: 10.4137/NMI.S29465.
    1. Desoye G., Hauguel-de Mouzon S. The human placenta in gestational diabetes mellitus. The insulin and cytokine network. Diabetes Care. 2007;30:S120–S126. doi: 10.2337/dc07-s203.
    1. Schneider H., Reiber W., Sager R., Malek A. Asymmetrical transport of glucose across the in vitro perfused human placenta. Placenta. 2003;24:27–33. doi: 10.1053/plac.2002.0869.
    1. Taricco E., Radaelli T., Rossi G., Nobile de Santis M.S., Bulfamante G.P., Avagliano L., Cetin I. Effects of gestational diabetes on fetal oxygen and glucose levels in vivo. BJOG. 2009;116:1729–1735. doi: 10.1111/j.1471-0528.2009.02341.x.
    1. Jirkovská M., Kubínová L., Janácek J., Moravcová M., Krejcí V., Karen P. Topological properties and spatial organization of villous capillaries in normal and diabetic placentas. J. Vasc. Res. 2002;39:268–278. doi: 10.1159/000063692.
    1. Teasdale F. Histomorphometry of the placenta of the diabetic women: class a diabetes mellitus. Placenta. 1981;2:241–251. doi: 10.1016/S0143-4004(81)80007-0.
    1. Pietro L., Daher S., Rudge M.V., Calderon I.M., Damasceno D.C., Sinzato Y.K., Bandeira C., Bevilacqua E. Vascular endothelial growth factor (VEGF) and VEGF-receptor expression in placenta of hyperglycemic pregnant women. Placenta. 2010;31:770–780. doi: 10.1016/j.placenta.2010.07.003.
    1. Nadarajah V.D., Min R.G., Judson J.P., Jegasothy R., Ling E.H. Maternal plasma soluble fms-like tyrosine kinase-1 and placental growth factor levels as biochemical markers of gestational hypertension for Malaysian mothers. J. Obstet. Gynaecol. Res. 2009;35:855–863. doi: 10.1111/j.1447-0756.2009.01037.x.
    1. El-Tarhouny S.A., Almasry S.M., Elfayomy A.K., Baghdadi H., Habib F.A. Placental growth factor and soluble Fms-like tyrosine kinase 1 in diabetic pregnancy: A possible relation to distal villous immaturity. Histol. Histopathol. 2014;29:259–272.
    1. Pereira R.D., De Long N.E., Wang R.C., Yazdi F.T., Holloway A.C., Raha S. Angiogenesis in the placenta: the role of reactive oxygen species signaling. BioMed Res. Int. 2015;2015:814543. doi: 10.1155/2015/814543.
    1. Olsen J.M., Sato M., Dallner O.S., Sandström A.L., Pisani D.F., Chambard J.C., Amri E.Z., Hutchinson D.S., Bengtsson T. Glucose uptake in brown fat cells is dependent on mTOR complex 2-promoted GLUT1 translocation. J. Cell Biol. 2014;207:365–374. doi: 10.1083/jcb.201403080.
    1. Larqué E., Demmelmair H., Gil-Sánchez A., Prieto-Sánchez M.T., Blanco J.E., Pagán A., Faber F.L., Zamora S., Parrilla J.J., Koletzko B. Placental transfer of fatty acids and fetal implications. Am. J. Clin. Nutr. 2011;94:S1908–S1913. doi: 10.3945/ajcn.110.001230.
    1. Pagán A., Prieto-Sánchez M.T., Blanco-Carnero J.E., Gil-Sánchez A., Parrilla J.J., Demmelmair H., Koletzko B., Larqué E. Materno-fetal transfer of docosahexaenoic acid is impaired by gestational diabetes mellitus. Am. J. Physiol. Endocrinol. Metab. 2013;305:E826–E833. doi: 10.1152/ajpendo.00291.2013.

Source: PubMed

3
Sottoscrivi