Pan PPAR agonist IVA337 is effective in prevention and treatment of experimental skin fibrosis

Nadira Ruzehaji, Camelia Frantz, Matthieu Ponsoye, Jerome Avouac, Sonia Pezet, Thomas Guilbert, Jean-Michel Luccarini, Pierre Broqua, Jean-Louis Junien, Yannick Allanore, Nadira Ruzehaji, Camelia Frantz, Matthieu Ponsoye, Jerome Avouac, Sonia Pezet, Thomas Guilbert, Jean-Michel Luccarini, Pierre Broqua, Jean-Louis Junien, Yannick Allanore

Abstract

Background: The pathogenesis of systemic sclerosis (SSc) involves a distinctive triad of autoimmune, vascular and inflammatory alterations resulting in fibrosis. Evidence suggests that peroxisome proliferator-activated receptors (PPARs) play an important role in SSc-related fibrosis and their agonists may become effective therapeutic targets.

Objective: To determine the expression of PPARs in human fibrotic skin and investigate the effects of IVA337, a pan PPAR agonist, in in vitro and in vivo models of fibrosis.

Methods: The antifibrotic effects of IVA337 were studied using a bleomycin-induced mouse model of dermal fibrosis. The in vivo effect of IVA337 on wound closure and inflammation were studied using an excisional model of wound healing.

Results: Low levels of PPARα and PPARγ were detected in the skin of patients with SSc compared with controls. In mice, IVA337 was associated with decreased extracellular matrix (ECM) deposition and reduced expression of phosphorylated SMAD2/3-intracellular effector of transforming growth factor (TGF)-β1. Although the antifibrotic effect of pan PPAR was similar to that of PPARγ agonist alone, a significant downregulation of several markers of inflammation was associated with IVA337. Despite its anti-inflammatory and antifibrotic properties, IVA337 did not interfere with wound closure. In vitro effects of IVA337 included attenuation of transcription of ECM genes and alteration of canonical and non-canonical TGF-β signalling pathways.

Conclusions: These findings indicate that simultaneous activation of all three PPAR isoforms exerts a dampening effect on inflammation and fibrosis, making IVA337 a potentially effective therapeutic candidate in the treatment of fibrotic diseases including SSc.

Keywords: Fibroblasts; Inflammation; Systemic Sclerosis.

Conflict of interest statement

YA consulted and received research funding from Actelion, Bayer, Biogen Idec, BMS, Genentech/Roche, Inventiva, Medac, Pfizer, Sanofi/Genzyme, Servier and UCB. YA is a member of the advisory board for the upcoming clinical study of IVA337 in systemic sclerosis. J-ML, PB and J-LJ are employed by Inventiva.

Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

Figures

Figure 1
Figure 1
Increased expression of peroxisome proliferator-activated receptor (PPAR)α and PPARγ in human systemic sclerosis (SSc) skin. (A) Representative images of formalin-fixed and paraffin-embedded samples of human healthy control, limited SSc (lSSc) and diffused (dSSc) skin stained with anti-PPARα (red), anti-CD90 (green) and α-smooth muscle actin (SMA) (green) antibodies. (B) Human healthy control, lSSc and dSSc skin stained with anti-PPARγ (red), anti-CD90 (green) and α-SMA (green) antibodies. In all images 4′,6-diamidino-2-phenylindole (DAPI) (blue) was used for nuclear counterstaining. Images were captured using 100× objective lens. Scale bar is 20 µm. In normal skin, PPARα and PPARγ are expressed by CD90+ dermal fibroblasts. In SSc skin, PPARα and PPARγ are expressed by endothelial and CD90+ perivascular cells. In SSc skin, PPARα and PPARγ appear to be expressed by endothelial cells and α-SMA+ myofibroblasts, but not by α-SMA+ cells localised around blood vessels and postcapillary venules of the superficial plexus. (C) Graphical representation of the expression of PPARα+ and PPARγ+ cells in dermis of normal, lSSc and dSSc skin. All values represent mean±SEM; n=5 (lSSc), n=6 (dSSc) and n=6 (normal control). *p<0.05; **p<0.01.
Figure 2
Figure 2
IVA337 attenuates dermal thickness, collagen content and myofibroblast accumulation in preventative model of fibrosis. (A) Representative images of H&E-stained sections of mouse skin treated with subcutaneous NaCl or bleomycin injections. Scale bar is 100 μm. (B) Graphical representation of dermal thickness of mouse skin harvested after 3 weeks of NaCl or bleomycin treatment. (N) denotes NaCl; (B) denotes bleomycin; (30 mg) denotes IVA337 at 30 mg/kg; (100 mg) denotes IVA337 at 100 mg/kg; (rosi) denotes rosiglitazone at 5 mg/kg. Four high-power field images were captured and two measurements per image were made. Results represent the relative fold change compared with NaCl-treated control mice. (C) Representative images of Masson's trichrome-stained sections of mouse skin harvested after 3 weeks of treatment with NaCl or bleomycin. Scale bar is 100 μm. (D) Graphical representation of hydroxyproline assay. Results are represented as mean±SEM of triplicate measurements obtained from n≥6 mice (two biopsies per mouse) and shown as relative fold change compared with NaCl-treated control samples. (E) Representative images of α-smooth muscle actin (SMA) immunohistochemistry. Negative controls included replacing primary antibodies with normal species-specific IgG. Scale bar is 50 μm. (F) Graphical representation of relative number of α-SMA-positive cells in dermis of NaCl or bleomycin-treated mice. Results represent the relative fold change compared with NaCl-treated control mice. (G) Body weight changes of mice treated with NaCl or bleomycin for 3 weeks. All values represent mean±SEM; n=6 each group. *p

Figure 3

Infiltration of immune effector cells…

Figure 3

Infiltration of immune effector cells into mouse skin treated with bleomycin and IVA337.…

Figure 3
Infiltration of immune effector cells into mouse skin treated with bleomycin and IVA337. (A) Representative immunohistochemistry images of mouse skin incubated with anti-CD107/b (macrophage marker), anti-F4/80 (macrophage marker) and anti-CD45 (leucocyte marker) antibodies. Black arrows indicate immune-positive cells. (B + vehicle) denotes bleomycin/vehicle; (B + IVA337) denotes bleomycin/IVA337 at 30 mg/kg; (B + rosi) denotes bleomycin/rosiglitazone at 5 mg/kg. Scale bar is 20 µm. (B) Representative immunohistochemistry images of mouse skin staining for CD8 and CD3 (lymphocytes). (C) Graphical representation of number of CD107/b, F4/40 and CD45+ cells and (D) CD8+ and CD3+ cells in mouse skin treated with either B + vehicle, B + IVA337 at 30 mg/kg or B + rosi at 5 mg/kg for 21 days. All values represent mean±SEM; n=6 each group. *p

Figure 4

Microscopic and histological analysis of…

Figure 4

Microscopic and histological analysis of wounds treated with vehicle, IVA337 (30 and 100…

Figure 4
Microscopic and histological analysis of wounds treated with vehicle, IVA337 (30 and 100 mg/kg) and rosiglitazone (5 mg/kg). (A) Representative images of H&E-stained sections of wounds at 7 and 21 days after wounding. Arrows indicate the wound margins. Scale bar is 100 μm. (B) Representative images of CD107b-stained (macrophage), F4/80-stained (macrophage) and Ly6G-stained (neutrophil) sections of mouse wounds treated with vehicle, IVA337 (30 and 100 mg/kg) and rosiglitazone (5 mg/kg) at 7 days after surgery. Scale bar is 20 µm. (C) Graphical representation of rate of wound re-epithelialisation at 7 and 14 days after wounding in mice treated with vehicle, IVA337 (30 and 100 mg/kg) and rosiglitazone at 5 mg/kg for 7 and 14 days. (D) Graphical representation of number of CD107b (macrophage), F4/80 (macrophage) and Ly6G (neutrophil) immuno-positive cells in mouse wounds treated with vehicle, IVA337 (30 and 100 mg/kg) and rosiglitazone (5 mg/kg) at 7 days after surgery. Scale bar is 20 µm. All values represent mean±SEM; n=6 each group. *p

Figure 5

Effect of IVA337 on formation…

Figure 5

Effect of IVA337 on formation of stress fibres and transforming growth factor (TGF)-β…

Figure 5
Effect of IVA337 on formation of stress fibres and transforming growth factor (TGF)-β signalling in primary human fibroblasts. (A) Systemic sclerosis (SSc) fibroblasts were treated with TGF-β1 (10 ng/mL) and IVA337 (10 µM) for 24 h, after which they were fixed with 4% paraformaldehyde, immunostained for phalloidin (red) and α-SMA (green). Scale bar is 25 μm. (B–D) RNA was isolated from scratch wounded confluent monolayers of SSc fibroblasts. Real-time quantitative (RTq) PCR analysis of (B) Col1A1, (C) Col1A2 and (D) α-SMA in response to treatment with IVA337 (10 µM) for 24 h. Differences were calculated using the Ct and comparative Ct methods for relative quantification. Results were expressed in arbitrary units, where Col1A1, Col1A2 and α-SMA genes were normalised with respect to HPRT1gene. All values represent mean±SEM; n=10 each group. (E) Representative western blots show the effect of IVA337 (10 µM) and the influence of TGF-β1 inhibitor SB431542 (10 µM) (as a positive control) on TGF-β-induced expression of collagen 1 and α-SMA proteins. (F and G) Bar graph based on western blot band densitometry showing the decrease in collagen and α-SMA protein expression after incubation with IVA337 (10 µM) for 24 h (n=6). *p

Figure 6

Effect of IVA337 on transforming…

Figure 6

Effect of IVA337 on transforming growth factor (TGF)-β1-induced phosphorylation of downstream signalling molecules.…

Figure 6
Effect of IVA337 on transforming growth factor (TGF)-β1-induced phosphorylation of downstream signalling molecules. (A) Primary systemic sclerosis (SSc) fibroblasts were isolated from fibrotic lesions of four individuals (n=4). Cells were used at passages 2–4 and incubated in the presence or absence of IVA337 (10 µM) for 24 h, fixed with methanol and immunostained for phosphorylated SMAD (pSMAD) 2/3 (red). Nucleus was counterstained with 4′,6-diamidino-2-phenylindole (DAPI) (green). TGF-β1 (10 ng/mL) caused an increase in pSMAD2/3 (red) immunofluorescence signal, which was found to be present in the nucleus and cytoplasm. Reduction in pSMAD2/3 signal was evident upon incubation with IVA337. Scale bar is 10 µm. (B) Representative images of mouse skin treated with bleo + vehicle or bleo + IVA337 and stained for pSMAD2/3. (C) Graphical representation of pSMAD2/3 immunohistochemistry of mouse skin treated with bleo + IVA337 or bleo + vehicle for 42 days. All values represent mean±SEM; n≥6 each group. **p
Similar articles
Cited by
References
    1. Allanore Y, Distler O. Systemic sclerosis in 2014: advances in cohort enrichment shape future of trial design. Nat Rev Rheumatol 2015;11:72–4. 10.1038/nrrheum.2014.222 - DOI - PubMed
    1. Elhai M, Avouac J, Kahan A, et al. . Systemic sclerosis: recent insights. Joint Bone Spine 2015;82:148–53. 10.1016/j.jbspin.2014.10.010 - DOI - PubMed
    1. Gabrielli A, Avvedimento EV, Krieg T. Scleroderma. N Engl J Med 2009;360:1989–2003. 10.1056/NEJMra0806188 - DOI - PubMed
    1. Ho YY, Lagares D, Tager AM, et al. . Fibrosis—a lethal component of systemic sclerosis. Nat Rev Rheumatol 2014;10:390–402. 10.1038/nrrheum.2014.53 - DOI - PubMed
    1. Lafyatis R. Transforming growth factor β-at the centre of systemic sclerosis. Nat Rev Rheumatol 2014;10:706–19. 10.1038/nrrheum.2014.137 - DOI - PubMed
Show all 36 references
MeSH terms
Substances
Full text links [x]
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM

NCBI Literature Resources

MeSH PMC Bookshelf Disclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.

Follow NCBI
Figure 3
Figure 3
Infiltration of immune effector cells into mouse skin treated with bleomycin and IVA337. (A) Representative immunohistochemistry images of mouse skin incubated with anti-CD107/b (macrophage marker), anti-F4/80 (macrophage marker) and anti-CD45 (leucocyte marker) antibodies. Black arrows indicate immune-positive cells. (B + vehicle) denotes bleomycin/vehicle; (B + IVA337) denotes bleomycin/IVA337 at 30 mg/kg; (B + rosi) denotes bleomycin/rosiglitazone at 5 mg/kg. Scale bar is 20 µm. (B) Representative immunohistochemistry images of mouse skin staining for CD8 and CD3 (lymphocytes). (C) Graphical representation of number of CD107/b, F4/40 and CD45+ cells and (D) CD8+ and CD3+ cells in mouse skin treated with either B + vehicle, B + IVA337 at 30 mg/kg or B + rosi at 5 mg/kg for 21 days. All values represent mean±SEM; n=6 each group. *p

Figure 4

Microscopic and histological analysis of…

Figure 4

Microscopic and histological analysis of wounds treated with vehicle, IVA337 (30 and 100…

Figure 4
Microscopic and histological analysis of wounds treated with vehicle, IVA337 (30 and 100 mg/kg) and rosiglitazone (5 mg/kg). (A) Representative images of H&E-stained sections of wounds at 7 and 21 days after wounding. Arrows indicate the wound margins. Scale bar is 100 μm. (B) Representative images of CD107b-stained (macrophage), F4/80-stained (macrophage) and Ly6G-stained (neutrophil) sections of mouse wounds treated with vehicle, IVA337 (30 and 100 mg/kg) and rosiglitazone (5 mg/kg) at 7 days after surgery. Scale bar is 20 µm. (C) Graphical representation of rate of wound re-epithelialisation at 7 and 14 days after wounding in mice treated with vehicle, IVA337 (30 and 100 mg/kg) and rosiglitazone at 5 mg/kg for 7 and 14 days. (D) Graphical representation of number of CD107b (macrophage), F4/80 (macrophage) and Ly6G (neutrophil) immuno-positive cells in mouse wounds treated with vehicle, IVA337 (30 and 100 mg/kg) and rosiglitazone (5 mg/kg) at 7 days after surgery. Scale bar is 20 µm. All values represent mean±SEM; n=6 each group. *p

Figure 5

Effect of IVA337 on formation…

Figure 5

Effect of IVA337 on formation of stress fibres and transforming growth factor (TGF)-β…

Figure 5
Effect of IVA337 on formation of stress fibres and transforming growth factor (TGF)-β signalling in primary human fibroblasts. (A) Systemic sclerosis (SSc) fibroblasts were treated with TGF-β1 (10 ng/mL) and IVA337 (10 µM) for 24 h, after which they were fixed with 4% paraformaldehyde, immunostained for phalloidin (red) and α-SMA (green). Scale bar is 25 μm. (B–D) RNA was isolated from scratch wounded confluent monolayers of SSc fibroblasts. Real-time quantitative (RTq) PCR analysis of (B) Col1A1, (C) Col1A2 and (D) α-SMA in response to treatment with IVA337 (10 µM) for 24 h. Differences were calculated using the Ct and comparative Ct methods for relative quantification. Results were expressed in arbitrary units, where Col1A1, Col1A2 and α-SMA genes were normalised with respect to HPRT1gene. All values represent mean±SEM; n=10 each group. (E) Representative western blots show the effect of IVA337 (10 µM) and the influence of TGF-β1 inhibitor SB431542 (10 µM) (as a positive control) on TGF-β-induced expression of collagen 1 and α-SMA proteins. (F and G) Bar graph based on western blot band densitometry showing the decrease in collagen and α-SMA protein expression after incubation with IVA337 (10 µM) for 24 h (n=6). *p

Figure 6

Effect of IVA337 on transforming…

Figure 6

Effect of IVA337 on transforming growth factor (TGF)-β1-induced phosphorylation of downstream signalling molecules.…

Figure 6
Effect of IVA337 on transforming growth factor (TGF)-β1-induced phosphorylation of downstream signalling molecules. (A) Primary systemic sclerosis (SSc) fibroblasts were isolated from fibrotic lesions of four individuals (n=4). Cells were used at passages 2–4 and incubated in the presence or absence of IVA337 (10 µM) for 24 h, fixed with methanol and immunostained for phosphorylated SMAD (pSMAD) 2/3 (red). Nucleus was counterstained with 4′,6-diamidino-2-phenylindole (DAPI) (green). TGF-β1 (10 ng/mL) caused an increase in pSMAD2/3 (red) immunofluorescence signal, which was found to be present in the nucleus and cytoplasm. Reduction in pSMAD2/3 signal was evident upon incubation with IVA337. Scale bar is 10 µm. (B) Representative images of mouse skin treated with bleo + vehicle or bleo + IVA337 and stained for pSMAD2/3. (C) Graphical representation of pSMAD2/3 immunohistochemistry of mouse skin treated with bleo + IVA337 or bleo + vehicle for 42 days. All values represent mean±SEM; n≥6 each group. **p
Similar articles
Cited by
References
    1. Allanore Y, Distler O. Systemic sclerosis in 2014: advances in cohort enrichment shape future of trial design. Nat Rev Rheumatol 2015;11:72–4. 10.1038/nrrheum.2014.222 - DOI - PubMed
    1. Elhai M, Avouac J, Kahan A, et al. . Systemic sclerosis: recent insights. Joint Bone Spine 2015;82:148–53. 10.1016/j.jbspin.2014.10.010 - DOI - PubMed
    1. Gabrielli A, Avvedimento EV, Krieg T. Scleroderma. N Engl J Med 2009;360:1989–2003. 10.1056/NEJMra0806188 - DOI - PubMed
    1. Ho YY, Lagares D, Tager AM, et al. . Fibrosis—a lethal component of systemic sclerosis. Nat Rev Rheumatol 2014;10:390–402. 10.1038/nrrheum.2014.53 - DOI - PubMed
    1. Lafyatis R. Transforming growth factor β-at the centre of systemic sclerosis. Nat Rev Rheumatol 2014;10:706–19. 10.1038/nrrheum.2014.137 - DOI - PubMed
Show all 36 references
MeSH terms
Substances
Full text links [x]
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM

NCBI Literature Resources

MeSH PMC Bookshelf Disclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.

Follow NCBI
Figure 4
Figure 4
Microscopic and histological analysis of wounds treated with vehicle, IVA337 (30 and 100 mg/kg) and rosiglitazone (5 mg/kg). (A) Representative images of H&E-stained sections of wounds at 7 and 21 days after wounding. Arrows indicate the wound margins. Scale bar is 100 μm. (B) Representative images of CD107b-stained (macrophage), F4/80-stained (macrophage) and Ly6G-stained (neutrophil) sections of mouse wounds treated with vehicle, IVA337 (30 and 100 mg/kg) and rosiglitazone (5 mg/kg) at 7 days after surgery. Scale bar is 20 µm. (C) Graphical representation of rate of wound re-epithelialisation at 7 and 14 days after wounding in mice treated with vehicle, IVA337 (30 and 100 mg/kg) and rosiglitazone at 5 mg/kg for 7 and 14 days. (D) Graphical representation of number of CD107b (macrophage), F4/80 (macrophage) and Ly6G (neutrophil) immuno-positive cells in mouse wounds treated with vehicle, IVA337 (30 and 100 mg/kg) and rosiglitazone (5 mg/kg) at 7 days after surgery. Scale bar is 20 µm. All values represent mean±SEM; n=6 each group. *p

Figure 5

Effect of IVA337 on formation…

Figure 5

Effect of IVA337 on formation of stress fibres and transforming growth factor (TGF)-β…

Figure 5
Effect of IVA337 on formation of stress fibres and transforming growth factor (TGF)-β signalling in primary human fibroblasts. (A) Systemic sclerosis (SSc) fibroblasts were treated with TGF-β1 (10 ng/mL) and IVA337 (10 µM) for 24 h, after which they were fixed with 4% paraformaldehyde, immunostained for phalloidin (red) and α-SMA (green). Scale bar is 25 μm. (B–D) RNA was isolated from scratch wounded confluent monolayers of SSc fibroblasts. Real-time quantitative (RTq) PCR analysis of (B) Col1A1, (C) Col1A2 and (D) α-SMA in response to treatment with IVA337 (10 µM) for 24 h. Differences were calculated using the Ct and comparative Ct methods for relative quantification. Results were expressed in arbitrary units, where Col1A1, Col1A2 and α-SMA genes were normalised with respect to HPRT1gene. All values represent mean±SEM; n=10 each group. (E) Representative western blots show the effect of IVA337 (10 µM) and the influence of TGF-β1 inhibitor SB431542 (10 µM) (as a positive control) on TGF-β-induced expression of collagen 1 and α-SMA proteins. (F and G) Bar graph based on western blot band densitometry showing the decrease in collagen and α-SMA protein expression after incubation with IVA337 (10 µM) for 24 h (n=6). *p

Figure 6

Effect of IVA337 on transforming…

Figure 6

Effect of IVA337 on transforming growth factor (TGF)-β1-induced phosphorylation of downstream signalling molecules.…

Figure 6
Effect of IVA337 on transforming growth factor (TGF)-β1-induced phosphorylation of downstream signalling molecules. (A) Primary systemic sclerosis (SSc) fibroblasts were isolated from fibrotic lesions of four individuals (n=4). Cells were used at passages 2–4 and incubated in the presence or absence of IVA337 (10 µM) for 24 h, fixed with methanol and immunostained for phosphorylated SMAD (pSMAD) 2/3 (red). Nucleus was counterstained with 4′,6-diamidino-2-phenylindole (DAPI) (green). TGF-β1 (10 ng/mL) caused an increase in pSMAD2/3 (red) immunofluorescence signal, which was found to be present in the nucleus and cytoplasm. Reduction in pSMAD2/3 signal was evident upon incubation with IVA337. Scale bar is 10 µm. (B) Representative images of mouse skin treated with bleo + vehicle or bleo + IVA337 and stained for pSMAD2/3. (C) Graphical representation of pSMAD2/3 immunohistochemistry of mouse skin treated with bleo + IVA337 or bleo + vehicle for 42 days. All values represent mean±SEM; n≥6 each group. **p
Similar articles
Cited by
References
    1. Allanore Y, Distler O. Systemic sclerosis in 2014: advances in cohort enrichment shape future of trial design. Nat Rev Rheumatol 2015;11:72–4. 10.1038/nrrheum.2014.222 - DOI - PubMed
    1. Elhai M, Avouac J, Kahan A, et al. . Systemic sclerosis: recent insights. Joint Bone Spine 2015;82:148–53. 10.1016/j.jbspin.2014.10.010 - DOI - PubMed
    1. Gabrielli A, Avvedimento EV, Krieg T. Scleroderma. N Engl J Med 2009;360:1989–2003. 10.1056/NEJMra0806188 - DOI - PubMed
    1. Ho YY, Lagares D, Tager AM, et al. . Fibrosis—a lethal component of systemic sclerosis. Nat Rev Rheumatol 2014;10:390–402. 10.1038/nrrheum.2014.53 - DOI - PubMed
    1. Lafyatis R. Transforming growth factor β-at the centre of systemic sclerosis. Nat Rev Rheumatol 2014;10:706–19. 10.1038/nrrheum.2014.137 - DOI - PubMed
Show all 36 references
MeSH terms
Substances
Full text links [x]
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM

NCBI Literature Resources

MeSH PMC Bookshelf Disclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.

Follow NCBI
Figure 5
Figure 5
Effect of IVA337 on formation of stress fibres and transforming growth factor (TGF)-β signalling in primary human fibroblasts. (A) Systemic sclerosis (SSc) fibroblasts were treated with TGF-β1 (10 ng/mL) and IVA337 (10 µM) for 24 h, after which they were fixed with 4% paraformaldehyde, immunostained for phalloidin (red) and α-SMA (green). Scale bar is 25 μm. (B–D) RNA was isolated from scratch wounded confluent monolayers of SSc fibroblasts. Real-time quantitative (RTq) PCR analysis of (B) Col1A1, (C) Col1A2 and (D) α-SMA in response to treatment with IVA337 (10 µM) for 24 h. Differences were calculated using the Ct and comparative Ct methods for relative quantification. Results were expressed in arbitrary units, where Col1A1, Col1A2 and α-SMA genes were normalised with respect to HPRT1gene. All values represent mean±SEM; n=10 each group. (E) Representative western blots show the effect of IVA337 (10 µM) and the influence of TGF-β1 inhibitor SB431542 (10 µM) (as a positive control) on TGF-β-induced expression of collagen 1 and α-SMA proteins. (F and G) Bar graph based on western blot band densitometry showing the decrease in collagen and α-SMA protein expression after incubation with IVA337 (10 µM) for 24 h (n=6). *p

Figure 6

Effect of IVA337 on transforming…

Figure 6

Effect of IVA337 on transforming growth factor (TGF)-β1-induced phosphorylation of downstream signalling molecules.…

Figure 6
Effect of IVA337 on transforming growth factor (TGF)-β1-induced phosphorylation of downstream signalling molecules. (A) Primary systemic sclerosis (SSc) fibroblasts were isolated from fibrotic lesions of four individuals (n=4). Cells were used at passages 2–4 and incubated in the presence or absence of IVA337 (10 µM) for 24 h, fixed with methanol and immunostained for phosphorylated SMAD (pSMAD) 2/3 (red). Nucleus was counterstained with 4′,6-diamidino-2-phenylindole (DAPI) (green). TGF-β1 (10 ng/mL) caused an increase in pSMAD2/3 (red) immunofluorescence signal, which was found to be present in the nucleus and cytoplasm. Reduction in pSMAD2/3 signal was evident upon incubation with IVA337. Scale bar is 10 µm. (B) Representative images of mouse skin treated with bleo + vehicle or bleo + IVA337 and stained for pSMAD2/3. (C) Graphical representation of pSMAD2/3 immunohistochemistry of mouse skin treated with bleo + IVA337 or bleo + vehicle for 42 days. All values represent mean±SEM; n≥6 each group. **p
Similar articles
Cited by
References
    1. Allanore Y, Distler O. Systemic sclerosis in 2014: advances in cohort enrichment shape future of trial design. Nat Rev Rheumatol 2015;11:72–4. 10.1038/nrrheum.2014.222 - DOI - PubMed
    1. Elhai M, Avouac J, Kahan A, et al. . Systemic sclerosis: recent insights. Joint Bone Spine 2015;82:148–53. 10.1016/j.jbspin.2014.10.010 - DOI - PubMed
    1. Gabrielli A, Avvedimento EV, Krieg T. Scleroderma. N Engl J Med 2009;360:1989–2003. 10.1056/NEJMra0806188 - DOI - PubMed
    1. Ho YY, Lagares D, Tager AM, et al. . Fibrosis—a lethal component of systemic sclerosis. Nat Rev Rheumatol 2014;10:390–402. 10.1038/nrrheum.2014.53 - DOI - PubMed
    1. Lafyatis R. Transforming growth factor β-at the centre of systemic sclerosis. Nat Rev Rheumatol 2014;10:706–19. 10.1038/nrrheum.2014.137 - DOI - PubMed
Show all 36 references
MeSH terms
Substances
Full text links [x]
[x]
Cite
Copy Download .nbib
Format: AMA APA MLA NLM
Figure 6
Figure 6
Effect of IVA337 on transforming growth factor (TGF)-β1-induced phosphorylation of downstream signalling molecules. (A) Primary systemic sclerosis (SSc) fibroblasts were isolated from fibrotic lesions of four individuals (n=4). Cells were used at passages 2–4 and incubated in the presence or absence of IVA337 (10 µM) for 24 h, fixed with methanol and immunostained for phosphorylated SMAD (pSMAD) 2/3 (red). Nucleus was counterstained with 4′,6-diamidino-2-phenylindole (DAPI) (green). TGF-β1 (10 ng/mL) caused an increase in pSMAD2/3 (red) immunofluorescence signal, which was found to be present in the nucleus and cytoplasm. Reduction in pSMAD2/3 signal was evident upon incubation with IVA337. Scale bar is 10 µm. (B) Representative images of mouse skin treated with bleo + vehicle or bleo + IVA337 and stained for pSMAD2/3. (C) Graphical representation of pSMAD2/3 immunohistochemistry of mouse skin treated with bleo + IVA337 or bleo + vehicle for 42 days. All values represent mean±SEM; n≥6 each group. **p

References

    1. Allanore Y, Distler O. Systemic sclerosis in 2014: advances in cohort enrichment shape future of trial design. Nat Rev Rheumatol 2015;11:72–4. 10.1038/nrrheum.2014.222
    1. Elhai M, Avouac J, Kahan A, et al. . Systemic sclerosis: recent insights. Joint Bone Spine 2015;82:148–53. 10.1016/j.jbspin.2014.10.010
    1. Gabrielli A, Avvedimento EV, Krieg T. Scleroderma. N Engl J Med 2009;360:1989–2003. 10.1056/NEJMra0806188
    1. Ho YY, Lagares D, Tager AM, et al. . Fibrosis—a lethal component of systemic sclerosis. Nat Rev Rheumatol 2014;10:390–402. 10.1038/nrrheum.2014.53
    1. Lafyatis R. Transforming growth factor β-at the centre of systemic sclerosis. Nat Rev Rheumatol 2014;10:706–19. 10.1038/nrrheum.2014.137
    1. Palumbo-Zerr K, Zerr P, Distler A, et al. . Orphan nuclear receptor NR4A1 regulates transforming growth factor-β signaling and fibrosis. Nat Med 2015;21:150–8. 10.1038/nm.3777
    1. Ghosh AK, Bhattacharyya S, Wei J, et al. . Peroxisome proliferator-activated receptor-gamma abrogates Smad-dependent collagen stimulation by targeting the p300 transcriptional coactivator. FASEB J 2009;23:2968–77. 10.1096/fj.08-128736
    1. Still K, Grabowski P, Mackie I, et al. . The peroxisome proliferator activator receptor alpha/delta agonists linoleic acid and bezafibrate upregulate osteoblast differentiation and induce periosteal bone formation in vivo. Calcif Tissue Int 2008;83:285–92. 10.1007/s00223-008-9175-9
    1. Wei J, Ghosh AK, Sargent JL, et al. . PPARγ downregulation by TGFβ in fibroblast and impaired expression and function in systemic sclerosis: a novel mechanism for progressive fibrogenesis. PLoS ONE 2010;5:e13778 10.1371/journal.pone.0013778
    1. Samah M, El-Aidy Ael R, Tawfik MK, et al. . Evaluation of the antifibrotic effect of fenofibrate and rosiglitazone on bleomycin-induced pulmonary fibrosis in rats. Eur J Pharmacol 2012;689:186–93. 10.1016/j.ejphar.2012.05.026
    1. Galuppo M, Di Paola R, Mazzon E, et al. . GW0742, a high affinity PPAR-beta/delta agonist reduces lung inflammation induced by bleomycin instillation in mice. Int J Immunopathol Pharmacol 2010;23:1033–46.
    1. Aoki Y, Maeno T, Aoyagi K, et al. . Pioglitazone, a peroxisome proliferator-activated receptor gamma ligand, suppresses bleomycin-induced acute lung injury and fibrosis. Respiration 2009;77:311–19. 10.1159/000168676
    1. Peters JM, Shah YM, Gonzalez FJ. The role of peroxisome proliferator-activated receptors in carcinogenesis and chemoprevention. Nat Rev Cancer 2012;12:181–95. 10.1038/nrc3214
    1. Nissen SE, Wolski K. Effect of rosiglitazone on the risk of myocardial infarction and death from cardiovascular causes. N Engl J Med 2007;356:2457–71. 10.1056/NEJMoa072761
    1. LeRoy EC, Black C, Fleischmajer R, et al. . Scleroderma (systemic sclerosis): classification, subsets and pathogenesis. J Rheumatol 1988;15:202–5.
    1. Avouac J, Elhai M, Tomcik M, et al. . Critical role of the adhesion receptor DNAX accessory molecule-1 (DNAM-1) in the development of inflammation-driven dermal fibrosis in a mouse model of systemic sclerosis. Ann Rheum Dis 2013;72:1089–98. 10.1136/annrheumdis-2012-201759
    1. Beyer C, Schett G, Distler O, et al. . Animal models of systemic sclerosis: prospects and limitations. Arthritis Rheum 2010;62:2831–44. 10.1002/art.27647
    1. Ruzehaji N, Kopecki Z, Melville E, et al. . Attenuation of flightless I improves wound healing and enhances angiogenesis in a murine model of type 1 diabetes. Diabetologia 2014;57:402–12. 10.1007/s00125-013-3107-6
    1. Desallais L, Avouac J, Frechet M, et al. . Targeting IL-6 by both passive or active immunization strategies prevents bleomycin-induced skin fibrosis. Arthritis Res Ther 2014;16:R157 10.1186/ar4672
    1. Avouac J, Palumbo-Zerr K, Ruzehaji N, et al. . The Nuclear Receptor Constitutive Androstane Receptor/NR1I3 Enhances the Profibrotic Effects of Transforming Growth Factor beta and Contributes to the Development of Experimental Dermal Fibrosis. Arthritis Rheumatol 2014;66:3140–50. 10.1002/art.38819
    1. Ruzehaji N, Avouac J, Elhai M, et al. . Combined effect of genetic background and gender in a mouse model of bleomycin-induced skin fibrosis. Arthritis Res Ther 2015;17:145 10.1186/s13075-015-0659-5
    1. Ruzehaji N, Mills SJ, Melville E, et al. . The influence of Flightless I on Toll-like-receptor-mediated inflammation in a murine model of diabetic wound healing. Biomed Res Int 2013;2013:389792 10.1155/2013/389792
    1. Lei N, Franken L, Ruzehaji N, et al. . Flightless, secreted through a late endosome/lysosome pathway, binds LPS and dampens cytokine secretion. J Cell Sci 2012;125(Pt 18):4288–96. 10.1242/jcs.099507
    1. Lupatov AY, Vdovin AS, Vakhrushev IV, et al. . Comparative analysis of the expression of surface markers on fibroblasts and fibroblast-like cells isolated from different human tissues. Bull Exp Biol Med 2015;158:537–43. 10.1007/s10517-015-2803-2
    1. Pfisterer K, Lipnik KM, Hofer E, et al. . CD90+ human dermal stromal cells are potent inducers of FoxP3(+) regulatory T cells. J Invest Dermatol 2015;135:130–41. 10.1038/jid.2014.309
    1. Huang J, Beyer C, Palumbo-Zerr K, et al. . Nintedanib inhibits fibroblast activation and ameliorates fibrosis in preclinical models of systemic sclerosis. Ann Rheum Dis 2016;75:883–90.
    1. Mastrofrancesco A, Kovacs D, Sarra M, et al. . Preclinical studies of a specific PPARgamma modulator in the control of skin inflammation. J Invest Dermatol 2014;134:1001–11. 10.1038/jid.2013.448
    1. Wu M, Melichian DS, Chang E, et al. . Rosiglitazone abrogates bleomycin-induced scleroderma and blocks profibrotic responses through peroxisome proliferator-activated receptor-gamma. Am J Pathol 2009;174:519–33. 10.2353/ajpath.2009.080574
    1. Wahli W. Peroxisome proliferator-activated receptors (PPARs): from metabolic control to epidermal wound healing. Swiss Med Wkly 2002;132:83–91.
    1. Martin P. Wound healing–aiming for perfect skin regeneration. Science 1997;276:75–81. 10.1126/science.276.5309.75
    1. Gurtner GC, Werner S, Barrandon Y, et al. . Wound repair and regeneration. Nature 2008;453:314–21. 10.1038/nature07039
    1. Biernacka A, Dobaczewski M, Frangogiannis NG. TGF-β signaling in fibrosis. Growth Factors 2011;29:196–202. 10.3109/08977194.2011.595714
    1. Jeon KI, Kulkarni A, Woeller CF, et al. . Inhibitory effects of PPARγ ligands on TGF-β1-induced corneal myofibroblast transformation. Am J Pathol 2014;184:1429–45. 10.1016/j.ajpath.2014.01.026
    1. Yessoufou A, Wahli W. Multifaceted roles of peroxisome proliferator-activated receptors (PPARs) at the cellular and whole organism levels. Swiss Med Wkly 2010;140:w13071 10.4414/smw.2010.13071
    1. Okada-Iwabu M, Yamauchi T, Iwabu M, et al. . A small-molecule AdipoR agonist for type 2 diabetes and short life in obesity. Nature 2013;503:493–9. 10.1038/nature12656
    1. Gao Q, Jia Y, Yang G, et al. . PPARalpha-deficient Ob/Ob obese mice become more obese and manifest severe hepatic steatosis due to decreased fatty acid oxidation. Am J Pathol 2015;185:1396–408. 10.1016/j.ajpath.2015.01.018

Source: PubMed

3
Sottoscrivi