Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate

M Rohmer, M Knani, P Simonin, B Sutter, H Sahm, M Rohmer, M Knani, P Simonin, B Sutter, H Sahm

Abstract

Incorporation of 13C-labelled glucose, acetate, pyruvate or erythrose allowed the determination of the origin of the carbon atoms of triterpenoids of the hopane series and/or of the ubiquinones from several bacteria (Zymomonas mobilis, Methylobacterium fujisawaense, Escherichia coli and Alicyclobacillus acidoterrestris) confirmed our earlier results obtained by incorporation of 13C-labelled acetate into the hopanoids of other bacteria and led to the identification of a novel biosynthetic route for the early steps of isoprenoid biosynthesis. The C5 framework of isoprenic units results most probably (i) from the condensation of a C2 unit derived from pyruvate decarboxylation (e.g. thiamine-activated acetaldehyde) on the C-2 carbonyl group of a triose phosphate derivative issued probably from dihydroxyacetone phosphate and not from pyruvate and (ii) from a transposition step. Although this hypothetical biosynthetic pathway resembles that of L-valine biosynthesis, this amino acid or its C5 precursors could be excluded as intermediates in the formation of isoprenic units.

References

    1. Eur J Biochem. 1988 Aug 1;175(2):405-11
    1. J Biochem. 1982 Nov;92(5):1527-37
    1. J Biol Chem. 1964 Aug;239:2507-15
    1. J Biochem. 1986 Apr;99(4):1137-46
    1. Biochem J. 1981 Jun 15;196(3):675-81
    1. Bacteriol Rev. 1977 Mar;41(1):1-46
    1. J Biol Chem. 1986 Mar 15;261(8):3578-83
    1. Can J Biochem. 1976 Sep;54(9):816-23
    1. Can J Biochem. 1982 Jun;60(6):675-83
    1. Biochim Biophys Acta. 1976 Jun 22;431(3):550-69
    1. Biochem Int. 1984 Jun;8(6):779-85
    1. Biochemistry. 1968 Jan;7(1):472-82
    1. J Biol Chem. 1982 Dec 25;257(24):14610-2
    1. Eur J Biochem. 1975 Sep 1;57(1):301-8
    1. Biochemistry. 1977 Oct 18;16(21):4616-22
    1. Eur J Biochem. 1985 Jul 1;150(1):29-34
    1. J Bacteriol. 1973 Oct;116(1):235-44
    1. Arch Biochem Biophys. 1969 Mar;130(1):164-74
    1. Biochem J. 1966 Apr;99(1):123-7
    1. J Biol Chem. 1969 Oct 25;244(20):5436-9
    1. Eur J Biochem. 1985 Sep 2;151(2):405-10
    1. J Antibiot (Tokyo). 1986 Nov;39(11):1634-5
    1. FEMS Microbiol Lett. 1993 Aug 1;111(2-3):135-40
    1. J Antibiot (Tokyo). 1987 Dec;40(12):1740-5
    1. Arch Biochem Biophys. 1965 Apr;110:75-84
    1. Biochem J. 1989 Sep 1;262(2):673-5
    1. J Biol Chem. 1954 Apr;207(2):689-94
    1. Arch Biochem Biophys. 1976 Jul;175(1):236-48
    1. Int J Syst Bacteriol. 1992 Apr;42(2):263-9
    1. Biochim Biophys Acta. 1976 Jun 22;431(3):570-7
    1. FEMS Microbiol Rev. 1992 Sep;9(1):1-27
    1. Steroids. 1992 Aug;57(8):378-83
    1. Biochem J. 1972 Apr;127(2):345-9
    1. Biochem J. 1970 Jun;118(1):167-70
    1. Biochem J. 1973 Oct;136(2):395-404
    1. J Bacteriol. 1986 May;166(2):559-64
    1. J Basic Microbiol. 1985;25(8):503-7
    1. J Bacteriol. 1989 Jun;171(6):2994-3001
    1. Biochem J. 1973 Nov;135(3):567-8
    1. Biochem J. 1991 Feb 1;273 ( Pt 3):627-34
    1. Arch Biochem Biophys. 1980 Apr 1;200(2):474-84

Source: PubMed

3
Sottoscrivi