Functional Near-Infrared Spectroscopy to Study Cerebral Hemodynamics in Older Adults During Cognitive and Motor Tasks: A Review

Cristina Udina, Stella Avtzi, Turgut Durduran, Roee Holtzer, Andrea L Rosso, Carmina Castellano-Tejedor, Laura-Monica Perez, Luis Soto-Bagaria, Marco Inzitari, Cristina Udina, Stella Avtzi, Turgut Durduran, Roee Holtzer, Andrea L Rosso, Carmina Castellano-Tejedor, Laura-Monica Perez, Luis Soto-Bagaria, Marco Inzitari

Abstract

The integrity of the frontal areas of the brain, specifically the prefrontal cortex, are critical to preserve cognition and mobility in late life. Prefrontal cortex regions are involved in executive functions and gait control and have been related to the performance of dual-tasks. Dual-task performance assessment may help identify older adults at risk of negative health outcomes. As an alternative to neuroimaging techniques that do not allow assessment during actual motion, functional Near-Infrared Spectroscopy (fNIRS) is a non-invasive technique that can assess neural activation through the measurement of cortical oxygenated and deoxygenated hemoglobin levels, while the person is performing a motor task in a natural environment as well as during cognitive tasks. The aim of this review was to describe the use of fNIRS to study frontal lobe hemodynamics during cognitive, motor and dual-tasks in older adults. From the 46 included publications, 20 studies used only cognitive tasks, three studies used motor tasks and 23 used dual-tasks. Our findings suggest that fNIRS detects changes in frontal activation in older adults (cognitively healthy and mild cognitive impairment), especially while performing cognitive and dual-tasks. In both the comparison between older and younger adults, and in people with different neurological conditions, compared to healthier controls, the prefrontal cortex seems to experience a higher activation, which could be interpreted in the context of proposed neural inefficiency and limited capacity models. Further research is needed to establish standardized fNIRS protocols, study the cerebral hemodynamic in different neurological and systemic conditions that might influence cortical activation and explore its role in predicting incident health outcomes such as dementia.

Keywords: cerebral hemodynamics; cognition; dual task; functional Near-Infrared Spectroscopy; gait; motor task; older adults; prefrontal cortex.

Copyright © 2020 Udina, Avtzi, Durduran, Holtzer, Rosso, Castellano-Tejedor, Perez, Soto-Bagaria and Inzitari.

Figures

FIGURE 1
FIGURE 1
Flow chart diagram of the review process.

References

    1. Agbangla N. F., Audiffren M., Albinet C. T. (2017). Use of near-infrared spectroscopy in the investigation of brain activation during cognitive aging: a systematic review of an emerging area of research. Ageing Res. Rev. 38 52–66. 10.1016/j.arr.2017.07.003
    1. Albinet C. T., Mandrick K., Bernard P. L., Perrey S., Blain H. (2014). Improved cerebral oxygenation response and executive performance as a function of cardiorespiratory fitness in older women: a FNIRS study. Front. Aging Neurosci. 6:272 10.3389/fnagi.2014.00272
    1. Al-Yahya E., Johansen-Berg H., Kischka U., Zarei M., Cockburn J., Dawes H. (2016). Prefrontal cortex activation while walking under dual-task conditions in stroke. Neurorehabil. Neural Repair 30 591–599. 10.1177/1545968315613864
    1. Baezner H., Blahak C., Poggesi A., Pantoni L., Inzitari D., Chabriat H., et al. (2008). Association of gait and balance disorders with age-related white matter changes: the LADIS study. Neurology 70 935–942. 10.1212/01.wnl.0000305959.46197.e6
    1. Baltadjieva R., Giladi N., Gruendlinger L., Peretz C., Hausdorff J. M. (2006). Marked alterations in the gait timing and rhythmicity of patients with de novo Parkinson’s disease. Eur. J. Neurosci. 24 1815–1820. 10.1111/j.1460-9568.2006.05033.x
    1. Beauchet O., Allali G., Annweiler C., Verghese J. (2016). Association of motoric cognitive risk syndrome with brain volumes: results from the GAIT study. J. Gerontol. A Biol. Sci. Med. Sci. 71 1081–1088. 10.1093/gerona/glw012
    1. Benítez-Rivero S., Marín-Oyaga V. A., García-Solís D., Huertas-Fernández I., García-Gómez F. J., Jesús S., et al. (2013). Clinical features and 123 I-FP-CIT SPECT imaging in vascular parkinsonism and Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 84 122–129. 10.1136/jnnp-2012-302618
    1. Beurskens R., Helmich I., Rein R., Bock O. (2014). Age-related changes in prefrontal activity during walking in dual-task situations: a FNIRS study. Int. J. Psychophysiol. 92 122–128. 10.1016/j.ijpsycho.2014.03.005
    1. Bierre K. L., Lucas S. J. E., Guiney H., Cotter J. D., Machado L. (2017). Cognitive difficulty intensifies age-related changes in anterior frontal hemodynamics: novel evidence from near-infrared spectroscopy. J. Gerontol. A Biol. Sci. Med. Sci. 72 181–188. 10.1093/gerona/glw061
    1. Blumen H. M., Holtzer R., Brown L. L., Gazes Y., Verghese J. (2014). Behavioral and neural correlates of imagined walking and walking-while-talking in the elderly. Hum. Brain Mapp. 35 4090–4104. 10.1002/hbm.22461
    1. Boas D. A., Elwell C. E., Ferrari M., Taga G. (2014). Twenty years of functional near-infrared spectroscopy: introduction for the special issue. Neuroimage 85 1–5. 10.1016/j.neuroimage.2013.11.033
    1. Brigadoi S., Ceccherini L., Cutini S., Scarpa F., Scatturin P., Selb J., et al. (2014). Motion artifacts in functional near-infrared spectroscopy: a comparison of motion correction techniques applied to real cognitive data. Neuroimage 85 181–191. 10.1016/j.neuroimage.2013.04.082
    1. Buchbinder B. R. (2016). Functional Magnetic Resonance Imaging. In Pathobiology of Human Disease: A Dynamic Encyclopedia of Disease Mechanisms, 1st Edn Amsterdam: Elsevier.
    1. Burgmans S., van Boxtel M. P. J., Smeets F., Vuurman E. F. P. M., Gronenschild E. H. B. M., Verhey F. R. J., et al. (2009). Prefrontal cortex atrophy predicts dementia over a six-year period. Neurobiol. Aging 30 1413–1419. 10.1016/j.neurobiolaging.2007.11.028
    1. Cabeza R. (2004). Task-independent and task-specific age effects on brain activity during working memory, visual attention and episodic retrieval. Cereb. Cortex 14 364–375. 10.1093/cercor/bhg133
    1. Cabeza R., Albert M., Belleville S., Craik F. I. M., Duarte A., Grady C. L., et al. (2018). Maintenance, reserve and compensation: the cognitive neuroscience of healthy ageing. Nat. Rev. Neurosci. 19 701–710. 10.1038/s41583-018-0068-2
    1. Ceïde M. E., Ayers E. I., Lipton R., Verghese J. (2018). Walking while talking and risk of incident dementia. Am. J. Geriatr. Psychiatry 26 580–588. 10.1016/j.jagp.2017.12.009
    1. Chaparro G., Balto J. M., Sandroff B. M., Holtzer R., Izzetoglu M., Motl R. W., et al. (2017). Frontal brain activation changes due to dual-tasking under partial body weight support conditions in older adults with multiple sclerosis. J. Neuroeng. Rehabil. 14 1–10. 10.1186/s12984-017-0280-8
    1. Chen M., Pillemer S., England S., Izzetoglu M., Mahoney J. R., Holtzer R. (2017). Neural correlates of obstacle negotiation in older adults: an FNIRS study. Gait Posture 58 130–135. 10.1016/j.gaitpost.2017.07.043
    1. Clark D. J., Rose D. K., Ring S. A., Porges E. C. (2014). Utilization of central nervous system resources for preparation and performance of complex walking tasks in older adults. Front. Aging Neurosci. 6:217 10.3389/fnagi.2014.00217
    1. Cooper R. J., Selb J., Gagnon L., Phillip D., Schytz H. W., Iversen H. K., et al. (2012). A systematic comparison of motion artifact correction techniques for functional near-infrared spectroscopy. Front. Neurosci. 6:147 10.3389/fnins.2012.00147
    1. Cope M., Delpy D. T. (1988). System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination. Med. Biol. Eng. Comput. 26 289–294. 10.1007/BF02447083
    1. De Laat K. F., Tuladhar A. M., Van Norden A. G. W., Norris D. G., Zwiers M. P., De Leeuw F. E. (2011). Loss of white matter integrity is associated with gait disorders in cerebral small vessel disease. Brain 134 73–83. 10.1093/brain/awq343
    1. Delpy D. T., Cope M. (1997). Quantification in tissue near–infrared spectroscopy. Philos. Trans. R. Soc. Lond. B Biol. Sci. 352 649–659. 10.1098/rstb.1997.0046
    1. Doi T., Makizako H., Shimada H., Park H., Tsutsumimoto K., Uemura K., et al. (2013). Brain activation during dual-task walking and executive function among older adults with mild cognitive impairment: a FNIRS study. Aging Clin. Exp. Res. 25 539–544. 10.1007/s40520-013-0119-5
    1. Dupuy O., Gauthier C. J., Fraser S. A., Desjardins-Crèpeau L., Desjardins M., Mekary S., et al. (2015). Higher levels of cardiovascular fitness are associated with better executive function and prefrontal oxygenation in younger and older women. Front. Hum. Neurosci. 9:66. 10.3389/fnhum.2015.00066
    1. Durduran T., Choe R., Baker W. B., Yodh A. G. (2010). Diffuse optics for tissue monitoring and tomography. Rep. Prog. Phys. 73:076701. 10.1088/0034-4885/73/7/076701
    1. Dux P. E., Ivanoff J., Asplund C. L., Marois R. (2006). Isolation of a central bottleneck of information processing with time-resolved FMRI. Neuron 52 1109–1120. 10.1016/j.neuron.2006.11.009
    1. Ferrari M., Quaresima V. (2012). A brief review on the history of human functional near-infrared spectroscopy (fnirs) development and fields of application. Neuroimage 63 921–935. 10.1016/j.neuroimage.2012.03.049
    1. Filmer H. L., Mattingley J. B., Dux P. E. (2013). Improved multitasking following prefrontal TDCS. Cortex 49 2845–2852. 10.1016/j.cortex.2013.08.015
    1. Giacalone G., Zanoletti M., Re R., Germinario B., Contini D., Spinelli L., et al. (2019). Time-Domain Near-Infrared Spectroscopy In Acute Ischemic Stroke Patients. Neurophotonics 6:015003. 10.1117/1.NPh.6.1.015003
    1. Gramigna V., Pellegrino G., Cerasa A., Cutini S., Vasta R., Olivadese G., et al. (2017). Near-infrared spectroscopy in gait disorders: is it time to begin? Neurorehabil. Neural Repair 31 402–412. 10.1177/1545968317693304
    1. Halliday D. W. R., Hundza S. R., Garcia-Barrera M. A., Klimstra M., Commandeur D., Lukyn T. W., et al. (2018). Comparing executive function, evoked hemodynamic response, and gait as predictors of variations in mobility for older adults. J. Clin. Exp. Neuropsychol. 40 151–160. 10.1080/13803395.2017.1325453
    1. Halliday D. W. R., Mulligan B. P., Garrett D. D., Schmidt S., Hundza S. R., Garcia-Barrera M. A., et al. (2017). Mean and variability in functional brain activations differentially predict executive function in older adults: an investigation employing functional near-infrared spectroscopy. Neurophotonics 5:011013. 10.1117/1.nph.5.1.011013
    1. Hawkins K. A., Fox E. J., Daly J. J., Rose D. K., Christou E. A., McGuirk T. E. (2018). Prefrontal over-activation during walking in people with mobility deficits: interpretation and functional implications. Hum. Mov. Sci. 59 46–55. 10.1016/j.humov.2018.03.010
    1. Heilbronner U., Münte T. F. (2013). Rapid event-related near-infrared spectroscopy detects age-related qualitative changes in the neural correlates of response inhibition. Neuroimage 65 408–415. 10.1016/j.neuroimage.2012.09.066
    1. Heinzel S., Metzger F. G., Ehlis A. C., Korell R., Alboji A., Haeussinger F. B., et al. (2013). Aging-related cortical reorganization of verbal fluency processing: a functional near-infrared spectroscopy study. Neurobiol. Aging 34 439–450. 10.1016/j.neurobiolaging.2012.05.021
    1. Heinzel S., Metzger F. G., Ehlis A. C., Korell R., Alboji A., Haeussinger F. B., et al. (2015). Age and vascular burden determinants of cortical hemodynamics underlying verbal fluency. PLoS One 10:e0138863. 10.1371/journal.pone.0138863
    1. Hernandez M. E., Holtzer R., Chaparro G., Jean K., Balto J. M., Sandroff B. M., et al. (2016). Brain activation changes during locomotion in middle-aged to older adults with multiple sclerosis. J. Neurol. Sci. 370 277–283. 10.1016/j.jns.2016.10.002
    1. Herold F., Wiegel P., Scholkmann F., Müller N. (2018). Applications of functional near-infrared spectroscopy (FNIRS) neuroimaging in exercise–cognition science: a systematic, methodology-focused review. J. Clin. Med. 7:466. 10.3390/jcm7120466
    1. Herold F., Wiegel P., Scholkmann F., Thiers A., Hamacher D., Schega L. (2017). Functional near-infrared spectroscopy in movement science: a systematic review on cortical activity in postural and walking tasks. Neurophotonics 4:041403. 10.1117/1.nph.4.4.041403
    1. Holtzer R., Epstein N., Mahoney J. R., Izzetoglu M., Blumen H. M. (2014). Neuroimaging of mobility in aging: a targeted review. J. Gerontol. A Biol. Sci. Med. Sci. 69 1375–1388. 10.1093/gerona/glu052
    1. Holtzer R., George C. J., Izzetoglu M., Wang C. (2018a). The effect of diabetes on prefrontal cortex activation patterns during active walking in older adults. Brain Cogn. 125 14–22. 10.1016/j.bandc.2018.03.002
    1. Holtzer R., Izzetoglu M., Chen M., Wang C. (2018b). Distinct FNIRS-Derived HbO2 trajectories during the course and over repeated walking trials under single- and dual-task conditions: implications for within session learning and prefrontal cortex efficiency in older adults. J. Gerontol. A 74 1076–1083. 10.1093/gerona/gly181
    1. Holtzer R., Kraut R., Izzetoglu M., Ye K. (2019). The effect of fear of falling on prefrontal cortex activation and efficiency during walking in older adults. Geroscience 41 89–100. 10.1007/s11357-019-00056-4
    1. Holtzer R., Mahoney J. R., Izzetoglu M., Wang C., England S., Verghese J. (2015). Online fronto-cortical control of simple and attention-demanding locomotion in humans. Neuroimage 112 152–159. 10.1016/j.neuroimage.2015.03.002
    1. Holtzer R., Rakitin B. C., Steffener J., Flynn J., Kumar A., Stern Y. (2009). Age effects on load-dependent brain activations in working memory for novel material. Brain Res. 1249 148–161. 10.1016/j.brainres.2008.10.009
    1. Holtzer R., Schoen C., Demetriou E., Mahoney J. R., Izzetoglu M., Wang C., et al. (2017a). Stress and gender effects on prefrontal cortex oxygenation levels assessed during single and dual-task walking conditions. Eur. J. Neurosci. 45 660–670. 10.1111/ejn.13518
    1. Holtzer R., Verghese J., Allali G., Izzetoglu M., Wang C., Mahoney J. R. (2016). Neurological gait abnormalities moderate the functional brain signature of the posture first hypothesis. Brain Topogr. 29 334–343. 10.1007/s10548-015-0465-z
    1. Holtzer R., Yuan J., Verghese J., Mahoney J. R., Izzetoglu M., Wang C. (2017b). Interactions of subjective and objective measures of fatigue defined in the context of brain control of locomotion. J. Gerontol. A Biol. Sci. Med. Sci. 72 417–423. 10.1093/gerona/glw167
    1. Hoshi Y. (2007). Functional near-infrared spectroscopy: current status and future prospects. J. Biomed. Optics 12:062106. 10.1117/1.2804911
    1. Huppert T. J., Karim H., Lin C., Alqahtani B. A., Greenspan S. L., Sparto P. J. (2017). Functional imaging of cognition in an old-old population: a case for portable functional near-infrared spectroscopy. PLoS One 12:e0184918. 10.1371/journal.pone.0184918
    1. Hyodo K., Dan I., Kyutoku Y., Suwabe K., Byun K., Ochi G., et al. (2016). The association between aerobic fitness and cognitive function in older men mediated by frontal lateralization. Neuroimage 125 291–300. 10.1016/j.neuroimage.2015.09.062
    1. Inzitari M., Baldereschi M., Di Carlo A., Di Bari M., Marchionni N., Scafato E., et al. (2007). Impaired attention predicts motor performance decline in older community-dwellers with normal baseline mobility: results from the italian longitudinal study on aging (ILSA). J. Gerontol. A Biol. Sci. Med. Sci. 62 837–843. 10.1093/gerona/62.8.837
    1. Jokinen H., Kalska H., Ylikoski R., Madureira S., Verdelho A., Van Der Flier W. M., et al. (2009). Longitudinal cognitive decline in subcortical ischemic vascular disease -the ladis study. Cerebrovasc. Dis. 27 384–391. 10.1159/000207442
    1. Jurado M. B., Rosselli M. (2007). The elusive nature of executive functions: a review of our current understanding. Neuropsychol. Rev. 17 213–233. 10.1007/s11065-007-9040-z
    1. Kahya M., Moon S., Ranchet M., Vukas R. R., Lyons K. E., Pahwa R., et al. (2019). Brain activity during dual task gait and balance in aging and age-related neurodegenerative conditions: a systematic review. Exp. Gerontol. 128:110756. 10.1016/j.exger.2019.110756
    1. Katzorke A., Zeller J. B. M., Müller L. D., Lauer M., Polak T., Deckert J., et al. (2018). Decreased hemodynamic response in inferior frontotemporal regions in elderly with mild cognitive impairment. Psychiatry Res. Neuroimaging 274 11–18. 10.1016/j.pscychresns.2018.02.003
    1. Kirilina E., Jelzow A., Heine A., Niessing M., Wabnitz H., Brühl R., et al. (2012). The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy. Neuroimage 61 70–81. 10.1016/j.neuroimage.2012.02.074
    1. Kisler K., Nelson A. R., Montagne A., Zlokovic B. V. (2017). Cerebral blood flow regulation and neurovascular dysfunction in alzheimer disease. Nat. Rev. Neurosci. 18 419–434. 10.1038/nrn.2017.48
    1. la Fougère C., Zwergal A., Rominger A., Förster S., Fesl G., Dieterich M., et al. (2010). Real versus imagined locomotion: a [18F]-FDG PET-FMRI comparison. Neuroimage 50 1589–1598. 10.1016/j.neuroimage.2009.12.060
    1. Laguë-Beauvais M., Fraser S. A., Desjardins-Crépeau L., Castonguay N., Desjardins M., Lesage F., et al. (2015). Shedding light on the effect of priority instructions during dual-task performance in younger and older adults: a FNIRS study. Brain Cogn. 98 1–14. 10.1016/j.bandc.2015.05.001
    1. Leone C., Feys P., Moumdjian L., D’Amico E., Zappia M., Patti F. (2017). Cognitive-motor dual-task interference: a systematic review of neural correlates. Neurosci. Biobehav. Rev. 75 348–360. 10.1016/j.neubiorev.2017.01.010
    1. Lucas M., Wagshul M. E., Izzetoglu M., Holtzer R. (2018). Moderating effect of white matter integrity on brain activation during dual-task walking in older adults. J. Gerontol. A 74 435–441. 10.1093/gerona/gly131
    1. Mahoney J. R., Holtzer R., Izzetoglu M., Zemon V., Verghese J., Allali G. (2016). The role of prefrontal cortex during postural control in parkinsonian syndromes a functional near-infrared spectroscopy study. Brain Res. 1633 126–138. 10.1016/j.brainres.2015.10.053
    1. Maidan I., Bernad-Elazari H., Giladi N., Hausdorff J. M., Mirelman A. (2017). When is higher level cognitive control needed for locomotor tasks among patients with Parkinson’s disease? Brain Topogr. 30 531–538. 10.1007/s10548-017-0564-0
    1. Maidan I., Nieuwhof F., Bernad-Elazari H., Reelick M. F., Bloem B. R., Giladi N., et al. (2016). The role of the frontal lobe in complex walking among patients with Parkinson’s disease and healthy older adults: an FNIRS study”. Neurorehabil. Neural Repair 30 963–971. 10.1177/1545968316650426
    1. Mirelman A., Maidan I., Bernad-Elazari H., Shustack S., Giladi N., Hausdorff J. M. (2017). Effects of aging on prefrontal brain activation during challenging walking conditions. Brain Cogn. 115 41–46. 10.1016/j.bandc.2017.04.002
    1. Mori T., Takeuchi N., Izumi S. (2018). Prefrontal cortex activation during a dual task in patients with stroke. Gait Posture 59 193–198. 10.1016/j.gaitpost.2017.09.032
    1. Müller L. D., Guhn A., Zeller J. B. M., Biehl S. C., Dresler T., Hahn T., et al. (2014). Neural correlates of a standardized version of the trail making test in young and elderly adults: a functional near-infrared spectroscopy study. Neuropsychologia 56 271–279. 10.1016/j.neuropsychologia.2014.01.019
    1. Nieuwhof F., Reelick M. F., Maidan I., Mirelman A., Hausdorff J. M., Olde Rikkert M. G. M. (2016). Measuring prefrontal cortical activity during dual task walking in patients with Parkinson’s disease: feasibility of using a new portable FNIRS device. Pilot Feasibility Stud. 2 1–11. 10.1186/s40814-016-0099-2
    1. Niu H., Li X., Chen Y., Ma C., Zhang J., Zhang Z. (2013). Reduced frontal activation during a working memory task in mild cognitive impairment: a non-invasive near-infrared spectroscopy study. CNS Neurosci. Ther. 19 125–131. 10.1111/cns.12046
    1. Noda T., Nakagome K., Setoyama S., Matsushima E. (2017). Working memory and prefrontal/temporal hemodynamic responses during post-task period in patients with schizophrenia: a multi-channel near-infrared spectroscopy study. J. Psychiatr. Res. 95 288–298. 10.1016/j.jpsychires.2017.09.001
    1. Oboshi Y., Kikuchi M., Shimizu Y., Yoshimura Y., Hiraishi H., Okada H., et al. (2014). Pre-task prefrontal activation during cognitive processes in aging: a near-infrared spectroscopy study. PLoS One 9:e098779. 10.1371/journal.pone.0098779
    1. Ohsugi H., Ohgi S., Shigemori K., Schneider E. B. (2013). Differences in dual-task performance and prefrontal cortex activation between younger and older adults. BMC Neurosci. 14:10. 10.1186/1471-2202-14-10
    1. Okamoto M., Dan H., Shimizu K., Takeo K., Amita T., Oda I., et al. (2004). Multimodal assessment of cortical activation during apple peeling by NIRS and FMRI. Neuroimage 21 1275–1288. 10.1016/j.neuroimage.2003.12.003
    1. Osofundiya O., Benden M. E., Dowdy D., Mehta R. K. (2016). Obesity-specific neural cost of maintaining gait performance under complex conditions in community-dwelling older adults. Clin. Biomech. 35 42–48. 10.1016/j.clinbiomech.2016.03.011
    1. Pfeifer M. D., Scholkmann F., Labruyère R. (2018). Signal processing in functional near-infrared spectroscopy (fnirs): methodological differences lead to different statistical results. Front. Hum. Neurosci. 11:641. 10.3389/fnhum.2017.00641
    1. Pifferi A., Contini D., Dalla Mora A., Farina A., Spinelli L., Torricelli A. (2016). New frontiers in time-domain diffuse optics, a review. J. Biomed. Optics 21:091310. 10.1117/1.JBO.21.9.091310
    1. Plichta M. M., Herrmann M. J., Baehne C. G., Ehlis A. C., Richter M. M., Pauli P., et al. (2006). Event-related functional near-infrared spectroscopy (FNIRS): are the measurements reliable? Neuroimage 31 116–124. 10.1016/j.neuroimage.2005.12.008
    1. Rosano C., Aizenstein H., Brach J., Longenberger A., Studenski S., Newman A. B. (2008). Gait measures indicate underlying focal gray matter atrophy in the brain of older adults. J. Gerontol. A Biol. Sci. Med. Sci. 63 1380–1388. 10.1093/gerona/63.12.1380
    1. Rosen B. R., Savoy R. L. (2012). FMRI at 20: has it changed the world? Neuroimage 62 1316–1324. 10.1016/j.neuroimage.2012.03.004
    1. Rosso A. L., Cenciarini M., Sparto P. J., Loughlin P. J., Furman J. M., Huppert T. J. (2017). Neuroimaging of an attention demanding dual-task during dynamic postural control. Gait Posture 57 193–198. 10.1016/j.gaitpost.2017.06.013
    1. Rosso A. L., Metti A. L., Faulkner K., Redfern M., Yaffe K., Launer L., et al. (2019). Complex walking tasks and risk for cognitive decline in high functioning older adults. J. Alzheimers Dis. 71 S65–S73. 10.3233/JAD-181140
    1. Rypma B., D’Esposito M. (2000). Isolating the neural mechanisms of age-related changes in human working memory. Nat. Neurosci. 3 509–515. 10.1038/74889
    1. Sala S., Baddeley A., Papagno C., Spinnler H. (1995). Dual-task paradigm: a means to examine the central executive. Ann. N. Y. Acad. Sci. 769 161–172. 10.1111/j.1749-6632.1995.tb38137.x
    1. Scholkmann F., Kleiser S., Jaako Metz A., Zimmermann R., Mata Pavia J., Wolf U., et al. (2014). A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. Neuroimage 85 6–27. 10.1016/j.neuroimage.2013.05.004
    1. Stern Y. (2005). Brain networks associated with cognitive reserve in healthy young and old adults. Cereb. Cortex 15 394–402. 10.1093/cercor/bhh142
    1. Stern Y. (2009). Cognitive reserve. Neuropsychologia 47 2015–2028. 10.1016/j.neuropsychologia.2009.03.004
    1. Strangman G., Culver J. P., Thompson J. H., Boas D. A. (2002). A quantitative comparison of simultaneous bold FMRI and NIRS recordings during functional brain activation. Neuroimage 17 719–731. 10.1006/nimg.2002.1227
    1. Stuart S., Vitorio R., Morris R., Martini D. N., Fino P. C., Mancini M. (2018). Cortical activity during walking and balance tasks in older adults and in people with Parkinson’s disease: a structured review. Maturitas 113 53–72. 10.1016/j.maturitas.2018.04.011
    1. Szameitat A. J., Schubert T., Müller K., Von Yves, Cramon D. (2002). Localization of executive functions in dual-task performance with FMRI. J. Cogn. Neurosci. 14 1184–1199. 10.1162/089892902760807195
    1. Tachtsidis I., Scholkmann F. (2016). False positives and false negatives in functional near-infrared spectroscopy: issues, challenges, and the way forward. Neurophotonics 3:031405. 10.1117/1.NPh.3.3.031405
    1. Takeuchi N., Mori T., Suzukamo Y., Tanaka N., Izumi S. (2016). Parallel processing of cognitive and physical demands in left and right prefrontal cortices during smartphone use while walking. BMC Neurosci. 17:9. 10.1186/s12868-016-0244-0
    1. Thumm P. C., Maidan I., Brozgol M., Shustak S., Gazit E., Shema Shiratzki S., et al. (2018). Treadmill walking reduces pre-frontal activation in patients with Parkinson’s disease. Gait Posture 62 384–387. 10.1016/j.gaitpost.2018.03.041
    1. Torricelli A., Contini D., Pifferi A., Caffini M., Re R., Zucchelli L., et al. (2014). Time domain functional nirs imaging for human brain mapping. Neuroimage 85 28–50. 10.1016/j.neuroimage.2013.05.106
    1. Uemura K., Shimada H., Doi T., Hakizako H., Tsutsumimoto K., Park H., et al. (2016). Reduced prefrontal oxygenation in mild cognitive impairment during memory retrieval. Int. J. Geriatr. Psychiatry 31 583–591. 10.1002/gps.4363
    1. Venkatraman V. K., Aizenstein H., Guralnik J., Newman A. B., Glynn N. W., Taylor C., et al. (2010). Executive control function, brain activation and white matter hyperintensities in older adults. Neuroimage 49 3436–3442. 10.1016/j.neuroimage.2009.11.019
    1. Verghese J., Annweiler C., Ayers E., Barzilai N., Beauchet O., Bennett D. A., et al. (2014). Motoric cognitive risk syndrome: multicountry prevalence and dementia risk. Neurology 83 718–726. 10.1212/WNL.0000000000000717
    1. Verghese J., Holtzer R., Lipton R. B., Wang C. (2012). Mobility stress test approach to predicting frailty, disability, and mortality in high-functioning older adults. J. Am. Geriatr. Soc. 60 1901–1905. 10.1111/j.1532-5415.2012.04145.x
    1. Verghese J., Wang C., Ayers E., Izzetoglu M., Holtzer R. (2017). Brain activation in high-functioning older adults and falls: prospective cohort study. Neurology 88 191–197. 10.1212/WNL.0000000000003421
    1. Vermeij A., van Beek A. H. E. A., Reijs B. L. R., Claassen J. A. H. R., Kessels R. P. C. (2014). An exploratory study of the effects of spatial working-memory load on prefrontal activation in low- and high-performing elderly. Front. Aging Neurosci. 6:303 10.3389/fnagi.2014.00303
    1. Vitorio R., Stuart S., Rochester L., Alcock L., Pantall A. (2017). FNIRS response during walking — artefact or cortical activity? A systematic review. Neurosci. Biobehav. Rev. 83 160–172. 10.1016/j.neubiorev.2017.10.002
    1. Wager T. D., Jonides J., Reading S. (2004). Neuroimaging studies of shifting attention: a meta-analysis. Neuroimage 22 1679–1693. 10.1016/j.neuroimage.2004.03.052
    1. Wagshul M. E., Lucas M., Ye K., Izzetoglu M., Holtzer R. (2019). Multi-modal neuroimaging of dual-task walking: structural MRI and FNIRS analysis reveals prefrontal grey matter volume moderation of brain activation in older adults. Neuroimage 189 745–754. 10.1016/j.neuroimage.2019.01.045
    1. Weinstein A. M., Voss M. W., Prakash, Chaddock L., Szabo A., White S. M., et al. (2012). The association between aerobic fitness and executive function is mediated by prefrontal cortex volume. Brain Behav. Immun. 26 811–819. 10.1016/j.bbi.2011.11.008
    1. Yap K. H., Ung W., Ebenezer E. G. M., Nordin N., Chin P., Sugathan S., et al. (2017). Visualizing hyperactivation in neurodegeneration based on prefrontal oxygenation: a comparative study of mild Alzheimer’s disease, mild cognitive impairment, and healthy controls. Front. Aging Neurosci. 9:287 10.3389/fnagi.2017.00287
    1. Yaple Z. A., Stevens W. D., Arsalidou M. (2019). Meta-analyses of the n-back working memory task: FMRI evidence of age-related changes in prefrontal cortex involvement across the adult lifespan. Neuroimage 196 16–31. 10.1016/j.neuroimage.2019.03.074
    1. Yeung M. K., Sze S. L., Woo J., Kwok T., Shum D. H. K., Yu R., et al. (2016a). Altered frontal lateralization underlies the category fluency deficits in older adults with mild cognitive impairment: a near-infrared spectroscopy study. Front. Aging Neurosci. 8:59 10.3389/fnagi.2016.00059
    1. Yeung M. K., Sze S. L., Woo J., Kwok T., Shum D. H., Yu R., et al. (2016b). Reduced frontal activations at high working memory load in mild cognitive impairment: near-infrared spectroscopy. Dement. Geriatr. Cogn. Disord. 42 278–296. 10.1159/000450993
    1. Yücel M. A., Selb J., Aasted C. M., Petkov M. P., Becerra L., Borsook D., et al. (2015). Short separation regression improves statistical significance and better localizes the hemodynamic response obtained by near-infrared spectroscopy for tasks with differing autonomic responses. Neurophotonics 2:035005. 10.1117/1.NPh.2.3.035005
    1. Zhang X., Noah J. A., Hirsch J. (2016). Separation of the global and local components in functional near-infrared spectroscopy signals using principal component spatial filtering. Neurophotonics 3:015004. 10.1117/1.NPh.3.1.015004
    1. Zwergal A., Linn J., Xiong G., Brandt T., Strupp M., Jahn K. (2012). Aging of human supraspinal locomotor and postural control in FMRI. Neurobiol. Aging 33 1073–1084. 10.1016/j.neurobiolaging.2010.09.022

Source: PubMed

3
Se inscrever