Probiotic Bacteria for Healthier Aging: Immunomodulation and Metabolism of Phytoestrogens

José María Landete, Pilar Gaya, Eva Rodríguez, Susana Langa, Ángela Peirotén, Margarita Medina, Juan L Arqués, José María Landete, Pilar Gaya, Eva Rodríguez, Susana Langa, Ángela Peirotén, Margarita Medina, Juan L Arqués

Abstract

Age-related degeneration gives rise to a number of pathologies, many of them associated with imbalances of the microbiota and the gut-associated immune system. Thus, the intestine is considered a key target organ to improve the quality of life in senescence. Gut microbiota can have a powerful impact in the deterioration linked to aging by its nutritional and immunomodulatory activity. Reduced numbers of beneficial species and low microbial biodiversity in the elderly have been linked with pathogenesis of many diseases. A healthy lifestyle with an elderly customized diet including probiotics can contribute to reducing the chronic proinflammatory status and other age-related pathologies. Beneficial effects of probiotic lactic acid bacteria and bifidobacteria to alleviate some of these disorders based on their immunomodulatory properties as well as their capacity to produce bioactive metabolites from dietary phytoestrogens are summarized. On one hand, the preservation of gut barrier integrity and an increased ability to fight infections are the main reported immune benefits of probiotics. On the other hand, the intake of a diet rich in phytoestrogens along with the presence of selected probiotic bacteria may lead to the production of equol, enterolignans, and urolithins, which are considered protective against chronic diseases related to aging.

Figures

Figure 1
Figure 1
Isoflavones, lignans, and ellagitannins intake are metabolized by potential probiotic bacteria to produce equol, enterolignans, and urolithins, respectively. These compounds are more bioavailable and bioactive than their precursors.

References

    1. Gems D., Partridge L. Genetics of longevity in model organisms: Debates and paradigm shifts. Annual Review of Physiology. 2013;75:621–644. doi: 10.1146/annurev-physiol-030212-183712.
    1. López-Otín C., Blasco M. A., Partridge L., Serrano M., Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–1217. doi: 10.1016/j.cell.2013.05.039.
    1. Von Zglinicki T. Replicative senescence and the art of counting. Experimental Gerontology. 2003;38(11-12):1259–1264. doi: 10.1016/j.exger.2003.09.015.
    1. Ostan R., Bucci L., Capri M., et al. Immunosenescence and immunogenetics of human longevity. NeuroImmunoModulation. 2008;15(4-6):224–240. doi: 10.1159/000156466.
    1. Franceschi C. Inflammaging as a major characteristic of old people: can it be prevented or cured? Nutrition Reviews. 2007;65(3):S173–S176. doi: 10.1111/j.1753-4887.2007.tb00358.x.
    1. Cevenini E., Monti D., Franceschi C. Inflamm-ageing. Current opinion in clinical nutrition and metabolic care. 2013;16:14–20. doi: 10.1097/MCO.0b013e32835ada13.
    1. Lee C., Longo V. Dietary restriction with and without caloric restriction for healthy aging. F1000Research. 2016;5 doi: 10.12688/f1000research.7136.1.
    1. Claesson M. J., Cusack S., O'Sullivan O., et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proceedings of the National Academy of Sciences of the United States of America. 2011;108:4586–4591. doi: 10.1073/pnas.1000097107.
    1. David L. A., Maurice C. F., Carmody R. N., et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–563. doi: 10.1038/nature12820.
    1. Kumar M., Babaei P., Ji B., Nielsen J. Human gut microbiota and healthy aging: Recent developments and future prospective. Nutrition and Healthy Aging. 2016;4(1):3–16. doi: 10.3233/NHA-150002.
    1. Carding S., Verbeke K., Vipond D. T., Corfe B. M., Owen L. J. Dysbiosis of the gut microbiota in disease. Microbial Ecology in Health & Disease. 2015;26:p. 26191. doi: 10.3402/mehd.v26.26191.
    1. Saffrey M. J. Aging of the mammalian gastrointestinal tract: A complex organ system. Age. 2014;36:1019–1032. doi: 10.1007/s11357-013-9603-2.
    1. Man A. L., Bertelli E., Rentini S., et al. Age-associated modifications of intestinal permeability and innate immunity in human small intestine. Clinical Science. 2015;129(7):515–527. doi: 10.1042/CS20150046.
    1. Rodier F., Coppe J., Patil C. K., et al. Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nature Cell Biology. 2009;11:973–979. doi: 10.1038/ncb1909.
    1. Clairembault T., Leclair-Visonneau L., Coron E., et al. Structural alterations of the intestinal epithelial barrier in Parkinson's disease. Acta neuropathologica communications. 2015;3:12–18. doi: 10.1186/s40478-015-0196-0.
    1. Yacyshyn B., Meddings J., Sadowski D., Bowen-Yacyshyn M. B. Multiple sclerosis patients have peripheral blood CD45RO+ B cells and increased intestinal permeability. Digestive Diseases and Sciences. 1996;41(12):2493–2498. doi: 10.1007/BF02100148.
    1. Nicoletti C. Age-associated changes of the intestinal epithelial barrier: Local and systemic implications. Expert Review of Gastroenterology and Hepatology. 2015;9(12):1467–1469. doi: 10.1586/17474124.2015.1092872.
    1. Rera M., Clark R. I., Walker D. W. Intestinal barrier dysfunction links metabolic and inflammatory markers of aging to death in Drosophila. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(52):21528–21533. doi: 10.1073/pnas.1215849110.
    1. Rera M., Azizi M. J., Walker D. W. Organ-specific mediation of lifespan extension: More than a gut feeling? Ageing Research Reviews. 2013;12(1):436–444. doi: 10.1016/j.arr.2012.05.003.
    1. Lakshminarayanan B., Stanton C., O'Toole P. W., Ross R. P. Compositional dynamics of the human intestinal microbiota with aging: implications for health. The journal of nutrition, health & aging. 2014;18(9):773–786. doi: 10.1007/s12603-014-0513-5.
    1. Pragnesh J., Patel M. D., Shailesh K., Singh M. D., Siddak Panaich M. D., Cardozo L. The aging gut and the role of prebiotics, probiotics, and synbiotics: A review. Journal of Clinical Gerontology and Geriatrics. 2014;5:3–6.
    1. Biagi E., Nylund L., Candela M., et al. Through ageing, and beyond: Gut microbiota and inflammatory status in seniors and centenarians. PLoS ONE. 2010;5, Articale ID e10667 doi: 10.1371/journal.pone.0010667.
    1. Claesson M. J., Jeffery I. B., Conde S., et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488:178–184. doi: 10.1038/nature11319.
    1. Cevenini E., Caruso C., Candore G., et al. Age-related inflammation: the contribution of different organs, tissues and systems. How to face it for therapeutic approaches. Current Pharmaceutical Design. 2010;16(6):609–618. doi: 10.2174/138161210790883840.
    1. Biagi E., Candela M., Fairweather-Tait S., Franceschi C., Brigidi P. Ageing of the human metaorganism: The microbial counterpart. Age. 2012;34(1):247–267. doi: 10.1007/s11357-011-9217-5.
    1. Kamada N., Chen G. Y., Inohara N., Núñez G. Control of pathogens and pathobionts by the gut microbiota. Nature Immunology. 2013;14(7):685–690. doi: 10.1038/ni.2608.
    1. Hornef M. Pathogens, commensal symbionts, and pathobionts: Discovery and functional effects on the host. ILAR Journal. 2015;56(2):159–162. doi: 10.1093/ilar/ilv007.
    1. Claus S. P., Swann J. R. Nutrimetabonomics: Applications for nutritional sciences, with specific reference to gut microbial interactions. Annual Review of Food Science and Technology. 2013;4(1):381–399. doi: 10.1146/annurev-food-030212-182612.
    1. Rescigno T., Micolucci L., Tecce M. F., Capasso A. Bioactive nutrients and nutrigenomics in age-related diseases. Molecules. 2017;22(1):p. 105. doi: 10.3390/molecules22010105.
    1. Collino S., Montoliu I., Martin F.-P. J., et al. Metabolic Signatures of Extreme Longevity in Northern Italian Centenarians Reveal a Complex Remodeling of Lipids, Amino Acids, and Gut Microbiota Metabolism. PLoS ONE. 2013;8, Article ID e56564 doi: 10.1371/journal.pone.0056564.
    1. Rossen N. G., MacDonald J. K., de Vries E. M., et al. Fecal microbiota transplantation as novel therapy in gastroenterology: a systematic review. World Journal of Gastroenterology. 2015;21(17):5359–5371. doi: 10.3748/wjg.v21.i17.5359.
    1. Petrof E. O., Gloor G. B., Vanner S. J., et al. Stool substitute transplant therapy for the eradication of Clostridium difficile infection: “RePOOPulating” the gut. Microbiome. 2013;1:3–8. doi: 10.1186/2049-2618-1-3.
    1. Hamilton-Miller J. M. T. Probiotics and prebiotics in the elderly. Postgraduate Medical Journal. 2004;80(946):447–451. doi: 10.1136/pgmj.2003.015339.
    1. Malaguarnera G., Leggio F., Vacante M., et al. Probiotics in the gastrointestinal diseases of the elderly. Journal of Nutrition, Health and Aging. 2012;16(4):402–410. doi: 10.1007/s12603-011-0357-1.
    1. Ershler W. B., Keller E. T. Age-associated increased interleukin-6 gene expression, late-life diseases, and frailty. Annual Review of Medicine. 2000;51:245–270. doi: 10.1146/annurev.med.51.1.245.
    1. Bischoff S. C., Barbara G., Buurman W., et al. Intestinal permeability—a new target for disease prevention and therapy. BMC Gastroenterology. 2014;14:p. 189. doi: 10.1186/s12876-014-0189-7.
    1. Reid G., Jass J., Sebulsky M. T., McCormick J. K. Potential uses of probiotics in clinical practice. Clinical Microbiology Reviews. 2003;16(4):658–672. doi: 10.1128/CMR.16.4.658-672.2003.
    1. Fang H., Elina T., Heikki A., Seppo S. Modulation of humoral immune response through probiotic intake. FEMS Immunology & Medical Microbiology. 2006;29(1):47–52. doi: 10.1111/j.1574-695X.2000.tb01504.x.
    1. Borchers A. T., Selmi C., Meyers F. J., Keen C. L., Gershwin M. E. Probiotics and immunity. Journal of Gastroenterology. 2009;44(1):26–46. doi: 10.1007/s00535-008-2296-0.
    1. Otte J. M., Podolsky D. K. Functional modulation of enterocytes by gram-positive and gram-negative microorganisms. The American Journal of Physiology—Gastrointestinal and Liver Physiology. 2004;286(4):p. G613. doi: 10.1152/ajpgi.00341.2003.
    1. Luyer M. D., Buurman W. A., Hadfoune M., et al. Strain-specific effects of probiotics on gut barrier integrity following hemorrhagic shock. Infection and Immunity. 2005;73(6):3686–3692. doi: 10.1128/IAI.73.6.3686-3692.2005.
    1. Ng S. C., Hart A. L., Kamm M. A., Stagg A. J., Knight S. C. Mechanisms of action of probiotics: recent advances. Inflammatory Bowel Diseases. 2009;15(2):300–310. doi: 10.1002/ibd.20602.
    1. Anderson R. C., Cookson A. L., McNabb W. C., et al. Lactobacillus plantarum MB452 enhances the function of the intestinal barrier by increasing the expression levels of genes involved in tight junction formation. BMC Microbiology. 2010;10:316–327. doi: 10.1186/1471-2180-10-316.
    1. Karczewski J., Troost F. J., Konings I., et al. Regulation of human epithelial tight junction proteins by Lactobacillus plantarum in vivo and protective effects on the epithelial barrier. American Journal of Physiology - Gastrointestinal and Liver Physiology. 2010;298(6):G851–G859. doi: 10.1152/ajpgi.00327.2009.
    1. Matsumoto M., Kurihara S., Kibe R., Ashida H., Benno Y. Longevity in mice is promoted by probiotic-induced suppression of colonic senescence dependent on upregulation of gut bacterial polyamine production. PLoS ONE. 2011;6, Article ID e23652 doi: 10.1371/journal.pone.0023652.
    1. Sultana R., McBain A. J., O'Neill C. A. Strain-dependent augmentation of tight-junction barrier function in human primary epidermal keratinocytes by lactobacillus and bifidobacterium lysates. Applied and Environmental Microbiology. 2013;79(16):4887–4894. doi: 10.1128/AEM.00982-13.
    1. Stewart L., Crumley B., Walton K. Effects of probiotic VSL#3 on cytokine and tight junction protein expression in intestinal epithelial cells. FASEB—The Federation of American Societies for Experimental Biology. 2015;29(1010.4)
    1. Malaguarnera L., Cristaldi E., Malaguarnera M. The role of immunity in elderly cancer. Critical Reviews in Oncology/Hematology. 2010;74(1):40–60. doi: 10.1016/j.critrevonc.2009.06.002.
    1. Gill H. S., Cross M. L., Rutherfurd K. J., et al Dietary probiotic supplementation to enhance cellular immunity in the elderly. Br J BiomedSci—British Journal of Biomedical Science. 2001;58:94–96.
    1. Gill H. S., Rutherfurd K. J., Cross M. L. Dietary probiotic supplementation enhances natural killer cell activity in the elderly: An investigation of age-related immunological changes. Journal of Clinical Immunology. 2001;21(4):264–271. doi: 10.1023/A:1010979225018.
    1. Gill H. S., Rutherfurd K. J., Cross M. L., Gopal P. K. Enhancement of immunity in the elderly by dietary supplementation with the probiotic Bifidobactedum lactis HN019. Am J Clin Nutr—American Journal of Clinical Nutrition. 2001;74(6):833–839.
    1. Kimoto-Nira H., Suzuki C., Kobayashi M., Sasaki K., Kurisaki J., Mizumachi K. Anti-ageing effect of a lactococcal strain: Analysis using senescence-accelerated mice. Br J Nutr—British Journal of Nutrition. 2007;98(6):1178–1186. doi: 10.1017/S0007114507787469.
    1. Sharma R., Kapila R., Dass G., Kapila S. Improvement in Th1/Th2 immune homeostasis, antioxidative status and resistance to pathogenic E. coli on consumption of probiotic Lactobacillus rhamnosus fermented milk in aging mice. Age. 2014;36:9686–9703. doi: 10.1007/s11357-014-9686-4.
    1. Yang H.-Y., Liu S.-L., Ibrahim S. A., et al. Oral administration of live Bifidobacterium substrains isolated from healthy centenarians enhanced immune function in BALB/c mice. Nutrition Research. 2009;29(4):281–289. doi: 10.1016/j.nutres.2009.03.010.
    1. Vidal K., Benyacoub J., Moser M., et al. Effect of Lactobacillus paracasei NCC2461 on antigen-specific T-cell mediated immune responses in aged mice. Rejuvenation Research. 2008;11(5):957–964. doi: 10.1089/rej.2008.0780.
    1. Molina V., Médici M., Villena J., Font G., Taranto M. P. Dietary Supplementation with Probiotic Strain Improves Immune-Health in Aged Mice. Open J Immunol—Open Journal of Immunology. 2016;6(3):73–78. doi: 10.4236/oji.2016.63008.
    1. van Beek A. A., Sovran B., Hugenholtz F., et al. Supplementation with lactobacillus plantarum wcfs1 prevents decline of mucus barrier in colon of accelerated aging Ercc1-/Δ7 mice. Frontiers in Immunology. 2016;7:p. 408. doi: 10.3389/fimmu.2016.00408.
    1. Arunachalam K., Gill H. S., Chandra R. K. Enhancement of natural immune function by dietary consumption of Bifidobacterium lactis (HN019) European Journal of Clinical Nutrition. 2000;54(3):263–267. doi: 10.1038/sj.ejcn.1600938.
    1. Chiang B. L., Sheih Y. H., Wang L. H., Liao C. K., Gill H. S. Enhancing immunity by dietary consumption of a probiotic lactic acid bacterium (Bifidobacterium lactis HN019): Optimization and definition of cellular immune responses. Eur J Clin Nutr—European Journal of Clinical Nutrition. 2000;54(11):849–855. doi: 10.1038/sj.ejcn.1601093.
    1. Ibrahim F., Ruvio S., Granlund L., Salminen S., Viitanen M., Ouwehand A. C. Probiotics and immunosenescence: Cheese as a carrier. FEMS Immunology and Medical Microbiology. 2010;59(1):53–59. doi: 10.1111/j.1574-695X.2010.00658.x.
    1. Turchet P., Laurenzano M., Auboiron S., Antoine J. M. Effect of fermented milk containing the probiotic Lactobacillus casei DN-114001 on winter infections in free-living elderly subjects: A randomised, controlled pilot study. J Nutr Health Aging—Journal of Nutrition, Health and Aging. 2003;7:75–77.
    1. Fukushima Y., Miyaguchi S., Yamano T., et al. Improvement of nutritional status and incidence of infection in hospitalised, enterally fed elderly by feeding of fermented milk containing probiotic Lactobacillus johnsonii La1 (NCC533) Br J Nutr—British Journal of Nutrition. 2007;98(5):969–977. doi: 10.1017/S0007114507764723.
    1. Wang H.-J., Murphy P. A. Isoflavone content in commercial soybean foods. J Agric Food Chem—Journal of Agricultural and Food Chemistry. 1994;42(8):1666–1673. doi: 10.1021/jf00044a016.
    1. Landete J. M. Ellagitannins, ellagic acid and their derived metabolites: a review about source, metabolism, functions and health. Food Research International. 2011;44(5):1150–1160. doi: 10.1016/j.foodres.2011.04.027.
    1. Landete J. M. Plant and mammalian lignans: a review of source, intake, metabolism, intestinal bacteria and health. Food Research International. 2012;46(1):410–424. doi: 10.1016/j.foodres.2011.12.023.
    1. Harris D. M., Besselink E., Henning S. M., Go V. L. W., Heber D. Phytoestrogens induce differential estrogen receptor alpha- or beta-mediated responses in transfected breast cancer cells. Exp Biol Med—Experimental Biology and Medicine. 2005;230(8):558–568. doi: 10.1177/153537020523000807.
    1. Landete J. M., Arqués J. L., Medina M., Gaya P., de Las Rivas B. D., Muñoz R. Bioactivation of Phytoestrogens: Intestinal Bacteria and Health. Crit Rev Food Sci Nutr—Critical Reviews in Food Science and Nutrition. 2016;56(11):1826–1843. doi: 10.1080/10408398.2013.789823.
    1. Lu L.-J. W., Tice J. A., Bellino F. L. Phytoestrogens and healthy aging: Gaps in knowledge. A workshop report. Menopause. 2001;8(3):157–170. doi: 10.1097/00042192-200105000-00004.
    1. Seeram N. P., Aronson W. J., Zhang Y., et al. Pomegranate ellagitannin-derived metabolites inhibit prostate cancer growth and localize to the mouse prostate gland. J Agric Food Chem—Journal of Agricultural and Food Chemistry. 2007;55(19):7732–7737. doi: 10.1021/jf071303g.
    1. Chan Y. H., Larn T. H., Lau K. K., et al. Dietary intake of phytoestrogen is associated with increased circulating endothelial progenitor cells in patients with cardiovascular disease. Eur J Prevent Cardiol—European Journal of Cardiovascular Prevention and Rehabilitation. 2011;18(3):360–368. doi: 10.1177/1741826710389385.
    1. Yeo Y., Ko K. P., Ma S. H., et al. Abstract 4823: Isoflavones from phytoestrogens and colorectal cancer risk: A nested case-control study within the Korean Multicenter Cancer Cohort. Cancer Research. 2014;73(8):p. 4823. doi: 10.1158/1538-7445.AM2013-4823.
    1. Poluzzi E., Piccinni C., Raschi E., Rampa A., Recanatini M., de Ponti F. Phytoestrogens in postmenopause: the state of the art from a chemical, pharmacological and regulatory perspective. Current Medicinal Chemistry. 2014;21:417–436.
    1. Chen M. N., Lin C. C., Liu C. F. Efficacy of phytoestrogens for menopausal symptoms: a meta-analysis and systematic review. Climacteric. 2015;18:260–269. doi: 10.3109/13697137.2014.966241.
    1. Bolca S., van de Wiele T., Possemiers S. Gut metabotypes govern health effects of dietary polyphenols. Current Opinion in Biotechnology. 2012;24(2):1–6. doi: 10.1016/j.copbio.2012.09.009.
    1. Bialonska D., Ramnani P., Kasimsetty S. G., Muntha K. R., Gibson G. R., Ferreira D. The influence of pomegranate by-product and punicalagins on selected groups of human intestinal microbiota. International Journal of Food Microbiology. 2010;140(2-3):175–182. doi: 10.1016/j.ijfoodmicro.2010.03.038.
    1. Shimada Y., Yasuda S., Takahashi M., et al. Cloning and expression of a novel NADP(H)-dependent daidzein reductase, an enzyme involved in the metabolism of daidzein, from equol-producing Lactococcus strain 20-92. Applied and Environmental Microbiology. 2010;76(17):5892–5901. doi: 10.1128/AEM.01101-10.
    1. Romo-Vaquero M., García-Villalba R., González-Sarrías A., et al. Interindividual variability in the human metabolism of ellagic acid: Contribution of Gordonibacter to urolithin production. Journal of Functional Foods. 2015;17:785–791. doi: 10.1016/j.jff.2015.06.040.
    1. Gaya P., Peirotén A., Medina M., Landete J. M. Bifidobacterium adolescentis INIA P784: The first probiotic bacterium capable of producing enterodiol from lignan extracts. Journal of Functional Foods. 2017;29:269–274. doi: 10.1016/j.jff.2016.12.044.
    1. Scalbert A., Williamson G. Dietary intake and bioavailability of polyphenols. J Nutr—Journal of Nutrition. 2000;130:2073–2085.
    1. Landete J. M., Curiel J. A., Rodríguez H., de las Rivas B., Muñoz R. Aryl glycosidases from Lactobacillus plantarum increase antioxidant activity of phenolic compounds. Journal of Functional Foods. 2014;7(1):322–329. doi: 10.1016/j.jff.2014.01.028.
    1. Morito K., Hirose T., Kinjo J., et al. Interaction of phytoestrogens with estrogen receptors α and β. Biological and Pharmaceutical Bulletin. 2001;24(4):351–356. doi: 10.1248/bpb.24.351.
    1. Low Y.-L., Taylor J. I., Grace P. B., et al. Phytoestrogen exposure correlation with plasma estradiol in postmenopausal women in European Prospective Investigation of Cancer and Nutrition-Norfolk may involve diet-gene interactions. Cancer Epidemiology Biomarkers and Prevention. 2005;14:213–220.
    1. Touillaud M. S., Pillow P. C., Jakovljevic J., et al. Effect of dietary intake of phytoestrogens on estrogen receptor status in premenopausal women with breast cancer. Nutrition and Cancer. 2005;51(2):162–169. doi: 10.1207/s15327914nc5102_6.
    1. Hutchins A. M., Martini M. C., Olson B. A., Thomas W., Slavin J. L. Flaxseed consumption influences endogenous hormone concentrations in postmenopausal women. Nutrition and Cancer. 2001;39(1):58–65. doi: 10.1207/S15327914nc391_8.
    1. Hwang C. S., Kwaka H. S., Lim H. J., et al. Isoflavone metabolites and their in vitro dual functions: They can act as an estrogenic agonist or antagonist depending on the estrogen concentration. Journal of Steroid Biochemistry and Molecular Biology. 2006;101(4-5):246–253. doi: 10.1016/j.jsbmb.2006.06.020.
    1. Brooks J. D., Ward W. E., Lewis J. E., et al. Supplementation with flaxseed alters estrogen metabolism in postmenopausal women to a greater extent than does supplementation with an equal amount of soy. Am J Clin Nutr—American Journal of Clinical Nutrition. 2004;79:318–325.
    1. Kitts D. D., Yuan Y. V., Wijewickreme A. N., Thompson L. U. Antioxidant activity of the flaxseed lignan secoisolariciresinol diglycoside and its mammalian lignan metabolites enterodiol and enterolactone. Molecular & Cellular Biochemistry. 1999;202(1-2):91–100. doi: 10.1023/a:1007022329660.
    1. Prasad K. Antioxidant activity of secoisolariciresinol diglucoside-derived metabolites, secoisolariciresinol, enterodiol, and enterolactone. International Journal of Angiology. 2000;9(4):220–225. doi: 10.1007/s005470000038. doi: 10.1055/s-0031-1276259.
    1. Juranic Z., Zizak Z., Tasic S., et al. Antiproliferative action of water extracts of seeds or pulp of five different raspberry cultivars. Food Chemistry. 2005;93(1):39–45. doi: 10.1016/j.foodchem.2004.08.041.
    1. Kasimsetty S. G., Bialonska D., Reddy M. K., Ma G., Khan S. I., Ferreira D. Colon cancer chemopreventive activities of pomegranate ellagitannins and urolithins. Journal of Agricultural and Food Chemistry. 2010;58(4):2180–2187. doi: 10.1021/jf903762h.
    1. Gaya P., Peiroten A., Medina M., Landete J. M. Isoflavone metabolism by a collection of lactic acid bacteria and bifidobacteria with biotechnological interest. Int J Food Sci Technol—International Journal of Food Sciences and Nutrition. 2016;67(2):117–124. doi: 10.3109/09637486.2016.1144724.
    1. Hur H.-G., Lay J. O., Jr., Beger R. D., Freeman J. P., Rafii F. Isolation of human intestinal bacteria metabolizing the natural isoflavone glycosides daidzin and genistin. Archives of Microbiology. 2000;174(6):422–428. doi: 10.1007/s002030000222.
    1. Fournier D. B., Erdman J. W., Jr., Gordon G. B. Soy, its components, and cancer prevention: a review of the in vitro, animal, and human data. Cancer Epidem Biomar. 1998;7:1055–1065.
    1. Messina M., Kucuk O., Lampe J. W. An Overview of the health effects of isoflavones and emphasis on prostate cancer risk and prostate-specific antigen levels. J AOAC Int—Journal of AOAC International. 2006;89:1121–1134.
    1. Han K. K., Soares J. M., Haidar M. A., de Lima G. R., Baracat E. Benefits of soy isoflavone therapeutic regimen on menopausal symptoms. Obstetrics & Gynecology. 2002;99:389–394. doi: 10.1097/00006250-200203000-00005.
    1. Erdman J. W., Jr. Soy protein and cardiovascular disease: A statement for healthcare professionals from the nutrition committee of the AHA. Circulation. 2000;102(20):2555–2559. doi: 10.1161/01.CIR.102.20.2555.
    1. Messina M., Gugger E. T., Alekel D. L. Handbook of Nutraceuticals and Functional Foods (Wildman, R., ed.) CRC Press, Boca Raton, FL; 2001. Soy protein, soybean isoflavones, and bone health; pp. 77–98.
    1. Kritz-Silverstein D., Von Mühlen D., Barrett-Connor E., Bressel M. Isoflavones and cognitive function in older women: The soy and postmenopausal health in aging (SOPHIA) study. Menopause. 2003;10(3):196–202. doi: 10.1097/00042192-200310030-00004.
    1. Chun J., Kim G. M., Lee K. W., et al. Conversion of isoflavone glucosides to aglycones in soymilk by fermentation with lactic acid bacteria. Journal of Food Science. 2007;72(2):39–44. doi: 10.1111/j.1750-3841.2007.00276.x.
    1. Marazza J. A., Garro M. S., de Giori G. S. Aglycone production by Lactobacillus rhamnosus CRL981 during soymilk fermentation. Food Microbiology. 2009;26(3):333–339. doi: 10.1016/j.fm.2008.11.004.
    1. Wang X.-L., Hur H.-G., Lee J. H., Kim K. T., Kim S.-I. Enantioselective synthesis of S-equol from dihydrodaidzein by a newly isolated anaerobic human intestinal bacterium. Applied and Environmental Microbiology. 2005;71(1):214–219. doi: 10.1128/AEM.71.1.214-219.2005.
    1. Setchell K. D. R. Equol - Origins, actions, and clinical relevance of this specific soy isoflavone metabolite. J Nutr—Journal of Nutrition. 2004;134:1235S–1236S.
    1. Lephart E. D. Skin aging and oxidative stress: Equol's anti-aging effects via biochemical and molecular mechanisms. Ageing Research Reviews. 2016;31:36–54. doi: 10.1016/j.arr.2016.08.001.
    1. Subedi L., Ji E., Shin D., Jin J., Yeo J. H., Kim S. Y. Equol, a dietary daidzein gut metabolite attenuates microglial activation and potentiates neuroprotection in vitro. Nutrients. 2017;9(3):p. 207. doi: 10.3390/nu9030207.
    1. Magee P. J., Raschke M., Steiner C., et al. Equol: A comparison of the effects of the racemic compound with that of the purified S-enantiomer on the growth, invasion, and DNA integrity of breast and prostate cells in vitro. Nutrition and Cancer. 2006;54(2):232–242. doi: 10.1207/s15327914nc5402_10.
    1. Aso T. Equol improves menopausal symptoms in Japanese women. Journal of Nutrition. 2010;140(7):1386S–1389S. doi: 10.3945/jn.109.118307.
    1. Liu Z.-M., Ho S. C., Chen Y.-M., et al. Whole soy, but not purified daidzein, had a favorable effect on improvement of cardiovascular risks: A 6-month randomized, double-blind, and placebo-controlled trial in equol-producing postmenopausal women. Molecular Nutrition and Food Research. 2013;58(4):709–717. doi: 10.1002/mnfr.201300499.
    1. Ingram D., Sanders K., Kolybaba M., Lopez D. Case-control study of phyto-oestrogens and breast cancer. The Lancet. 1997;350(9083):990–994. doi: 10.1016/s0140-6736(97)01339-1.
    1. Frankenfeld C. L. O-Desmethylangolensin: The importance of equol's lesser known cousin to human health. Advances in Nutrition. 2011;2(4):317–324. doi: 10.3945/an.111.000539.
    1. Decroos K., Vanhemmens S., Cattoir S., Boon N., Verstraete W. Isolation and characterisation of an equol-producing mixed microbial culture from a human faecal sample and its activity under gastrointestinal conditions. Archives of Microbiology. 2005;183(1):45–55. doi: 10.1007/s00203-004-0747-4.
    1. Wang X.-L., Kim H.-J., Kang S.-I., Kim S.-I., Hur H.-G. Production of phytoestrogen S-equol from daidzein in mixed culture of two anaerobic bacteria. Archives of Microbiology. 2007;187(2):155–160. doi: 10.1007/s00203-006-0183-8.
    1. Uchiyama S., Ueno T., Suzuki T. Identification of a newly isolated equol-producing lactic acid bacterium from the human feces. J Intest Microbiol—Journal of Intestinal Microbiology. 2007;21:217–220.
    1. Elghali S., Mustafa S., Amid M., Manap M. Y. A., Ismail A., Abas F. Bioconversion of daidzein to equol by Bifidobacterium breve 15700 and Bifidobacterium longum BB536. Journal of Functional Foods. 2012;4(4):736–745. doi: 10.1016/j.jff.2012.04.013.
    1. Tamura M., Ohnishi-Kameyama M., Shinohara K. Lactobacillus gasseri: Effects on mouse intestinal flora enzyme activity and isoflavonoids in the caecum and plasma. British Journal of Nutrition. 2004;92(5):771–776. doi: 10.1079/BJN20041267.
    1. de Klejin M. J. J., der Schouw van Y. T., Wilson P. W. F., et al. Intake of dietary phytoestrogens is low in postmenopausal women in the United States: The Framingham Study. J Nutr—Journal of Nutrition. 2001;131:1826–1832.
    1. Quartieri A., García-Villalba R., Amaretti A., et al. Detection of novel metabolites of flaxseed lignans in vitro and in vivo. Molecular Nutrition and Food Research. 2016;60(7):1590–1601. doi: 10.1002/mnfr.201500773.
    1. Edel A. L., Pierce G. N., Aliani M. Age-dependency in the metabolism of flaxseed lignans by healthy adults. Journal of Functional Foods. 2015;17:948–957. doi: 10.1016/j.jff.2015.06.042.
    1. Clavel T., Henderson G., Alpert C.-A., et al. Intestinal bacterial communities that produce active estrogen-like compounds enterodiol and enterolactone in humans. Applied and Environmental Microbiology. 2005;71(10):6077–6085. doi: 10.1128/AEM.71.10.6077-6085.2005.
    1. Del Rio D., Rodriguez-Mateos A., Spencer J. P. E., Tognolini M., Borges G., Crozier A. Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxidants & Redox Signaling. 2013;18(14):1818–1892. doi: 10.1089/ars.2012.4581.
    1. Gutte K. B., Sahoo A. K., Ranveer R. C. Bioactive components of flaxseed and its health benefits. Int J PharmSci Rev Res—International Journal of Pharmaceutical Sciences Review and Research. 2015;31:42–51.
    1. Yoder S. C., Lancaster S. M., Hullar M. A. J., Lampe J. W. Gut Microbial Metabolism of Plant Lignans: Influence on Human Health. Diet-Microbe Interactions in the Gut: Effects on Human Health and Disease. 2015:103–117. doi: 10.1016/B978-0-12-407825-3.00007-1.
    1. Dupasquier C. M. C., Weber A.-M., Ander B. P., et al. Effects of dietary flaxseed on vascular contractile function and atherosclerosis during prolonged hypercholesterolemia in rabbits. American Journal of Physiology - Heart and Circulatory Physiology. 2006;291(6):H2987–H2996. doi: 10.1152/ajpheart.01179.2005.
    1. Roncaglia L., Amaretti A., Raimondi S., Leonardi A., Rossi M. Role of bifidobacteria in the activation of the lignan secoisolariciresinol diglucoside. Applied Microbiology and Biotechnology. 2011;92(1):159–168. doi: 10.1007/s00253-011-3338-8.
    1. Clavel T., Lippman R., Gavini F., Doré J., Blaut M. Clostridium saccharogumia sp. nov. and Lactonifactor longoviformis gen. nov., sp. nov., two novel human faecal bacteria involved in the conversion of the dietary phytoestrogen secoisolariciresinol diglucoside. Systematic and Applied Microbiology. 2007;30(1):16–26. doi: 10.1016/j.syapm.2006.02.003.
    1. Cerdá B., Llorach R., Cerón J. J., Espín J. C., Tomás-Barberán F. A. Evaluation of the bioavailability and metabolism in the rat of punicalagin, an antioxidant polyphenol from pomegranate juice. European Journal of Nutrition. 2003;42(1):18–28. doi: 10.1007/s00394-003-0396-4.
    1. Espín J. C., González-Barrio R., Cerdá B., López-Bote C., Rey A. I., Tomás-Barberán F. A. Iberian pig as a model to clarify obscure points in the bioavailability and metabolism of ellagitannins in humans. Journal of Agricultural and Food Chemistry. 2007;55(25):10476–10485. doi: 10.1021/jf0723864.
    1. Cerdá B., Espín J. C., Parra S., Martínez P., Tomás-Barberán F. A. The potent in vitro antioxidant ellagitannins from pomegranate juice are metabolised into bioavailable but poor antioxidant hydroxy-6H-dibenzopyran-6-one derivatives by the colonic microflora of healthy humans. European Journal of Nutrition. 2004;43(4):205–220. doi: 10.1007/s00394-004-0461-7.
    1. Larrosa M., González-Sarrías A., García-Conesa M. T., Tomás-Barberán F. A., Espín J. C. Urolithins, ellagic acid-derived metabolites produced by human colonic microflora, exhibit estrogenic and antiestrogenic activities. Journal of Agricultural and Food Chemistry. 2006;54(5):1611–1620. doi: 10.1021/jf0527403.
    1. Cerdá B., Periago P., Espín J. C., Tomás-Barberán F. A. Identification of urolithin A as a metabolite produced by human colon microflora from ellagic acid and related compounds. Journal of Agricultural and Food Chemistry. 2005;53(14):5571–5576. doi: 10.1021/jf050384i.
    1. Ito H., Iguchi A., Hatano T. Identification of urinary and intestinal bacterial metabolites of ellagitannin geraniin in rats. Journal of Agricultural and Food Chemistry. 2008;56(2):393–400. doi: 10.1021/jf0726942.
    1. Heber D. Multitargeted therapy of cancer by ellagitannins. Cancer Letters. 2008;269(2):262–268. doi: 10.1016/j.canlet.2008.03.043.
    1. Kim N. D., Mehta R., Yu W., et al. Chemopreventive and adjuvant therapeutic potential of pomegranate (Punica granatum) for human breast cancer. Breast Cancer Research and Treatment. 2002;71(3):203–217. doi: 10.1023/A:1014405730585.
    1. Malik A., Afaq F., Sarfaraz S., Adhami V. M., Syed D. N., Mukhtar H. Pomegranate fruit juice for chemoprevention and chemotherapy of prostate cancer. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(41):14813–14818. doi: 10.1073/pnas.0505870102.
    1. Seeram N. P., Adams L. S., Henning S. M., et al. In vitro antiproliferative, apoptotic and antioxidant activities of punicalagin, ellagic acid and a total pomegranate tannin extract are enhanced in combination with other polyphenols as found in pomegranate juice. Journal of Nutritional Biochemistry. 2005;16(6):360–367. doi: 10.1016/j.jnutbio.2005.01.006.
    1. Larrosa M., Tomás-Barberán F. A., Espín J. C. The dietary hydrolysable tannin punicalagin releases ellagic acid that induces apoptosis in human colon adenocarcinoma Caco-2 cells by using the mitochondrial pathway. Journal of Nutritional Biochemistry. 2006;17(9):611–625. doi: 10.1016/j.jnutbio.2005.09.004.
    1. González-Sarrías A., Azorín-Ortuño M., Yáñez-Gascón M.-J., Tomás-Barberán F. A., García-Conesa M.-T., Espín J.-C. Dissimilar in vitro and in vivo effects of ellagic acid and its microbiota-derived metabolites, urolithins, on the cytochrome P450 1A1. Journal of Agricultural and Food Chemistry. 2009;57(12):5623–5632. doi: 10.1021/jf900725e.
    1. Selma M. V., Tomás-Barberán F. A., Beltrán D., García-Villalba R., Espín J. C. Gordonibacter urolithinfaciens sp. nov., a urolithin-producing bacterium isolated from the human gut. International Journal of Systematic and Evolutionary Microbiology. 2014;64(7):2346–2352. doi: 10.1099/ijs.0.055095-0.
    1. Selma M. V., Beltran D., Garcia-Villalba R., Espin J. C., Tomas-Barberan F. A. Description of urolithin production capacity from ellagic acid of two human intestinal Gordonibacter species. Food Funct. 2014;5:1779–1784. doi: 10.1039/C4FO00092G.
    1. Saha P., Yeoh B. S., Singh R., et al. Gut Microbiota conversion of dietary ellagic acid into bioactive phytoceutical urolithin a inhibits heme peroxidases. PLoS ONE. 2016;11, Article ID e0156811(6) doi: 10.1371/journal.pone.0156811.

Source: PubMed

3
Se inscrever