The sweeter side of ACE2: physiological evidence for a role in diabetes

Sharell M Bindom, Eric Lazartigues, Sharell M Bindom, Eric Lazartigues

Abstract

Diabetes mellitus is a growing problem in all parts of the world. Both clinical trials and animal models of type I and type II diabetes have shown that hyperactivity of angiotensin-II (Ang-II) signaling pathways contribute to the development of diabetes and diabetic complications. Of clinical relevance, blockade of the renin-angiotensin system prevents new-onset diabetes and reduces the risk of diabetic complications. Angiotensin-converting enzyme (ACE) 2 is a recently discovered mono-carboxypeptidase and the first homolog of ACE. It is thought to inhibit Ang-II signaling cascades mostly by cleaving Ang-II to generate Ang-(1-7), which effects oppose Ang-II and are mediated by the Mas receptor. The enzyme is present in the kidney, liver, adipose tissue and pancreas. Its expression is elevated in the endocrine pancreas in diabetes and in the early phase during diabetic nephropathy. ACE2 is hypothesized to act in a compensatory manner in both diabetes and diabetic nephropathy. Recently, we have shown the presence of the Mas receptor in the mouse pancreas and observed a reduction in Mas receptor immuno-reactivity as well as higher fasting blood glucose levels in ACE2 knockout mice, indicating that these mice may be a new model to study the role of ACE2 in diabetes. In this review we will examine the role of the renin-angiotensin system in the physiopathology and treatment of diabetes and highlight the potential benefits of the ACE2/Ang-(1-7)/Mas receptor axis, focusing on recent data about ACE2.

Figures

Fig. 1
Fig. 1
The role of the RAS in metabolic organ function. Ang-II signaling cascades inhibit insulin release and decrease insulin sensitivity. RAS blockade improves glucose homeostasis by reducing β-cell death and improving insulin secretion and end-organ insulin sensitivity.
Fig. 2
Fig. 2
Consequences of ACE2 gene deletion. (A) Following a 12-h fast, fasting blood glucose levels were measured in females (n = 5) and males (n = 8) ACE2 knockout mice using an Accu-Check® Aviva glucometer (Roche). ACE2 knockout mice have elevated fasting blood glucose in comparison to age-matched littermates. Data are expressed as mean ± S.E.M. *< 0.05: statistical significance vs. control mice. (B) Mas receptor immunohistochemistry reveals expression of this Ang-(1–7) receptor in the mouse endocrine and exocrine pancreas. Mas receptor expression was reduced in ACE2−/y mice. Pancreas sections (16 μm) were incubated with a rabbit anti-Mas antibody (AbCam) for 18 h at 4 °C and developed using the standard ABC method (Vector Laboratories) using DAB as the chromagen. A brown staining is indicative of Mas receptor immuno-reactivity.
Fig. 3
Fig. 3
Hypothetical model for the role of ACE2 in the pancreas. Ang-II is known to decrease islet blood flow and increase islet oxidative stress, which can cause β-cell apoptosis and decrease insulin secretion. The red arrows emphasize hyperglycemia-induced changes in the islet RAS and its consequences. ACE2 through TGF-β inhibition may reduce amyloid deposition, islet fibrosis and subsequent β-cell apoptosis. Ang-(1–7)-mediated vasodilation may lead to increased blood flow. The combined reduction in β-cell apoptosis and increase in islet blood flow could cause an increase in insulin secretion and preservation of islet function in diabetes. The green arrows highlight hypothetical pathways by which ACE2 may influence islet function.

References

    1. Abuissa H., Jones P.G., Marso S.P., O’Keefe J.J.H. Angiotensin-converting enzyme inhibitors or angiotensin receptor blockers for prevention of type 2 diabetes: a meta-analysis of randomized clinical trials. J. Am. Coll. Cardiol. 2005;46:821–826.
    1. Almeida A.P., Frábregas B.C., Madureira M.M., Santos R.J.S., Campagnole-Santos M.J., Santos R.A.S. Angiotensin-(1–7) potentiates the coronary vasodilatatory effect of bradykinin in the isolated rat heart. Braz. J. Med. Biol. Res. 2000;33:709–713.
    1. Anonymous Efficacy of atenolol and captopril in reducing risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 39. UK Prospective Diabetes Study Group. BMJ. 1998;317:713–720.
    1. Anonymous Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Heart Outcomes Prevention Evaluation Study Investigators. Lancet. 2000;355:253–259.
    1. Anonymous Type 2 diabetes in children and adolescents. American Diabetes Association. Diabetes Care. 2000;23:1442–1443.
    1. Atef N., Ktorza A., Picon L., Penicaud L. Increased islet blood flow in obese rats: role of the autonomic nervous system. Am. J. Physiol. Endocrinol. Metab. 1992;262:E736–740.
    1. Atef N., Portha B., Pénicaud L. Changes in islet blood flow in rats with NIDDM. Diabetologia. 1994;37:677–680.
    1. Bader M., Peters J., Baltatu O., Müller D.N., Luft F.C. Tissue renin–angiotensin systems: new insights from experimental animal models in hypertension research. J. Mol. Med. 2001;79:76–102.
    1. Baltatu O., Silva J.A., Jr., Ganten D., Bader M. The brain renin–angiotensin system modulates angiotensin II-induced hypertension and cardiac hypertrophy. Hypertension. 2000;35(1 Pt 2):409–412.
    1. Baron A.D., Laakso M., Brechtel G., Edelman S.V. Mechanism of insulin resistance in insulin-dependent diabetes mellitus: a major role for reduced skeletal muscle blood flow. J. Clin. Endocrinol. Metab. 1991;73:637–643.
    1. Bataller R., Sancho-bru P., Ginès P., Lora J.M., Al-garawi A., Solé M., Colmenero J., Nicolás J.M., Jiménez W., Weich N., Gutiérrez-ramos J.-c., Arroyo V., Rodés J. Activated human hepatic stellate cells express the renin–angiotensin system and synthesize angiotensin II. Gastroenterology. 2003;125:117–125.
    1. Beard K.M., Lu H., Ho K., Fantus I.G. Bradykinin augments insulin-stimulated glucose transport in rat adipocytes via endothelial nitric oxide synthase-mediated inhibition of Jun NH2-terminal kinase. Diabetes. 2006;55:2678–2687.
    1. Bindokas V.P., Kuznetsov A., Sreenan S., Polonsky K.S., Roe M.W., Philipson L.H. Visualizing superoxide production in normal and diabetic rat islets of Langerhans. J. Biol. Chem. 2003;278:9796–9801.
    1. Branton M.H., Kopp J.B. TGF-beta and fibrosis. Microbes Infect. 1999;1:1349–1365.
    1. Brosnihan K.B., Li P., Ferrario C.M. Angiotensin-(1–7) dilates canine coronary arteries through kinins and nitric oxide. Hypertension. 1996;27:523–528.
    1. Carlsson P.-O. The renin–angiotensin system in the endocrine pancreas. JOP. 2001;2:26–32.
    1. Carlsson P.O., Andersson A., Jansson L. Pancreatic islet blood flow in normal and obese-hyperglycemic (ob/ob) mice. Am. J. Physiol. Endocrinol. Metab. 1996;271:E990–E995.
    1. Carlsson P.O., Berne C., Jansson L. Angiotensin II and the endocrine pancreas: effects on islet blood flow and insulin secretion in rats. Diabetologia. 1998;41:127–133.
    1. Carlsson P.O., Jansson L., Ostenson C.G., Kallskog O. Islet capillary blood pressure increase mediated by hyperglycemia in NIDDM GK rats. Diabetes. 1997;46:947–952.
    1. Chappell M., Millsted A., Diz D., Brosnihan K., Ferrario C.M. Evidence for an intrinsic angiotensin system in the canine pancreas. J. Hypertens. 1991;9:751–759.
    1. Clark A., Nilsson M.R. Islet amyloid: a complication of islet dysfunction or an aetiological factor in Type 2 diabetes? Diabetologia. 2004;47:157–169.
    1. Clark J., Palmer C., Shaw W. The diabetic Zucker fatty rat. Proc. Soc. Exp. Biol. Med. 1983;17:68–75.
    1. Curry D., Bennett L., Grodsky G.M. Dynamics of insulin secretion by the perfused rat pancreas. Endocrinology. 1968;83:572–584.
    1. da Costa Goncalves A.C., Leite R., Fraga-Silva R.A., Pinheiro S.V., Reis A.B., Reis F.M., Touyz R.M., Webb R.C., Alenina N., Bader M., Santos R.A.S. Evidence that the vasodilator angiotensin-(1–7)-Mas axis plays an important role in erectile function. Am. J. Physiol. Heart Circ. Physiol. 2007;293:H2588–2596.
    1. Dabelea D., Hanson R.L., Bennett P.H., Roumain J., Knowler W.C., Pettitt D.J. Increasing prevalence of Type II diabetes in American Indian children. Diabetologia. 1998;41:904–910.
    1. Dabelea D., Pettitt D.J., Jones K.L., Arslanian S.A. Type 2 diabetes mellitus in minority children and adolescents. An emerging problem. Endocrinol. Metab. Clin. North Am. 1999;28:709–729.
    1. Dalla Vestra M., Masiero A., Roiter A.M., Saller A., Crepaldi G., Fioretto P. Is podocyte injury relevant in diabetic nephropathy? Studies in patients with type 2 diabetes. Diabetes. 2003;52:1031–1035.
    1. Danilczyk U., Sarao R., Remy C., Benabbas C., Stange G., Richter A., Arya S., Pospisilik J.A., Singer D., Camargo S.M.R., Makrides V., Ramadan T., Verrey F., Wagner C.A., Penninger J.M. Essential role for collectrin in renal amino acid transport. Nature. 2006;444:1088–1091.
    1. Danser A.H.J., Schalekamp M.A.D.H. Is there an internal cardiac renin–angiotensin system? Heart. 1996;76:28–32.
    1. de Cavanagh E.M.V., Inserra F., Toblli J., Stella I., Fraga C.G., Ferder L. Enalapril attenuates oxidative stress in diabetic rats. Hypertension. 2001;38:1130–1136.
    1. Diez-Freire C., Vazquez J., Correa de Adjounian M.F., Ferrari M.F.R., Yuan L., Silver X., Torres R., Raizada M.K. ACE2 gene transfer attenuates hypertension-linked pathophysiological changes in the SHR. Physiol. Genomics. 2006;27:12–19.
    1. Donath M.Y., Størling J., Maedler K., Mandrup-Poulsen T. Inflammatory mediators and islet ß-cell failure: a link between type 1 and type 2 diabetes. J. Mol. Med. 2003;81:455–470.
    1. Donoghue M., Hsieh F., Baronas E., Godbout K., Gosselin M., Stagliano N., Donovan M., Woolf B., Robison K., Jeyaseelan R., Breitbart R.E., Acton S. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ. Res. 2000;87:E1–E9.
    1. Drake A.J., Smith A., Betts P.R., Crowne E.C., Shield J.P.H. Type 2 diabetes in obese white children. Arch. Dis. Child. 2002;86:207–208.
    1. Dzau V.J., Re R. Tissue angiotensin system in cardiovascular medicine. A paradigm shift? Circulation. 1994;89:493–498.
    1. Ehtisham S., Barrett T.G., Shaw N.J. Type 2 diabetes mellitus in UK children—an emerging problem. Diabet. Med. 2000;17:867–871.
    1. Evans J.L., Goldfine I.D., Maddux B.A., Grodsky G.M. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr. Rev. 2002;23:599–622.
    1. Feng Y., Yue X., Xia H., Bindom S.M., Hickman P., Filipeanu C., Wu G., Lazartigues E. ACE2 over-expression in the subfornical organ prevents the angiotensin-II-mediated pressor and drinking responses and is associated with AT1 receptor down-regulation. Circ. Res. 2008;102:628–629.
    1. Fernandes L., Fortes Z.B., Nigro D., Tostes R.C.A., Santos R.A.S., Catelli de Carvalho M.H. Potentiation of bradykinin by angiotensin-(1–7) on arterioles of spontaneously hypertensive rats studied in vivo. Hypertension. 2001;37:703–709.
    1. Ferreira A.J., Raizada M.K. Genomic and proteomic approaches for targeting angiotensin converting enzyme2 for cardiovascular diseases. Curr. Opin. Cardiol. 2008;23:364–369.
    1. Fliser D., Schaefer F., Schmid D., Veldhuis J.D., Ritz E. Angiotensin II affects basal, pulsatile, and glucose-stimulated insulin secretion in humans. Hypertension. 1997;30:1156–1161.
    1. Fossum E., Hoieggen A., Moan A., Rostrup M., Nordby G., Kjeldsen S.E. Relationship between insulin sensitivity and maximal forearm blood flow in young men. Hypertension. 1998;32:838–843.
    1. Frisbee J.C. Vascular adrenergic tone and structural narrowing constrain reactive hyperemia in skeletal muscle of obese Zucker rats. Am. J. Physiol. Heart Circ. Physiol. 2006;290:H2066–H2074.
    1. Fueger P.T., Bracy D.P., Malabanan C.M., Pencek R.R., Wasserman D.H. Distributed control of glucose uptake by working muscles of conscious mice: roles of transport and phosphorylation. Am. J. Physiol. Endocrinol. Metab. 2004;286:E77–E84.
    1. Gallagher P.E., Chappell M.C., Bernish B.W., Tallant E.A. Abstract Presented at the 57th Annual Fall Conference and Scientific sessions of the Council for High Blood Pressure Research. 2003. ACE2 expression in brain: angiotensin II down-regulates ACE2 in astrocytes.
    1. Galvez-Prieto B., Bolbrinker J., Stucchi P., de las Heras A.I., Merino B., Arribas S., Ruiz-Gayo M., Huber M., Wehland M., Kreutz R., Fernandez-Alfonso M.S. Comparative expression analysis of the renin–angiotensin system components between white and brown perivascular adipose tissue. J. Endocrinol. 2008;197:55–64.
    1. Gembardt F., Sterner-Kock A., Imboden H., Spalteholz M., Reibitz F., Schultheiss H.-P., Siems W.-E., Walther T. Organ-specific distribution of ACE2 mRNA and correlating peptidase activity in rodents. Peptides. 2005;26:1270–1277.
    1. Gerich J.E. Is reduced first-phase insulin release the earliest detectable abnormality in individuals destined to develop type 2 diabetes? Diabetes. 2002;51:S117–S121.
    1. Gironacci M.M., Valera M.S., Yujnovsky I., Pena C. Angiotensin-(1–7) inhibitory mechanism of norepinephrine release in hypertensive rats. Hypertension. 2004;44:783–787.
    1. Grankvist K., Marklund S., Taljedal I. CuZn-superoxide dismutase, Mn-superoxide dismutase, catalase and glutathione peroxidase in pancreatic islets and other tissues in the mouse. Biochem. J. 1981;199:393–398.
    1. Gress T.W., Nieto F.J., Shahar E., Wofford M.R., Brancati F.L. Hypertension and antihypertensive therapy as risk factors for type 2 diabetes mellitus. Atherosclerosis Risk in Communities Study. N. Engl. J. Med. 2000;342:905–912.
    1. Griendling K.K., Minieri C.A., Ollerenshaw J.D., Alexander R.W. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ. Res. 1994;74:1141–1148.
    1. Grobe J.L., Der sarkissian S., Stewart J.M., Meszaros J.G., Raizada M.K., Katovich M.J. ACE2 overexpression inhibits hypoxia-induced collagen production by cardiac fibroblasts. Clin. Sci. (Lond.) 2007;113:357–364.
    1. Grundy S.M., Benjamin I.J., Burke G.L., Chait A., Eckel R.H., Howard B.V., Mitch W., Smith S.C., Jr., Sowers J.R. Diabetes and cardiovascular disease: a statement for healthcare professionals from the American Heart Association. Circulation. 1999;100:1134–1146.
    1. Gurley S.B., Allred A., Le T.H., Griffiths R., Mao L., Philip N., Haystead T.A., Donoghue M., Breitbart R.E., Acton S.L., Rockman H.A., Coffman T.M. Altered blood pressure responses and normal cardiac phenotype in ACE2-null mice. J. Clin. Invest. 2006;116:2218–2225.
    1. Guy J.L., Jackson R.M., Acharya K.R., Sturrock E.D., Hooper N.M., Turner A.J. Angiotensin-converting enzyme-2 (ACE2): comparative modeling of the active site, specificity requirements, and chloride dependence. Biochemistry. 2003;42:13185–13192.
    1. Harmon J.S., Stein R., Robertson R.P. Oxidative stress-mediated, post-translational loss of MafA protein as a contributing mechanism to loss of insulin gene expression in glucotoxic beta cells. J. Biol. Chem. 2005;280:11107–11113.
    1. Harrison D.G., Gongora M.C., Guzik T.J., Widder J. Oxidative stress and hypertension. JASH. 2007;1:30–44.
    1. Hayden M., Karuparthi P., Habibi J., Waseker C., Lastra G., Marnrique C., Stas S., Sowers J. Ultrastructural islet study of early fibrosis in the Ren2 model of hypertension. Emerging role of the islet pancreatic pericyte-stellate cell. JOP. 2007;8:725–738.
    1. Hayden M., Tyagi S. Islet redox stress: the manifold toxicities of insulin resistance, metabolic syndrome and amylin derived islet amyloid in type 2 diabetes mellitus. JOP. 2002;3:86–108.
    1. Heitsch H., Brovkovych S., Malinski T., Wiemer G. Angiotensin-(1–7)-stimulated nitric oxide and superoxide release from endothelial cells. Hypertension. 2001;37:72–76.
    1. Henriksen E.J., Jacob S., Kinnick T.R., Youngblood E.B., Schmit M.B., Dietze G.J. ACE inhibition and glucose transport in insulinresistant muscle: roles of bradykinin and nitric oxide. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1999;277:R332–R336.
    1. Herath C., Warner F.J., Lubel J., Dean R.J., Jia Z., Lew R.A., Smith A.I., Burrell L.M., Angus P.W. Upregulation of hepatic angiotensin-converting enzyme 2 (ACE2) and angiotensin-(1–7) levels in experimental billiary fibrosis. J. Hepatol. 2007;47:387–395.
    1. Huang L., Sexton D.J., Skogerson K., Devlin M., Smith R., Sanyal I., Parry T., Kent R., Enright J., Wu Q.L., Conley G., DeOliveira D., Morganelli L., Ducar M., Wescott C.R., Ladner R.C. Novel peptide inhibitors of angiotensin-converting enzyme 2. J. Biol. Chem. 2003;278:15532–15540.
    1. Huentelman M.J., Grobe J.L., Vazquez J., Stewart J.M., Mecca A.P., Katovich M.J., Ferrario C.M., Raizada M.K. Protection from angiotensin II-induced cardiac hypertrophy and fibrosis by systemic lentiviral delivery of ACE2 in rats. Exp. Physiol. 2005;90:783–790.
    1. Imai Y., Kuba K., Penninger J.M. The discovery of angiotensin-converting enzyme 2 and its role in acute lung injury in mice. Exp. Physiol. 2008;93:543–548.
    1. Imai Y., Kuba K., Rao S., Huan Y., Guo F., Guan B., Yang P., Sarao R., Wada T., Leong-Poi H., Crackower M.A., Fukamizu A., Hui C.-C., Hein L., Uhlig S., Slutsky A.S., Jiang C., Penninger J.M. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436:112–116.
    1. Jansson L., Sandler S. Pancreatic and islet blood flow in the regenerating pancreas after a partial pancreatectomy in adult rats. Surgery. 1981;106:861–866.
    1. Johnson J.D., Ahmed N.T., Luciani D.S., Han Z., Tran H., Fujita J., Misler S., Edlund H., Polonsky K.S. Increased islet apoptosis in Pdx1 ± mice. J. Clin. Invest. 2003;111:1147–1160.
    1. Kaneto H., Xu G., Song K.-H., Suzuma K., Bonner-Weir S., Sharma A., Weir G.C. Activation of the hexosamine pathway leads to deterioration of pancreatic beta-cell function through the induction of oxidative stress. J. Biol. Chem. 2001;276:31099–31104.
    1. King H., Aubert R.E., Herman W.H. Global burden of diabetes, 1995–2025: prevalence, numerical estimates, and projections. Diabetes Care. 1998;21:1414–1431.
    1. Kishi K., Muromoto N., Nakaya Y., Miyata I., Hagi A., Hayashi H., Ebina Y. Bradykinin directly triggers GLUT4 translocation via an insulin-independent pathway. Diabetes. 1998;47:550–558.
    1. Konoshita T., Wakahara S., Mizuno S., Motomura M., Aoyama C., Makino Y., Kawai Y., Kato N., Koni I., Miyamori I., Mabuchi H. Tissue gene expression of renin–angiotensin system in human type 2 diabetic nephropathy. Diabetes Care. 2006;4:848–852.
    1. Laakso M., Edelman S.V., Brechtel G., Baron A.D. Decreased effect of insulin to stimulate skeletal muscle blood flow in obese man. A novel mechanism for insulin resistance. J. Clin. Invest. 1990;85:1844–1852.
    1. Laine H., Yki-Jarvinen H., Kirvela O., Tolvanen T., Raitakari M., Solin O., Haaparanta M., Knuuti J., Nuutila P. Insulin resistance of glucose uptake in skeletal muscle cannot be ameliorated by enhancing endothelium-dependent blood flow in obesity. J. Clin. Invest. 1998;101:1156–1162.
    1. Lambert D.W., Yarski M., Warner F.J., Thornhill P., Parkin E.T., Smith A.I., Hooper N.M., Turner A.J. Tumor necrosis factor-alpha convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2) J. Biol. Chem. 2005;280:30113–30119.
    1. Langheinrich M., Ae Lee M., Böhm M., Pinto Y.M., Ganten D., Paul M. The hypertensive Ren-2 transgenic rat TGR (mREN2)27 in hypertension research. Characteristics and functional aspects. Am. J. Hypertens. 1996;9:506–512.
    1. Lau T., Carlsson P.O., Leung P.S. Evidence for a local angiotensin-generating system and dose-dependent inhibition of glucose-stimulated insulin release by angiotensin II in isolated pancreatic islets. Diabetologia. 2004;47:240–248.
    1. Lavoie J.L., Sigmund C.D. Minireview: overview of the renin–angiotensin system—an endocrine and paracrine system. Endocrinology. 2003;144:2179–2183.
    1. Leung P., Chan H., Wong P. Immunohistochemical localization of angiotensin II in the mouse pancreas. Histochem. J. 1998;30:21–25.
    1. Leung P.S. The physiology of a local renin–angiotensin system in the pancreas. J. Physiol. 2007;580:31–37.
    1. Leung P.S., Chan W.P., Wong T.P., Sernia C. Expression and localization of the renin–angiotensin system in the rat pancreas. J. Endocrinol. 1999;160:13–19.
    1. Li W., Moore M.J., Vasilieva N., Sui J., Wong S.K., Berne M.A., Somasundaran M., Sullivan J.L., Luzuriaga K., Greenough T.C., Choe H., Farzan M. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426:450–454.
    1. Lima C.V., Paula R.D., Resende F.L., Khosla M.C., Santos R.A.S. Potentiation of the hypotensive effect of bradykinin by short-term infusion of angiotensin-(1–7) in normotensive and hypertensive rats. Hypertension. 1997;30:542–548.
    1. Lupi R., Guerra S.D., Bugliani M., Boggi U., Mosca F., Torri S., Prato S.D., Marchetti P. The direct effects of the angiotensin-converting enzyme inhibitors, zofenoprilat and enalaprilat, on isolated human pancreatic islets. Eur. J. Endocrinol. 2006;154:355–361.
    1. Maechler P., Jornot L., Wollheim C.B. Hydrogen peroxide alters mitochondrial activation and insulin secretion in pancreatic beta cells. J. Biol. Chem. 1999;274:27905–27913.
    1. Mason J.M., Dickenson H.O., Nicholson D.J., Campbel F., Ford G., Williams B. The diabetogenic potential of thiazide-type and beta blocker combinations in patients with hypertension. J. Hypertens. 2005;23:1777–1781.
    1. Matsuoka T.-A., Kajimoto Y., Watada H., Kaneto H., Kishimoto M., Umayahara Y., Fujitani Y., Kamada T., Kawamori R., Yamasaki Y. Glycation-dependent, reactive oxygen species-mediated suppression of the insulin gene promoter activity in HIT cells. J. Clin. Invest. 1997;99:144–150.
    1. Meyer T.W., Bennett P.H., Nelson R.G. Podocyte number predicts long-term urinary albumin excretion in Pima Indians with Type II diabetes and microalbuminuria. Diabetologia. 1999;42:1341–1344.
    1. Mezzano S.A., Ruiz-Ortega M., Egido J. Angiotensin II and renal fibrosis. Hypertension. 2001;38:635–638.
    1. Mizuiri S., Hemmi H., Arita M., Ohashi Y., Tanaka Y., Miyagi M., Sakai K., Ishikawa Y., Shibuya K., Hase H., Aikawa A. Expression of ACE and ACE2 in individuals with diabetic kidney disease and healthy controls. Am. J. Kidney Dis. 2008;51:613–623.
    1. Moldovan S., Livingston E., Zhang R.S., Kleinman R., Girth P., Brunicardi F.C. Glucose-induced islet hyperemia is mediated by nitric oxide. Am. J. Surg. 1996;171:16–20.
    1. Nakayama M., Inoguchi T., Sonta T., Maeda Y., Sasaki S., Sawada F., Tsubouchi H., Sonoda N., Kobayashi K., Sumimoto H., Nawata H. Increased expression of NAD(P)H oxidase in islets of animal models of Type 2 diabetes and its improvement by an AT1 receptor antagonist. Biochem. Biophys. Res. Commun. 2005;332:927–933.
    1. Neufeld N.D., Raffel L.J., Landon C., Chen Y.D., Vadheim C.M. Early presentation of type 2 diabetes in Mexican–American youth. Diabetes Care. 1998;21:80–86.
    1. Niklason A., Hedner T., Kiskanen L., Lanke J. Development of diabetes is retarded by ACE inhibition in hypertensive patients: a sub-analysis of the Captopril Prevention Project. J. Hypertens. 2004;38:E28–E32.
    1. Oliveira H.R., Verlengia R., Carvalho C.R.O., Britto L.R.G., Curi R., Carpinelli A.R. Pancreatic beta-cells express phagocyte-like NAD(P)H oxidase. Diabetes. 2003;52:1457–1463.
    1. Oliveira M.A., Bruno Fortes Z.B., Santos R.A., Kosla M.C., De Carvalho M.H. Synergistic effect of angiotensin-(1–7) on bradykinin arteriolar dilation in vivo. Peptides. 1999;20:1195–1201.
    1. Oliveira M.A., Carvalho M.H.C., Nigro D., Passaglia R.d.C.A.T., Fortes Z.B. Angiotensin-(1–7) and bradykinin interaction in diabetes mellitus: in vivo study. Peptides. 2002;23:1449–1455.
    1. Pagtalunan M., Miller P., Jumping-Eagle S., Nelson R., Myers R., Rennke H., Coplon N., Sun L., Meyer T. Podocyte loss and progressive glomerular injury in type II diabetes. J. Clin. Invest. 1997;99:342–348.
    1. Paizis G., Cooper M.E., Schembri J.M., Tikellis C., Burrell L.M., Angus P.W. Up-regulation of components of the renin–angiotensin system in the bile duct-ligated rat liver. Gastroenterology. 2002;123:1667–1676.
    1. Paizis G., Tikellis C., Cooper M.E., Schembri J.M., Lew R.A., Smith A.I., Shaw T., Warner F.J., Zuilli A., Burrell L.M., Angus P.W. Chronic liver injury in rats and humans upregulates the novel enzyme angiotensin converting enzyme 2. Gut. 2005;54:1790–1796.
    1. Paul M., Poyan Mehr A., Kreutz R. Physiology of local renin–angiotensin systems. Physiol. Rev. 2006;86:747–803.
    1. Paula R.D., Lima C.V., Khosla M.C., Santos R.A.S. Angiotensin-(1–7) potentiates the hypotensive effect of bradykinin in conscious rats. Hypertension. 1995;26:1154–1159.
    1. Peltoniemi P., Yki-Jarvinen H., Oikonen V., Oksanen A., Takala T.O., Ronnemaa T., Erkinjuntti M., Knuuti M.J., Nuutila P. Resistance to exercise-induced increase in glucose uptake during hyperinsulinemia in insulin-resistant skeletal muscle of patients with type 1 diabetes. Diabetes. 2001;50:1371–1377.
    1. Pinhas-Hamiel O., Zeitler P. The global spread of type 2 diabetes mellitus in children and adolescents. J. Pediatr. 2005;146:693–700.
    1. Portsi I., Bara A., Busse R., Hecker M. Release of nitric oxide by angiotensin-(1–7) from porcine coronary endothelium: implications for a novel angiotensin receptor. Br. J. Pharmacol. 1994;111:652–654.
    1. Rastelli V.M.F., Oliveira M.A., dos Santos R., de Cássia Tostes Passaglia R., Nigro D., de Carvalho M.H.C., Fortes Z.B. Lack of potentiation of bradykinin by angiotensin-(1–7) in a type 2 diabetes model: role of insulin. Peptides. 2007;28:1040–1049.
    1. Reid C.M., Johnston C.I., Ryan P., Willson K., Wing L.M. Diabetes and cardiovascular outcomes in elderly subjects treated with ace-inhibitors or diuretics: findings from the 2ND Australian national blood pressure study. Am. J. Hypertens. 2003;16:A11.
    1. Robertson R.P. Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J. Biol. Chem. 2004;279:42351–42354.
    1. Samols E., Stagner J. Intra-islet regulation. Am. J. Med. 1988;85:31–35.
    1. Sampaio W.O., Souza dos Santos R.A., Faria-Silva R., da Mata Machado L.T., Schiffrin E.L., Touyz R.M. Angiotensin-(1–7) through receptor Mas mediates endothelial nitric oxide synthase activation via Akt-dependent pathways. Hypertension. 2007;49:185–192.
    1. Santos R.A., Campagnole-Santos M.J., Baracho N.C., Fontes M.A., Silva L.C., Neves L.A., Oliveira D.R., Caligiorne S.M., Rodrigues A.R., Gropen Júnior C. Characterization of a new angiotensin antagonist selective for angiotensin-(1–7): evidence that the actions of angiotensin-(1–7) are mediated by specific angiotensin receptors. Brain Res. Bull. 1994;35:293–298.
    1. Santos R.A.S., e Silva A.C.S., Maric C., Silva D.M.R., Machado R.P., de Buhr I., Heringer-Walther S., Pinheiro S.V.B., Lopes M.T., Bader M., Mendes E.P., Lemos V.S., Campagnole-Santos M.J., Schultheiss H.-P., Speth R., Walther T. Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc. Natl. Acad. Sci. U.S.A. 2003;100:8258–8263.
    1. Santos S.H.S., Fernandes L.R., Mario E.G., Ferreira A.V.M., Porto L.C.J., Alvarez-Leite J.I., Botion L.M., Bader M., Alenina N., Santos R.A.S. Mas deficiency in FVB/N mice produces marked changes in lipid and glycemic metabolism. Diabetes. 2007;57:340–347.
    1. Schmid H., Henger A., Cohen C.D., Frach K., Grone H.-J., Schlondorff D., Kretzler M. Gene expression profiles of podocyte-associated molecules as diagnostic markers in acquired proteinuric diseases. J. Am. Soc. Nephrol. 2003;14:2958–2966.
    1. Shao J., Iwashita N., Ikeda F., Ogihara T., Uchida T., Shimizu T., Uchino H., Hirose T., Kawamori R., Watada H. Beneficial effects of candesartan, an angiotensin II type 1 receptor blocker, on [beta]-cell function and morphology in db/db mice. Biochem. Biophys. Res. Commun. 2006;344:1224–1233.
    1. Shao Y., He M., Zhou L., Yao T., Huang Y., Lu L.M. Chronic angiotensin (1–7) injection accelerates STZ-induced diabetic renal injury. Acta Pharmacol. Sin. 2008;29:829–837.
    1. Soler M.J., Wysocki J., Ye M., Lloveras J., Kanwar Y., Batlle D. ACE2 inhibition worsens glomerular injury in association with increased ACE expression in streptozotocin-induced diabetic mice. Kidney Int. 2007;72:614–623.
    1. Steinberg H., Chaker H., Leaming R., Johnson A., Brechtel G., Baron A.D. Obesity/insulin resistance is associated with endothelial dysfunction. Implications for the syndrome of insulin resistance. J. Clin. Invest. 1996;97:2601–2610.
    1. Styrud J., Eriksson U.J., Jansson L. A continuous 48-hour glucose infusion in rats causes both an acute and a persistent redistribution of the blood flow within the pancreas. Endocrinology. 1992;130:2692–2696.
    1. Susztak K., Raff A.C., Schiffer M., Bottinger E.P. Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes. 2006;55:225–233.
    1. Suzuki Y., Ruiz-Ortega M., Lorenzo O., Ruperez M., Esteban V., Egido J. Inflammation and angiotensin II. Int. J. Biochem. Cell. Biol. 2003;35:881–900.
    1. Tahmasebi M., Puddefoot J.R., Inwang E.R., Vinson G.P. The tissue renin–angiotensin system in human pancreas. J. Endocrinol. 1999;161:317–322.
    1. Tallant E.A., Ferrario C.M., Gallagher P.E. Angiotensin-(1–7) inhibits growth of cardiac myocytes through activation of the mas receptor. Am. J. Physiol. Heart Circ. Physiol. 2005;289:H1560–H1566.
    1. Tang C., Han P., Oprescu A.I., Lee S.C., Gyulkhandanyan A.V., Chan G.N.Y., Wheeler M.B., Giacca A. Evidence for a role of superoxide generation in glucose-induced beta cell dysfunction in vivo. Diabetes. 2007;56:2722–2731.
    1. Tikellis C., Bialkowski K., Pete J., Sheehy K., Su Q., Johnston C., Cooper M.E., Thomas M.C. ACE2 deficiency modifies renoprotection afforded by ACE inhibition in experimental diabetes. Diabetes. 2008;57:1018–1025.
    1. Tikellis C., Cooper M.E., Thomas M.C. Role of the renin–angiotensin system in the endocrine pancreas: implications for the development of diabetes. Int. J. Biochem. Cell. Biol. 2006;38:737–751.
    1. Tikellis C., Johnston C., Forbes J., Burns W., Thomas M., Lew R., Yarski M., Smith A., Cooper M. Identification of angiotensin converting enzyme 2 in the rodent retina. Curr. Eye Res. 2004;29:419–427.
    1. Tikellis C., Wookey P.J., Candido R., Andrikopoulos S., Thomas M.C., Cooper M.E. Improved islet morphology after blockade of the renin–angiotensin system in the ZDF rat. Diabetes. 2004;53:989–997.
    1. Tikellis C., Johnston C.I., Forbes J.M., Burns W.C., Burrell L.M., Risvanis J., Cooper M.E. Characterization of renal angiotensin-converting enzyme 2 in diabetic nephropathy. Hypertension. 2003;41:392–397.
    1. Tipnis S.R., Hooper N.M., Hyde R., Karran E., Christie G., Turner A.J. A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J. Biol. Chem. 2000;275:33238–33243.
    1. Toblli J.E., Munoz M.C., Cao G., Mella J., Pereyra L., Mastai R. ACE inhibition and AT1 receptor blockade prevent fatty liver and fibrosis in obese zucker rats. Obesity. 2007;16:770–776.
    1. Torlone E., Rambotti A.M., Perriello G., Botta G., Santeusanio F., Brunetti P., Bolli G.B. ACE-inhibition increases hepatic and extrahepatic sensitivity to insulin in patients with Type 2 (non-insulin-dependent) diabetes mellitus and arterial hypertension. Diabetologia. 1991;34:119–125.
    1. Tsubouchi H., Inoguchi T., Inuo M., Kakimoto M., Sonta T., Sonoda N., Sasaki S., Kobayashi K., Sumimoto H., Nawata H. Sulfonylurea as well as elevated glucose levels stimulate reactive oxygen species production in the pancreatic [beta]-cell line, MIN6—a role of NAD(P)H oxidase in [beta]-cells. Biochem. Biophys. Res. Commun. 2004;326:60–65.
    1. Uchizono Y., Takeya R., Iwase M., Sasaki N., Oku M., Imoto H., Iida M., Sumimoto H. Expression of isoforms of NADPH oxidase components in rat pancreatic islets. Life Sci. 2006;80:133–139.
    1. Utriainen T., Takala T., Luotolahti M., Rönnemaa T., Laine H., Ruotsalainen U., Haaparanta M., Nuutila P., Yki-Järvinen H. Insulin resistance characterizes glucose uptake in skeletal muscle but not in the heart in NIDDM. Diabetologia. 1998;41:555–559.
    1. Valdés G., Neves L.A.A., Anton L., Corthorn J., Chacón C., Germain A.M., Merrill D.C., Ferrario C.M., Sarao R., Penninger J., Brosnihan K.B. Distribution of angiotensin-(1–7) and ACE2 in human placentas of normal and pathological pregnancies. Placenta. 2006;27:200–207.
    1. Vermes E., Ducharme A., Bourassa M.G., Lessard M., White M., Tardif J.-C. Enalapril reduces the incidence of diabetes in patients with chronic heart failure: insight from the Studies Of Left Ventricular Dysfunction (SOLVD) Circulation. 2003;107:1291–1296.
    1. Vickers C., Hales P., Kaushik V., Dick L., Gavin J., Tang J., Godbout K., Parsons T., Baronas E., Hsieh F., Acton S., Patane M., Nichols A., Tummino P. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J. Biol. Chem. 2002;277:14838–14843.
    1. Weber K., Brilla C., Campbell S., Guarda E., Zhou G., Sriram K. Myocardial fibrosis: role of angiotensin II and aldosterone. Basic Res. Cardiol. 1993;88:107–124.
    1. Wiemer G., Dobrucki L.W., Louka F.R., Malinski T., Heitsch H. AVE 0991, a nonpeptide mimic of the effects of angiotensin-(1–7) on the endothelium. Hypertension. 2002;40:852–875.
    1. Williams S.B., Cusco J.A., Roddy M.A., Johnstone M.T., Creager M.A. Impaired nitric oxide-mediated vasodilation in patients with non-insulin-dependent diabetes mellitus. J. Am. Coll. Cardiol. 1996;27:567–574.
    1. Wong D.W., Oudit G.Y., Reich H., Kassiri Z., Zhou J., Liu Q.C., Backx P.H., Penninger J.M., Herzenberg A.M., Scholey J.W. Loss of angiotensin-converting enzyme-2 (Ace2) accelerates diabetic kidney injury. Am. J. Pathol. 2007;171:438–451.
    1. Wu L., Nicholson W., Knobel S.M., Steffner R.J., May J.M., Piston D.W., Powers A.C. Oxidative stress is a mediator of glucose toxicity in insulin-secreting pancreatic islet cell lines. J. Biol. Chem. 2004;279:12126–12134.
    1. Wysocki J., Ye M., Soler M.J., Gurley S.B., Xiao H.D., Bernstein K.E., Coffman T.M., Chen S., Batlle D. ACE and ACE2 activity in diabetic mice. Diabetes. 2006;55:2132–2139.
    1. Xiang L., Dearman J., Abram S.R., Carter C., Hester R.L. Insulin resistance and impaired functional vasodilation in obese Zucker rats. Am. J. Physiol. Heart Circ. Physiol. 2008;294:H1658–H1666.
    1. Yamamoto K., Ohishi M., Katsuya T., Ito N., Ikushima M., Kaibe M., Tatara Y., Shiota A., Sugano S., Takeda S., Rakugi H., Ogihara T. Deletion of angiotensin-converting enzyme 2 accelerates pressure overload-induced cardiac dysfunction by increasing local angiotensin II. Hypertension. 2006;47:718–726.
    1. Yamamoto T., Nakamura T., Noble N.A., Ruoslahti E., Border W.A. Expression of transforming growth factor beta is elevated in human and experimental diabetic nephropathy. Proc. Natl. Acad. Sci. U.S.A. 1993;90:1814–1818.
    1. Yamazato M., Yamazato Y., Sun C., Diez-Freire C., Raizada M.K. Overexpression of angiotensin-converting enzyme 2 in the rostral ventrolateral medulla causes long-term decrease in blood pressure in the spontaneously hypertensive rats. Hypertension. 2007;49:926–931.
    1. Ye M., Wysocki J., Naaz P., Salabat M.R., LaPointe M.S., Batlle D. Increased ACE 2 and decreased ACE protein in renal tubules from diabetic mice: a renoprotective combination? Hypertension. 2004;43:1120–1125.
    1. Ye M., Wysocki J., William J., Soler M.J., Cokic I., Batlle D. Glomerular localization and expression of angiotensin-converting enzyme 2 and angiotensin-converting enzyme: implications for albuminuria in diabetes. J. Am. Soc. Nephrol. 2006;17:3067–3075.
    1. Yoshioka M., Kayo T., Ikeda T., Koizumi A. A novel locus, Mody4, distal to D7Mit189 on chromosome 7 determines early-onset NIDDM in nonobese C57BL/6 (Akita) mutant mice. Diabetes. 1997;46:887–894.
    1. Yu D., Petermann A., Kunter U., Rong S., Shankland S.J., Floege J. Urinary podocyte loss is a more specific marker of ongoing glomerular damage than proteinuria. J. Am. Soc. Nephrol. 2005;16:1733–1741.
    1. Yusuf S., Gerstein H., Hoogwerf B., Pogue J., Bosch J., Wolffenbuttel B.H.R., Zinman B., for the H.S.I. Ramipril and the development of diabetes. JAMA. 2001;286:1882–1885.
    1. Zhang H., Wada J., Hida K., Tsuchiyama Y., Hiragushi K., Shikata K., Wang H., Lin S., Kanwar Y.S., Makino H. Collectrin, a collecting duct-specific transmembrane glycoprotein, is a novel homolog of ACE2 and is developmentally regulated in embryonic kidneys. J. Biol. Chem. 2001;276:17132–17139.
    1. Zhang Y., Wada J., Yasuhara A., Iseda I., Eguchi J., Fukui K., Yang Q., Yamagata K., Hiesberger T., Igarashi P., Zhang H., Wang H., Akagi S., Kanwar Y., Makino H. The role for HNF-1β-targeted collectrin in maintenance of primary cilia and cell polarity in collecting duct cells. PLos ONE. 2007;2:e414.
    1. Zhong J.C., Yu X.Y., Lin Q.X., Li X.H., Huang X.Z., Xiao D.Z., Lin S.G. Enhanced angiotensin converting enzyme 2 regulates the insulin//Akt signalling pathway by blockade of macrophage migration inhibitory factor expression. Br. J. Pharmacol. 2007

Source: PubMed

3
Se inscrever