Mechanotransduction as an Adaptation to Gravity

Tanbir Najrana, Juan Sanchez-Esteban, Tanbir Najrana, Juan Sanchez-Esteban

Abstract

Gravity has played a critical role in the development of terrestrial life. A key event in evolution has been the development of mechanisms to sense and transduce gravitational force into biological signals. The objective of this manuscript is to review how living organisms on Earth use mechanotransduction as an adaptation to gravity. Certain cells have evolved specialized structures, such as otoliths in hair cells of the inner ear and statoliths in plants, to respond directly to the force of gravity. By conducting studies in the reduced gravity of spaceflight (microgravity) or simulating microgravity in the laboratory, we have gained insights into how gravity might have changed life on Earth. We review how microgravity affects prokaryotic and eukaryotic cells at the cellular and molecular levels. Genomic studies in yeast have identified changes in genes involved in budding, cell polarity, and cell separation regulated by Ras, PI3K, and TOR signaling pathways. Moreover, transcriptomic analysis of late pregnant rats have revealed that microgravity affects genes that regulate circadian clocks, activate mechanotransduction pathways, and induce changes in immune response, metabolism, and cells proliferation. Importantly, these studies identified genes that modify chromatin structure and methylation, suggesting that long-term adaptation to gravity may be mediated by epigenetic modifications. Given that gravity represents a modification in mechanical stresses encounter by the cells, the tensegrity model of cytoskeletal architecture provides an excellent paradigm to explain how changes in the balance of forces, which are transmitted across transmembrane receptors and cytoskeleton, can influence intracellular signaling pathways and gene expression.

Keywords: cytoskeleton; earth (planet); epigenetic; genomics; gravity; mechanotranduction; microgravity; tensegrity.

References

    1. Ditsche P, Summers AP. Aquatic versus terrestrial attachment: water makes a difference. Beilstein J Nanotechnol (2014) 5:2424–39.10.3762/bjnano.5.252
    1. Morey-Holton ER. The impact of gravity on life. In: Rothschild LJ, Lister AM, editors. Evolution on Plant Earth: The Impact of the Physical Environment. San Diego, CA: Academic Press, An Imprint of Elsevier; (2003). p. 143–60.
    1. Pravin S, Mellon D, Jr, Berger EJ, Reidenbach MA. Effects of sensilla morphology on mechanosensory sensitivity in the crayfish. Bioinspir Biomim (2015) 10:036006.10.1088/1748-3190/10/3/036006
    1. McHenry MJ, Strother JA, Van Netten SM. Mechanical filtering by the boundary layer and fluid-structure interaction in the superficial neuromast of the fish lateral line system. J Comp Physiol A Neuroethol Sens Neural Behav Physiol (2008) 194:795–810.10.1007/s00359-008-0350-2
    1. Lillywhite HB. Snakes, blood circulation and gravity. Sci Am (1988) 256:92–8.10.1038/scientificamerican1288-92
    1. Thewissen JG, Williams EM. The early evolution of Cetacea (whales, dolphins, and porpoises). Annu Rev Ecol Syst (2002) 33:73–90.10.1146/annurev.ecolsys.33.020602.095426
    1. Nummela S, Thewissen JG, Bajpai S, Hussain ST, Kumar K. Eocene evolution of whale hearing. Nature (2004) 430:776–8.10.1038/nature02720
    1. Nummela S, Thewissen JG, Bajpai S, Hussain T, Kumar K. Sound transmission in archaic and modern whales: anatomical adaptations for underwater hearing. Anat Rec (Hoboken) (2007) 290:716–33.10.1002/ar.20528
    1. Ingber D. How cells (might) sense microgravity. FASEB J (1999) 13(Suppl):S3–15.
    1. Vernikos J. Human physiology in space. Bioessays (1996) 18:1029–37.10.1002/bies.950181215
    1. Arfat Y, Xiao WZ, Iftikhar S, Zhao F, Li DJ, Sun YL, et al. Physiological effects of microgravity on bone cells. Calcif Tissue Int (2014) 94:569–79.10.1007/s00223-014-9851-x
    1. Cogoli A, Cogoli-Greuter M. Activation and proliferation of lymphocytes and other mammalian cells in microgravity. Adv Space Biol Med (1997) 6:33–79.10.1016/S1569-2574(08)60077-5
    1. Nichols HL, Zhang N, Wen X. Proteomics and genomics of microgravity. Physiol Genomics (2006) 26:163–71.10.1152/physiolgenomics.00323.2005
    1. Grimm D, Wise P, Lebert M, Richter P, Baatout S. How and why does the proteome respond to microgravity? Expert Rev Proteomics (2011) 8:13–27.10.1586/epr.10.105
    1. Vorselen D, Roos WH, Mackintosh FC, Wuite GJ, Van Loon JJ. The role of the cytoskeleton in sensing changes in gravity by nonspecialized cells. FASEB J (2014) 28:536–47.10.1096/fj.13-236356
    1. Lesnyak A, Sonnenfeld G, Avery L, Konstantinova I, Rykova M, Meshkov D, et al. Effect of SLS-2 spaceflight on immunologic parameters of rats. J Appl Physiol (1985) (1996) 81:178–82.
    1. Taylor GR, Konstantinova I, Sonnenfeld G, Jennings R. Changes in the immune system during and after spaceflight. Adv Space Biol Med (1997) 6:1–32.10.1016/S1569-2574(08)60076-3
    1. Nickerson CA, Ott CM, Wilson JW, Ramamurthy R, Pierson DL. Microbial responses to microgravity and other low-shear environments. Microbiol Mol Biol Rev (2004) 68:345–61.10.1128/MMBR.68.2.345-361.2004
    1. Klaus D, Simske S, Todd P, Stodieck L. Investigation of space flight effects on Escherichia coli and a proposed model of underlying physical mechanisms. Microbiology (1997) 143(Pt 2):449–55.10.1099/00221287-143-2-449
    1. Tixador R, Richoilley G, Gasset G, Templier J, Bes JC, Moatti N, et al. Study of minimal inhibitory concentration of antibiotics on bacteria cultivated in vitro in space (Cytos 2 experiment). Aviat Space Environ Med (1985) 56:748–51.
    1. Nickerson CA, Ott CM, Mister SJ, Morrow BJ, Burns-Keliher L, Pierson DL. Microgravity as a novel environmental signal affecting Salmonella enterica serovar Typhimurium virulence. Infect Immun (2000) 68:3147–52.10.1128/IAI.68.6.3147-3152.2000
    1. Wilson JW, Ott CM, Ramamurthy R, Porwollik S, Mcclelland M, Pierson DL, et al. Low-Shear modeled microgravity alters the Salmonella enterica serovar typhimurium stress response in an RpoS-independent manner. Appl Environ Microbiol (2002) 68:5408–16.10.1128/AEM.68.11.5408-5416.2002
    1. Wilson JW, Ramamurthy R, Porwollik S, Mcclelland M, Hammond T, Allen P, et al. Microarray analysis identifies Salmonella genes belonging to the low-shear modeled microgravity regulon. Proc Natl Acad Sci U S A (2002) 99:13807–12.10.1073/pnas.212387899
    1. Nickerson CA, Ott CM, Wilson JW, Ramamurthy R, LeBlanc CL, Höner Zu Bentrup K, et al. Low-shear modeled microgravity: a global environmental regulatory signal affecting bacterial gene expression, physiology, and pathogenesis. J Microbiol Methods (2003) 54:1–11.10.1016/S0167-7012(03)00018-6
    1. Blount P, Moe PC. Bacterial mechanosensitive channels: integrating physiology, structure and function. Trends Microbiol (1999) 7:420–4.10.1016/S0966-842X(99)01594-2
    1. Poolman B, Blount P, Folgering JH, Friesen RH, Moe PC, Van Der Heide T. How do membrane proteins sense water stress? Mol Microbiol (2002) 44:889–902.10.1046/j.1365-2958.2002.02894.x
    1. Thomas WE, Trintchina E, Forero M, Vogel V, Sokurenko EV. Bacterial adhesion to target cells enhanced by shear force. Cell (2002) 109:913–23.10.1016/S0092-8674(02)00796-1
    1. Blount P. Molecular mechanisms of mechanosensation: big lessons from small cells. Neuron (2003) 37:731–4.10.1016/S0896-6273(03)00122-3
    1. Thevenet D, D’ari R, Bouloc P. The SIGNAL experiment in BIORACK: Escherichia coli in microgravity. J Biotechnol (1996) 47:89–97.10.1016/0168-1656(96)01384-3
    1. Brooks DE, Trust TJ. Interactions of erythrocytes with bacteria under shear. Ann N Y Acad Sci (1983) 416:319–31.10.1111/j.1749-6632.1983.tb35196.x
    1. Isberg RR, Barnes P. Dancing with the host; flow-dependent bacterial adhesion. Cell (2002) 110:1–4.10.1016/S0092-8674(02)00821-8
    1. Purevdorj-Gage B, Sheehan KB, Hyman LE. Effects of low-shear modeled microgravity on cell function, gene expression, and phenotype in Saccharomyces cerevisiae. Appl Environ Microbiol (2006) 72:4569–75.10.1128/AEM.03050-05
    1. Sheehan KB, Mcinnerney K, Purevdorj-Gage B, Altenburg SD, Hyman LE. Yeast genomic expression patterns in response to low-shear modeled microgravity. BMC Genomics (2007) 8:3.10.1186/1471-2164-8-3
    1. Lynch SV, Brodie EL, Matin A. Role and regulation of sigma S in general resistance conferred by low-shear simulated microgravity in Escherichia coli. J Bacteriol (2004) 186:8207–12.10.1128/JB.186.24.8207-8212.2004
    1. Watson A, Mata J, Bahler J, Carr A, Humphrey T. Global gene expression responses of fission yeast to ionizing radiation. Mol Biol Cell (2004) 15:851–60.10.1091/mbc.E03-08-0569
    1. Kang PJ, Sanson A, Lee B, Park HO. A GDP/GTP exchange factor involved in linking a spatial landmark to cell polarity. Science (2001) 292:1376–8.10.1126/science.1060360
    1. Colman-Lerner A, Chin TE, Brent R. Yeast Cbk1 and Mob2 activate daughter-specific genetic programs to induce asymmetric cell fates. Cell (2001) 107:739–50.10.1016/S0092-8674(01)00596-7
    1. Amon A. Mother and daughter are doing fine: asymmetric cell division in yeast. Cell (1996) 84:651–4.10.1016/S0092-8674(00)81041-7
    1. Chant J. Cell polarity in yeast. Annu Rev Cell Dev Biol (1999) 15:365–91.10.1146/annurev.cellbio.15.1.365
    1. Saito H, Tatebayashi K. Regulation of the osmoregulatory HOG MAPK cascade in yeast. J Biochem (2004) 136:267–72.10.1093/jb/mvh135
    1. Pollard TD, Borisy GG. Cellular motility driven by assembly and disassembly of actin filaments. Cell (2003) 112:453–65.10.1016/S0092-8674(03)00120-X
    1. Friedl P. Prespecification and plasticity: shifting mechanisms of cell migration. Curr Opin Cell Biol (2004) 16:14–23.10.1016/j.ceb.2003.11.001
    1. Parent CA. Making all the right moves: chemotaxis in neutrophils and Dictyostelium. Curr Opin Cell Biol (2004) 16:4–13.10.1016/j.ceb.2003.11.008
    1. Sasaki AT, Firtel RA. Regulation of chemotaxis by the orchestrated activation of Ras, PI3K, and TOR. Eur J Cell Biol (2006) 85:873–95.10.1016/j.ejcb.2006.04.007
    1. Tuxworth RI, Cheetham JL, Machesky LM, Spiegelmann GB, Weeks G, Insall RH. Dictyostelium RasG is required for normal motility and cytokinesis, but not growth. J Cell Biol (1997) 138:605–14.10.1083/jcb.138.3.605
    1. Wilkins A, Khosla M, Fraser DJ, Spiegelman GB, Fisher PR, Weeks G, et al. Dictyostelium RasD is required for normal phototaxis, but not differentiation. Genes Dev (2000) 14:1407–13.10.1101/gad.14.11.1407
    1. Insall RH, Borleis J, Devreotes PN. The aimless RasGEF is required for processing of chemotactic signals through G-protein-coupled receptors in Dictyostelium. Curr Biol (1996) 6:719–29.10.1016/S0960-9822(09)00453-9
    1. Sasaki AT, Chun C, Takeda K, Firtel RA. Localized Ras signaling at the leading edge regulates PI3K, cell polarity, and directional cell movement. J Cell Biol (2004) 167:505–18.10.1083/jcb.200406177
    1. Lee S, Comer FI, Sasaki A, Mcleod IX, Duong Y, Okumura K, et al. TOR complex 2 integrates cell movement during chemotaxis and signal relay in Dictyostelium. Mol Biol Cell (2005) 16:4572–83.10.1091/mbc.E05-04-0342
    1. Hresko RC, Mueckler M. mTOR.RICTOR is the Ser473 kinase for Akt/protein kinase B in 3T3-L1 adipocytes. J Biol Chem (2005) 280:40406–16.10.1074/jbc.M508361200
    1. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science (2005) 307:1098–101.10.1126/science.1106148
    1. Rosen E, Chen R, Masson PH. Root gravitropism: a complex response to a simple stimulus? Trends Plant Sci (1999) 4:407–12.10.1016/S1360-1385(99)01472-7
    1. Perbal G, Driss-Ecole D. Mechanotransduction in gravisensing cells. Trends Plant Sci (2003) 8:498–504.10.1016/j.tplants.2003.09.005
    1. Staves MP. Cytoplasmic streaming and gravity sensing in Chara internodal cells. Planta (1997) 203:S79–84.10.1007/PL00008119
    1. Sack FD. Plastids and gravitropic sensing. Planta (1997) 203:S63–8.10.1007/PL00008116
    1. Zheng HQ, Staehelin LA. Nodal endoplasmic reticulum, a specialized form of endoplasmic reticulum found in gravity-sensing root tip columella cells. Plant Physiol (2001) 125:252–65.10.1104/pp.125.1.252
    1. Yano D, Sato M, Saito C, Sato MH, Morita MT, Tasaka M. A SNARE complex containing SGR3/AtVAM3 and ZIG/VTI11 in gravity-sensing cells is important for Arabidopsis shoot gravitropism. Proc Natl Acad Sci U S A (2003) 100:8589–94.10.1073/pnas.1430749100
    1. Kuznetsov OA, Hasenstein KH. Magnetophoretic induction of curvature in coleoptiles and hypocotyls. J Exp Bot (1997) 48:1951–7.10.1093/jexbot/48.316.1951
    1. Fitzelle KJ, Kiss JZ. Restoration of gravitropic sensitivity in starch-deficient mutants of Arabidopsis by hypergravity. J Exp Bot (2001) 52:265–75.10.1093/jexbot/52.355.265
    1. Sack FD, Leopold AC. Cytoplasmic streaming affects gravity-induced amyloplast sedimentation in maize coleoptiles. Planta (1985) 164:56–62.10.1007/BF00391025
    1. Morita MT, Tasaka M. Gravity sensing and signaling. Curr Opin Plant Biol (2004) 7:712–8.10.1016/j.pbi.2004.09.001
    1. Plieth C, Trewavas AJ. Reorientation of seedlings in the earth’s gravitational field induces cytosolic calcium transients. Plant Physiol (2002) 129:786–96.10.1104/pp.011007
    1. Sedbrook JC, Chen R, Masson PH. ARG1 (altered response to gravity) encodes a DnaJ-like protein that potentially interacts with the cytoskeleton. Proc Natl Acad Sci U S A (1999) 96:1140–5.10.1073/pnas.96.3.1140
    1. Boonsirichai K, Sedbrook JC, Chen R, Gilroy S, Masson PH. Altered response to gravity is a peripheral membrane protein that modulates gravity-induced cytoplasmic alkalinization and lateral auxin transport in plant statocytes. Plant Cell (2003) 15:2612–25.10.1105/tpc.015560
    1. Volkmann D, Baluska F, Lichtscheidl I, Driss-Ecole D, Perbal G. Statoliths motions in gravity-perceiving plant cells: does actomyosin counteract gravity? FASEB J (1999) 13(Suppl):S143–7.
    1. Driss-Ecole D, Jeune B, Prouteau M, Julianus P, Perbal G. Lentil root statoliths reach a stable state in microgravity. Planta (2000) 211:396–405.10.1007/s004250000298
    1. Baluska F, Hasenstein KH. Root cytoskeleton: its role in perception of and response to gravity. Planta (1997) 203:S69–78.10.1007/PL00008117
    1. Blancaflor EB. The cytoskeleton and gravitropism in higher plants. J Plant Growth Regul (2002) 21:120–36.10.1007/s003440010041
    1. Yamamoto K, Kiss JZ. Disruption of the actin cytoskeleton results in the promotion of gravitropism in inflorescence stems and hypocotyls of Arabidopsis. Plant Physiol (2002) 128:669–81.10.1104/pp.010804
    1. Hou G, Mohamalawari DR, Blancaflor EB. Enhanced gravitropism of roots with a disrupted cap actin cytoskeleton. Plant Physiol (2003) 131:1360–73.10.1104/pp.014423
    1. Colclasure JC, Holt JR. Transduction and adaptation in sensory hair cells of the mammalian vestibular system. Gravit Space Biol Bull (2003) 16(2):61–70.
    1. Jamon M. The development of vestibular system and related functions in mammals: impact of gravity. Front Integr Neurosci (2014) 8:11.10.3389/fnint.2014.00011
    1. Vollrath MA, Kwan KY, Corey DP. The micromachinery of mechanotransduction in hair cells. Annu Rev Neurosci (2007) 30:339–65.10.1146/annurev.neuro.29.051605.112917
    1. Tilney LG, Derosier DJ, Mulroy MJ. The organization of actin filaments in the stereocilia of cochlear hair cells. J Cell Biol (1980) 86:244–59.10.1083/jcb.86.1.244
    1. Jacobs RA, Hudspeth AJ. Ultrastructural correlates of mechanoelectrical transduction in hair cells of the bullfrog’s internal ear. Cold Spring Harb Symp Quant Biol (1990) 55:547–61.10.1101/SQB.1990.055.01.053
    1. Bashtanov ME, Goodyear RJ, Richardson GP, Russell IJ. The mechanical properties of chick (Gallus domesticus) sensory hair bundles: relative contributions of structures sensitive to calcium chelation and subtilisin treatment. J Physiol (2004) 559:287–99.10.1113/jphysiol.2004.065565
    1. Goodyear R, Richardson G. The ankle-link antigen: an epitope sensitive to calcium chelation associated with the hair-cell surface and the calycal processes of photoreceptors. J Neurosci (1999) 19:3761–72.
    1. Duncan RK, Eisen MD, Saunders JC. Distal separation of chick cochlear hair cell stereocilia: analysis of contact-constraint models. Hear Res (1999) 127:22–30.10.1016/S0378-5955(98)00168-3
    1. Hudspeth AJ, Jacobs R. Stereocilia mediate transduction in vertebrate hair cells (auditory system/cilium/vestibular system). Proc Natl Acad Sci U S A (1979) 76:1506–9.10.1073/pnas.76.3.1506
    1. Beurg M, Nam JH, Crawford A, Fettiplace R. The actions of calcium on hair bundle mechanics in mammalian cochlear hair cells. Biophys J (2008) 94:2639–53.10.1529/biophysj.107.123257
    1. Dallos P, Santos-Sacchi J, Flock A. Intracellular recordings from cochlear outer hair cells. Science (1982) 218:582–4.10.1126/science.7123260
    1. Kawashima Y, Geleoc GS, Kurima K, Labay V, Lelli A, Asai Y, et al. Mechanotransduction in mouse inner ear hair cells requires transmembrane channel-like genes. J Clin Invest (2011) 121:4796–809.10.1172/JCI60405
    1. Gillespie PG, Muller U. Mechanotransduction by hair cells: models, molecules, and mechanisms. Cell (2009) 139:33–44.10.1016/j.cell.2009.09.010
    1. Fritzsch B, Maklad A, Bruce LL, Crapon De Caprona MD. Development of the ear and of connections between the ear and the brain: is there a role for gravity? Adv Space Res (2001) 28:595–600.10.1016/S0273-1177(01)00387-8
    1. Fritzsch B. Molecular developmental neurobiology of formation, guidance and survival of primary vestibular neurons. Adv Space Res (2003) 32:1495–500.10.1016/S0273-1177(03)90387-5
    1. Walton KD, Lieberman D, Llinas A, Begin M, Llinas RR. Identification of a critical period for motor development in neonatal rats. Neuroscience (1992) 51:763–7.10.1016/0306-4522(92)90517-6
    1. Moody SA, Golden C. Developmental biology research in space: issues and directions in the era of the international space station. Dev Biol (2000) 228:1–5.10.1006/dbio.2000.9907
    1. Ronca AE, Fritzsch B, Alberts JR, Bruce LL. Effects of microgravity on vestibular development and function in rats: genetics and environment. Korean J Biol Sci (2000) 4:215–21.10.1080/12265071.2000.9647547
    1. Wubbels RJ, Van Marle J, Sondag HN, De Jong HA. Effects of hypergravity on the morphological properties of the vestibular sensory epithelium. II. Life-long exposure of rats including embryogenesis. Brain Res Bull (2002) 58:575–80.10.1016/S0361-9230(02)00828-6
    1. Ronca AE, Fritzsch B, Bruce LL, Alberts JR. Orbital spaceflight during pregnancy shapes function of mammalian vestibular system. Behav Neurosci (2008) 122:224–32.10.1037/0735-7044.122.1.224
    1. Burr DB, Robling AG, Turner CH. Effects of biomechanical stress on bones in animals. Bone (2002) 30:781–6.10.1016/S8756-3282(02)00707-X
    1. Bonewald L. Osteocytes. 3rd ed In: Marcus DFR, Nelson D, Rosen C, editors. Osteoporosis. Burlington, MA: Elsevier Academic Press; (2007).
    1. Lanyon LE. Osteocytes, strain detection, bone modeling and remodeling. Calcif Tissue Int (1993) 53(Suppl 1):S102–6; discussion S106–107.10.1007/BF01673415
    1. Dallas SL, Veno PA, Rosser JL, Barragan-Adjemian C, Rowe DW, Kalajzic I, et al. Time lapse imaging techniques for comparison of mineralization dynamics in primary murine osteoblasts and the late osteoblast/early osteocyte-like cell line MLO-A5. Cells Tissues Organs (2009) 189:6–11.10.1159/000151745
    1. Burger EH, Klein-Nulend J. Mechanotransduction in bone – role of the lacuno-canalicular network. FASEB J (1999) 13(Suppl):S101–12.
    1. Riddle RC, Donahue HJ. From streaming-potentials to shear stress: 25 years of bone cell mechanotransduction. J Orthop Res (2009) 27:143–9.10.1002/jor.20723
    1. Temiyasathit S, Jacobs CR. Osteocyte primary cilium and its role in bone mechanotransduction. Ann N Y Acad Sci (2010) 1192:422–8.10.1111/j.1749-6632.2009.05243.x
    1. Klein-Nulend J, Semeins CM, Ajubi NE, Nijweide PJ, Burger EH. Pulsating fluid flow increases nitric oxide (NO) synthesis by osteocytes but not periosteal fibroblasts – correlation with prostaglandin upregulation. Biochem Biophys Res Commun (1995) 217:640–8.10.1006/bbrc.1995.2822
    1. Cherian PP, Siller-Jackson AJ, Gu S, Wang X, Bonewald LF, Sprague E, et al. Mechanical strain opens connexin 43 hemichannels in osteocytes: a novel mechanism for the release of prostaglandin. Mol Biol Cell (2005) 16:3100–6.10.1091/mbc.E04-10-0912
    1. Genetos DC, Kephart CJ, Zhang Y, Yellowley CE, Donahue HJ. Oscillating fluid flow activation of gap junction hemichannels induces ATP release from MLO-Y4 osteocytes. J Cell Physiol (2007) 212:207–14.10.1002/jcp.21021
    1. Lu XL, Huo B, Park M, Guo XE. Calcium response in osteocytic networks under steady and oscillatory fluid flow. Bone (2012) 51:466–73.10.1016/j.bone.2012.05.021
    1. Bonewald LF, Johnson ML. Osteocytes, mechanosensing and Wnt signaling. Bone (2008) 42:606–15.10.1016/j.bone.2007.12.224
    1. Hughes-Fulford M. Function of the cytoskeleton in gravisensing during spaceflight. Adv Space Res (2003) 32:1585–93.10.1016/S0273-1177(03)90399-1
    1. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science (1999) 284:143–7.10.1126/science.284.5411.143
    1. Khayat G, Rosenzweig DH, Quinn TM. Low frequency mechanical stimulation inhibits adipogenic differentiation of C3H10T1/2 mesenchymal stem cells. Differentiation (2012) 83:179–84.10.1016/j.diff.2011.12.004
    1. Huang Y, Dai ZQ, Ling SK, Zhang HY, Wan YM, Li YH. Gravity, a regulation factor in the differentiation of rat bone marrow mesenchymal stem cells. J Biomed Sci (2009) 16:87.10.1186/1423-0127-16-87
    1. Zayzafoon M, Gathings WE, Mcdonald JM. Modeled microgravity inhibits osteogenic differentiation of human mesenchymal stem cells and increases adipogenesis. Endocrinology (2004) 145:2421–32.10.1210/en.2003-1156
    1. Papachroni KK, Karatzas DN, Papavassiliou KA, Basdra EK, Papavassiliou AG. Mechanotransduction in osteoblast regulation and bone disease. Trends Mol Med (2009) 15:208–16.10.1016/j.molmed.2009.03.001
    1. Dai Z, Li Y, Ding BS, Zhang X, Tan Y, Wan YM. Actin microfilaments participate in the regulation of the COLIAI promotor activity in ROS17/2.8 cells under simulated microgravity. Adv Space Res (2006) 38:1159–67.10.1016/j.asr.2006.02.060
    1. Kumei Y, Morita S, Katano H, Akiyama H, Hirano M, Oyha K, et al. Microgravity signal ensnarls cell adhesion, cytoskeleton, and matrix proteins of rat osteoblasts: osteopontin, CD44, osteonectin, and alpha-tubulin. Ann N Y Acad Sci (2006) 1090:311–7.10.1196/annals.1378.034
    1. Nabavi N, Khandani A, Camirand A, Harrison RE. Effects of microgravity on osteoclast bone resorption and osteoblast cytoskeletal organization and adhesion. Bone (2011) 49:965–74.10.1016/j.bone.2011.07.036
    1. Lin C, Jiang X, Dai Z, Guo X, Weng T, Wang J, et al. Sclerostin mediates bone response to mechanical unloading through antagonizing Wnt/beta-catenin signaling. J Bone Miner Res (2009) 24:1651–61.10.1359/jbmr.090411
    1. Rodionova NV, Polkovenko OV, Oganov VS. Interactions of cells in zones of bone resorption under microgravity and hypokinesia. J Gravit Physiol (2004) 11(2):147–51.
    1. Di SM, Qian AR, Qu LN, Zhang W, Wang Z, Ding C, et al. Graviresponses of osteocytes under altered gravity. Adv Space Res (2011) 48:1161–6.10.1016/j.asr.2011.05.030
    1. Segovia-Silvestre T, Neutzsky-Wulff AV, Sorensen MG, Christiansen C, Bollerslev J, Karsdal MA, et al. Advances in osteoclast biology resulting from the study of osteopetrotic mutations. Hum Genet (2009) 124:561–77.10.1007/s00439-008-0583-8
    1. Tamma R, Colaianni G, Camerino C, Di Benedetto A, Greco G, Strippoli M, et al. Microgravity during spaceflight directly affects in vitro osteoclastogenesis and bone resorption. FASEB J (2009) 23:2549–54.10.1096/fj.08-127951
    1. Sambandam Y, Blanchard JJ, Daughtridge G, Kolb RJ, Shanmugarajan S, Pandruvada SN, et al. Microarray profile of gene expression during osteoclast differentiation in modelled microgravity. J Cell Biochem (2010) 111:1179–87.10.1002/jcb.22840
    1. Rucci N, Rufo A, Alamanou M, Teti A. Modeled microgravity stimulates osteoclastogenesis and bone resorption by increasing osteoblast RANKL/OPG ratio. J Cell Biochem (2007) 100:464–73.10.1002/jcb.21059
    1. Saxena R, Pan G, Dohm ED, Mcdonald JM. Modeled microgravity and hindlimb unloading sensitize osteoclast precursors to RANKL-mediated osteoclastogenesis. J Bone Miner Metab (2011) 29:111–22.10.1007/s00774-010-0201-4
    1. West JB, Dollery CT, Naimark A. Distribution of blood flow in isolated lung; relation to vascular and alveolar pressures. J Appl Physiol (1964) 19:713–24.
    1. Hopkins SR, Henderson AC, Levin DL, Yamada K, Arai T, Buxton RB, et al. Vertical gradients in regional lung density and perfusion in the supine human lung: the Slinky effect. J Appl Physiol (1985) (2007) 103:240–8.10.1152/japplphysiol.01289.2006
    1. Prisk GK. Microgravity and the respiratory system. Eur Respir J (2014) 43:1459–71.10.1183/09031936.00001414
    1. Elliott AR, Prisk GK, Guy HJ, West JB. Lung volumes during sustained microgravity on Spacelab SLS-1. J Appl Physiol (1985) (1994) 77:2005–14.
    1. Guy HJ, Prisk GK, Elliott AR, Deutschman RA, III, West JB. Inhomogeneity of pulmonary ventilation during sustained microgravity as determined by single-breath washouts. J Appl Physiol (1985) (1994) 76:1719–29.
    1. Prisk GK, Guy HJ, Elliott AR, Paiva M, West JB. Ventilatory inhomogeneity determined from multiple-breath washouts during sustained microgravity on Spacelab SLS-1. J Appl Physiol (1985) (1995) 78:597–607.
    1. Verbanck S, Linnarsson D, Prisk GK, Paiva M. Specific ventilation distribution in microgravity. J Appl Physiol (1985) (1996) 80:1458–65.
    1. Prisk GK, Guy HJ, Elliott AR, West JB. Inhomogeneity of pulmonary perfusion during sustained microgravity on SLS-1. J Appl Physiol (1985) (1994) 76:1730–8.
    1. Prisk GK, Fine JM, Cooper TK, West JB. Vital capacity, respiratory muscle strength, and pulmonary gas exchange during long-duration exposure to microgravity. J Appl Physiol (1985) (2006) 101:439–47.10.1152/japplphysiol.01419.2005
    1. Prisk GK, Elliott AR, Guy HJ, Kosonen JM, West JB. Pulmonary gas exchange and its determinants during sustained microgravity on Spacelabs SLS-1 and SLS-2. J Appl Physiol (1985) (1995) 79:1290–8.
    1. Lauzon AM, Elliott AR, Paiva M, West JB, Prisk GK. Cardiogenic oscillation phase relationships during single-breath tests performed in microgravity. J Appl Physiol (1985) (1998) 84:661–8.
    1. Alcorn D, Adamson TM, Lambert TF, Maloney JE, Ritchie BC, Robinson PM. Morphological effects of chronic tracheal ligation and drainage in the fetal lamb lung. J Anat (1977) 123:649–60.
    1. Moessinger AC, Harding R, Adamson TM, Singh M, Kiu GT. Role of lung fluid volume in growth and maturation of the fetal sheep lung. J Clin Invest (1990) 86:1270–7.10.1172/JCI114834
    1. Newman SA, Comper WD. ‘Generic’ physical mechanisms of morphogenesis and pattern formation. Development (1990) 110:1–18.
    1. Wolgemuth DJ, Murashov AK. Models and molecular approaches to assessing the effects of the microgravity environment on vertebrate development. ASGSB Bull (1995) 8:63–72.
    1. Sanchez-Esteban J, Tsai SW, Sang J, Qin J, Torday JS, Rubin LP. Effects of mechanical forces on lung-specific gene expression. Am J Med Sci (1998) 316:200–4.10.1097/00000441-199809000-00009
    1. Torday JS, Sanchez-Esteban J, Rubin LP. Paracrine mediators of mechanotransduction in lung development. Am J Med Sci (1998) 316:205–8.10.1097/00000441-199809000-00010
    1. Torday JS, Rehan VK. Mechanotransduction determines the structure and function of lung and bone: a theoretical model for the pathophysiology of chronic disease. Cell Biochem Biophys (2003) 37:235–46.10.1385/CBB:37:3:235
    1. Daifotis AG, Weir EC, Dreyer BE, Broadus AE. Stretch-induced parathyroid hormone-related peptide gene expression in the rat uterus. J Biol Chem (1992) 267:23455–8.
    1. Curtis NE, Ho PW, King RG, Farrugia W, Moses EK, Gillespie MT, et al. The expression of parathyroid hormone-related protein mRNA and immunoreactive protein in human amnion and choriodecidua is increased at term compared with preterm gestation. J Endocrinol (1997) 154:103–12.10.1677/joe.0.1540103
    1. Steers WD, Broder SR, Persson K, Bruns DE, Ferguson JE, II, Bruns ME, et al. Mechanical stretch increases secretion of parathyroid hormone-related protein by cultured bladder smooth muscle cells. J Urol (1998) 160:908–12.10.1016/S0022-5347(01)62831-3
    1. Rubin LP, Torday JS. Parathyroid hormone-related protein (PTHrP) biology in fetal lung development. In: Mendelson CR, editor. Endocrinology of the Lung. Totowa, NJ: Humana; (2000). p. 269–97.
    1. Karaplis AC. PTHrP: novel roles in skeletal biology. Curr Pharm Des (2001) 7:655–70.10.2174/1381612013397753
    1. Torday J, Hua J, Slavin R. Metabolism and fate of neutral lipids of fetal lung fibroblast origin. Biochim Biophys Acta (1995) 1254:198–206.10.1016/0005-2760(94)00184-Z
    1. Torday JS, Sun H, Ling W. The effect of microgravity on parathyroid hormone-related protein (PTHrP) expression by bone and lung epithelial cells. FASEB J (2000) 14:A622.
    1. Torday JS. Parathyroid hormone-related protein is a gravisensor in lung and bone cell biology. Adv Space Res (2003) 32:1569–76.10.1016/S0273-1177(03)90397-8
    1. Clement JQ. Gene expression microarrays in microgravity research: toward the identification of major space genes. In: Agbo EC, editor. Innovations in Biotechnology. Rijeka, Croatia: InTech; (2012).
    1. Liu Y, Wang E. Transcriptional analysis of normal human fibroblast responses to microgravity stress. Genomics Proteomics Bioinformatics (2008) 6:29–41.10.1016/S1672-0229(08)60018-2
    1. Clement JQ, Lacy SM, Wilson BL. Gene expression profiling of human epidermal keratinocytes in simulated microgravity and recovery cultures. Genomics Proteomics Bioinformatics (2008) 6:8–28.10.1016/S1672-0229(08)60017-0
    1. Lu WH, Wang XZ, Zheng Q, Guan SH, Xin P, Sun YQ. Diversity and stability study on rice mutants induced in space environment. Genomics Proteomics Bioinformatics (2008) 6:51–60.10.1016/S1672-0229(08)60020-0
    1. Casey T, Patel OV, Plaut K. Transcriptomes reveal alterations in gravity impact circadian clocks and activate mechanotransduction pathways with adaptation through epigenetic change. Physiol Genomics (2015) 47:113–28.10.1152/physiolgenomics.00117.2014
    1. Czeisler CA, Chiasera AJ, Duffy JF. Research on sleep, circadian rhythms and aging: applications to manned spaceflight. Exp Gerontol (1991) 26:217–32.10.1016/0531-5565(91)90014-D
    1. Whitson PA, Putcha L, Chen YM, Baker E. Melatonin and cortisol assessment of circadian shifts in astronauts before flight. J Pineal Res (1995) 18:141–7.10.1111/j.1600-079X.1995.tb00152.x
    1. Fuller PM, Warden CH, Barry SJ, Fuller CA. Effects of 2-G exposure on temperature regulation, circadian rhythms, and adiposity in UCP2/3 transgenic mice. J Appl Physiol (1985) (2000) 89:1491–8.
    1. Murakami DM, Fuller CA. The effect of 2G on mouse circadian rhythms. J Gravit Physiol (2000) 7(3):79–85.
    1. Robinson EL, Fuller CA. Gravity and thermoregulation: metabolic changes and circadian rhythms. Pflugers Arch (2000) 441:R32–8.10.1007/s004240000329
    1. Hilder TL, Baer LA, Fuller PM, Fuller CA, Grindeland RE, Wade CE, et al. Insulin-independent pathways mediating glucose uptake in hindlimb-suspended skeletal muscle. J Appl Physiol (1985) (2005) 99:2181–8.10.1152/japplphysiol.00743.2005
    1. Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. Nat Rev Genet (2007) 8:253–62.10.1038/nrg2045
    1. Hayashi K, Sasamura H, Nakamura M, Azegami T, Oguchi H, Sakamaki Y, et al. KLF4-dependent epigenetic remodeling modulates podocyte phenotypes and attenuates proteinuria. J Clin Invest (2014) 124:2523–37.10.1172/JCI69557
    1. Singh KP, Kumari R, Dumond JW. Simulated microgravity-induced epigenetic changes in human lymphocytes. J Cell Biochem (2010) 111:123–9.10.1002/jcb.22674
    1. Chowdhury B, Seetharam A, Wang Z, Liu Y, Lossie AC, Thimmapuram J, et al. A study of alterations in DNA epigenetic modifications (5mC and 5hmC) and gene expression influenced by simulated microgravity in human lymphoblastoid cells. PLoS One (2016) 11:e0147514.10.1371/journal.pone.0147514
    1. Ou X, Long L, Zhang Y, Xue Y, Liu J, Lin X, et al. Spaceflight induces both transient and heritable alterations in DNA methylation and gene expression in rice (Oryza sativa L.). Mutat Res (2009) 662:44–53.10.1016/j.mrfmmm.2008.12.004
    1. Alberts B. The cytoskeleton. In: Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P, editors. Molecular Biology of the Cell. New York: Garland Science; (2007). p. 903–82.
    1. Wang N, Butler JP, Ingber DE. Mechanotransduction across the cell surface and through the cytoskeleton. Science (1993) 260:1124–7.10.1126/science.7684161
    1. Maniotis AJ, Chen CS, Ingber DE. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci U S A (1997) 94:849–54.10.1073/pnas.94.3.849
    1. Eckes B, Dogic D, Colucci-Guyon E, Wang N, Maniotis A, Ingber D, et al. Impaired mechanical stability, migration and contractile capacity in vimentin-deficient fibroblasts. J Cell Sci (1998) 111(Pt 13):1897–907.
    1. Ingber DE. The architecture of life. Sci Am (1998) 278:48–57.10.1038/scientificamerican0198-48
    1. Hubmayr RD, Shore SA, Fredberg JJ, Planus E, Panettieri RA, Jr, Moller W, et al. Pharmacological activation changes stiffness of cultured human airway smooth muscle cells. Am J Physiol (1996) 271:C1660–8.
    1. Pourati J, Maniotis A, Spiegel D, Schaffer JL, Butler JP, Fredberg JJ, et al. Is cytoskeletal tension a major determinant of cell deformability in adherent endothelial cells? Am J Physiol (1998) 274:C1283–9.
    1. Chicurel ME, Singer RH, Meyer CJ, Ingber DE. Integrin binding and mechanical tension induce movement of mRNA and ribosomes to focal adhesions. Nature (1998) 392:730–3.10.1038/33719
    1. Wang N, Ingber DE. Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension. Biophys J (1994) 66:2181–9.10.1016/S0006-3495(94)81014-8
    1. Wang N, Ingber DE. Probing transmembrane mechanical coupling and cytomechanics using magnetic twisting cytometry. Biochem Cell Biol (1995) 73:327–35.10.1139/o95-041
    1. Yoshida M, Westlin WF, Wang N, Ingber DE, Rosenzweig A, Resnick N, et al. Leukocyte adhesion to vascular endothelium induces E-selectin linkage to the actin cytoskeleton. J Cell Biol (1996) 133:445–55.10.1083/jcb.133.2.445
    1. Tagawa H, Wang N, Narishige T, Ingber DE, Zile MR, Cooper GT. Cytoskeletal mechanics in pressure-overload cardiac hypertrophy. Circ Res (1997) 80:281–9.10.1161/01.RES.80.2.281
    1. Papaseit C, Pochon N, Tabony J. Microtubule self-organization is gravity-dependent. Proc Natl Acad Sci U S A (2000) 97:8364–8.10.1073/pnas.140029597
    1. Tabony J, Rigotti N, Glade N, Cortes S. Effect of weightlessness on colloidal particle transport and segregation in self-organising microtubule preparations. Biophys Chem (2007) 127:172–80.10.1016/j.bpc.2007.01.010
    1. Lewis ML, Reynolds JL, Cubano LA, Hatton JP, Lawless BD, Piepmeier EH. Spaceflight alters microtubules and increases apoptosis in human lymphocytes (Jurkat). FASEB J (1998) 12:1007–18.
    1. Yang F, Dai Z, Tan Y, Li Y. Effects of altered gravity on the cytoskeleton of neonatal rat cardiocytes. Micro-grav. Sci Tech (2010) 22:45–52.10.1007/s12217-008-9103-7
    1. Hughes-Fulford M, Lewis ML. Effects of microgravity on osteoblast growth activation. Exp Cell Res (1996) 224:103–9.10.1006/excr.1996.0116
    1. Meloni MA, Galleri G, Pani G, Saba A, Pippia P, Cogoli-Greuter M. Space flight affects motility and cytoskeletal structures in human monocyte cell line J-111. Cytoskeleton (Hoboken) (2011) 68:125–37.10.1002/cm.20499
    1. Meyers VE, Zayzafoon M, Gonda SR, Gathings WE, Mcdonald JM. Modeled microgravity disrupts collagen I/integrin signaling during osteoblastic differentiation of human mesenchymal stem cells. J Cell Biochem (2004) 93:697–707.10.1002/jcb.20229
    1. Buravkova LB, Gershovich PM, Gershovich JG, Grigor’ev AI. Mechanisms of gravitational sensitivity of osteogenic precursor cells. Acta Naturae (2010) 2:28–36.
    1. Meyers VE, Zayzafoon M, Douglas JT, Mcdonald JM. RhoA and cytoskeletal disruption mediate reduced osteoblastogenesis and enhanced adipogenesis of human mesenchymal stem cells in modeled microgravity. J Bone Miner Res (2005) 20:1858–66.10.1359/JBMR.050611
    1. Sciola L, Cogoli-Greuter M, Cogoli A, Spano A, Pippia P. Influence of microgravity on mitogen binding and cytoskeleton in Jurkat cells. Adv Space Res (1999) 24:801–5.10.1016/S0273-1177(99)00078-2
    1. Hall A. Rho GTPases and the actin cytoskeleton. Science (1998) 279:509–14.10.1126/science.279.5350.509
    1. Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature (2002) 420:629–35.10.1038/nature01148
    1. Louis F, Deroanne C, Nusgens B, Vico L, Guignandon A. RhoGTPases as key players in mammalian cell adaptation to microgravity. Biomed Res Int (2015) 2015:747693.10.1155/2015/747693

Source: PubMed

3
Se inscrever