ESUR prostate MR guidelines 2012

Jelle O Barentsz, Jonathan Richenberg, Richard Clements, Peter Choyke, Sadhna Verma, Geert Villeirs, Olivier Rouviere, Vibeke Logager, Jurgen J Fütterer, European Society of Urogenital Radiology, Jelle O Barentsz, Jonathan Richenberg, Richard Clements, Peter Choyke, Sadhna Verma, Geert Villeirs, Olivier Rouviere, Vibeke Logager, Jurgen J Fütterer, European Society of Urogenital Radiology

Abstract

The aim was to develop clinical guidelines for multi-parametric MRI of the prostate by a group of prostate MRI experts from the European Society of Urogenital Radiology (ESUR), based on literature evidence and consensus expert opinion. True evidence-based guidelines could not be formulated, but a compromise, reflected by "minimal" and "optimal" requirements has been made. The scope of these ESUR guidelines is to promulgate high quality MRI in acquisition and evaluation with the correct indications for prostate cancer across the whole of Europe and eventually outside Europe. The guidelines for the optimal technique and three protocols for "detection", "staging" and "node and bone" are presented. The use of endorectal coil vs. pelvic phased array coil and 1.5 vs. 3 T is discussed. Clinical indications and a PI-RADS classification for structured reporting are presented.

Key points: This report provides guidelines for magnetic resonance imaging (MRI) in prostate cancer. Clinical indications, and minimal and optimal imaging acquisition protocols are provided. A structured reporting system (PI-RADS) is described.

Figures

Fig. 1
Fig. 1
Algorithm in imaging men referred with elevated serum prostate specific antigen (PSA), abnormal digital rectal examination (DRE), or family history of prostate cancer
Fig. 2
Fig. 2
A 65-year-old man with stage T3a Gleason 4+3 prostate cancer at the left peripheral zone (PZ). a On the axial T2WI at mid-prostate level in the left PZ there is a low signal lesion (outlined) with obliteration of the recto-prostatic angle and extra-capsular extension (arrow). b Magnetic resonance spectroscopic imaging (MRSI) of the normal right side shows low choline+creatine, whereas on (c) MRSI of the tumour shows high choline+creatine. The choline peak of tumour is as equally as high as the citrate peak. This results in a PI-RADS score for MRSI of 3
Fig. 3
Fig. 3
A 75-year-old man. After five negative trans-rectal ultrasound (TRUS) biopsies PSA rose to 32 ng/mL, PCa3 = 62. Multi-parametric (Mp)-MRI was performed. a On axial T2WI there is a lenticular area with homogeneous low signal intensity (SI) and unsharp borders: “erased charcoal sign” (outlined), in the mid-prostate level in ventral transition zone (TZ) which is located anterior to the “organised chaos” of benign prostatic hyperplasia (BPH). This pathological area originates from anterior fibromuscular stroma, and thus has a PI-RADS T2WI score of 5. b On the apparent diffusion coefficient (ADC) map this region has a minimum ADC value of 650 (dark area); c On the b = 1400 image this area is white. This results in a PI-RADS score for diffusion weighted imaging (DWI) of 5. d This region shows a curve type 3 (wash-out), and on (e) T2WI with ktrans overlay, there is asymmetric, rather focal enhancement. This gives a PI-RADS score for dynamic contrast enhanced (DCE) MRI of 3 + 2 = 5. f shows the anterior location of the tumour on sagittal T2WI. As MRSI was not performed the sum PI-RADS score is 15/15, which argues in favour of an aggressive (significant) tumour. Thus the overall PI-RADS score for probability of being a significant cancer is 5. MR-guided biopsy revealed a Gleason 4 + 5 = 9 tumour. As the images clearly indicate a tumour, one may argue that one of the parameters may be obviated. However, mp-MRI is not only meant to “detect” a tumour, but also to predict its aggression. If all parameters point into the same direction, the chance of a clinically “significant” tumour (that is Gleason 4+3 or higher) is extremely high. If there is discordance it may be prostatitis or an insignificant (Gleason 3+3) cancer

References

    1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009;59:225–249. doi: 10.3322/caac.20006.
    1. Carter HB, Piantadosi S, Isaacs JT. Clinical evidence for and implications of the multistep development of prostate cancer. J Urol. 1990;143:742–746.
    1. Parkin DM, Bray FI, Devesa SS. Cancer burden in the year 2000. The global picture. Eur J Cancer. 2001;37(Suppl 8):S4–S66. doi: 10.1016/S0959-8049(01)00267-2.
    1. Konety BR, Bird VY, Deorah S, Dahmoush L. Comparison of the incidence of latent prostate cancer detected at autopsy before and after the prostate specific antigen era. J Urol. 2005;174:1785–1788. doi: 10.1097/01.ju.0000177470.84735.55.
    1. Dickinson L, Ahmed HU, Allen C, Barentsz JO, Carey B, et al. Magnetic resonance imaging for the detection, localisation, and characterisation of prostate cancer: recommendations from a European consensus meeting. Eur Urol. 2011;59:477–494. doi: 10.1016/j.eururo.2010.12.009.
    1. Franiel T, Stephan C, Erbersdobler A, Dietz E, Maxeiner A, et al. Areas suspicious for prostate cancer: MR-guided biopsy in patients with at least one transrectal US-guided biopsy with a negative finding—multiparametric MR imaging for detection and biopsy planning. Radiology. 2011;259:162–172. doi: 10.1148/radiol.10101251.
    1. Kitajima K, Kaji Y, Fukabori Y, Yoshida K, Suganuma N, et al. Prostate cancer detection with 3T MRI: comparison of diffusion-weighted imaging and dynamic contrast-enhanced MRI in combination with T2-weighted imaging. J Magn Reson Imaging. 2010;31:625–631. doi: 10.1002/jmri.22075.
    1. Fütterer JJ, Heijmink SW, Scheenen TW, Veltman J, Huisman HJ, et al. Prostate cancer localization with dynamic contrast-enhanced MR imaging and proton MR spectroscopic imaging. Radiology. 2006;241:449–458. doi: 10.1148/radiol.2412051866.
    1. Tanimoto A, Nakashima J, Kohno H, Shinmoto H, Kuribayashi S. Prostate cancer screening: the clinical value of diffusion-weighted imaging and dynamic MR imaging in combination with T2-weighted imaging. J Magn Reson Imaging. 2007;25:146–152. doi: 10.1002/jmri.20793.
    1. van As NJ, de Souza NM, Riches SF, Morgan VA, Sohaib SA, et al. A study of diffusion-weighted magnetic resonance imaging in men with untreated localised prostate. Eur Urol. 2009;56:981–987. doi: 10.1016/j.eururo.2008.11.051.
    1. Zelhof B, Pickles M, Liney G, Gibbs P, Rodrigues G, et al. Correlation of diffusion-weighted magnetic resonance data with cellularity in prostate cancer. BJU Int. 2009;103:883–888. doi: 10.1111/j.1464-410X.2008.08130.x.
    1. Tamada T, Sone T, Jo Y, Toshimitsu S, Yamashita T, et al. Apparent diffusion coefficient values in peripheral and transition zones of the prostate: comparison between normal and malignant prostatic tissues and correlation with histologic grade. J Magn Reson Imaging. 2008;28:720–726. doi: 10.1002/jmri.21503.
    1. Turkbey B, Shah VP, Pang Y, Bernardo M, Xu S, et al. Is apparent diffusion coefficient associated with clinical risk scores for prostate cancers that are visible on 3-T MR images? Radiology. 2011;258:488–495. doi: 10.1148/radiol.10100667.
    1. Itou Y, Nakanishi K, Narumi Y, Nishizawa Y, Tsukuma H. Clinical utility of apparent diffusion coefficient (ADC) values in patients with prostate cancer: can ADC values contribute to assess the aggressiveness of prostate cancer? J Magn Reson Imaging. 2011;33:167–172. doi: 10.1002/jmri.22317.
    1. Hambrock T, Huisman HJ, van Oort IM, Witjes JA, Hulsbergen-van de Kaa CA, et al. Relationship between apparent diffusion coefficients at 3.0-T MR imaging and Gleason grade in peripheral zone prostate cancer. Radiology. 2011;259:453–461. doi: 10.1148/radiol.11091409.
    1. Villeirs GM, Oosterlinck W, Vanherreweghe E, De Meerleer GO. A qualitative approach to combined magnetic resonance imaging and spectroscopy in the diagnosis of prostate cancer. Eur J Radiol. 2010;73:352–356. doi: 10.1016/j.ejrad.2008.10.034.
    1. Scheenen TW, Klomp DW, Roll SA, Futterer JJ, Barentsz JO, et al. Fast acquisition-weighted three-dimensional proton MR spectroscopic imaging of the human prostate. Magn Reson Med. 2004;52:80–88. doi: 10.1002/mrm.20103.
    1. Girouin N, Mège-Lechevallier F, Tonina Senes A, Bissery A, et al. Prostate dynamic contrast-enhanced MRI with simple visual diagnostic criteria: is it reasonable? Eur Radiol. 2007;17:1498–1509. doi: 10.1007/s00330-006-0478-9.
    1. Yoshizako T, Wada A, Hayashi T, Uchida K, Sumura M, et al. Usefulness of diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging in the diagnosis of prostate transition-zone cancer. Acta Radiol. 2008;49:1207–1213. doi: 10.1080/02841850802508959.
    1. Hovels AM, Heesakkers RA, Adang EM, et al. The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: a meta-analysis. Clin Radiol. 2008;63:387–395. doi: 10.1016/j.crad.2007.05.022.
    1. Kurhanewicz J, Vigneron D, Carroll P, Coakley F. Multiparametric magnetic resonance imaging in prostate cancer: present and future. Curr Opin Urol. 2008;18:71–77. doi: 10.1097/MOU.0b013e3282f19d01.
    1. Klotz L. Active surveillance for prostate cancer: for whom? J Clin Oncol. 2005;23:8165–8169. doi: 10.1200/JCO.2005.03.3134.
    1. Klotz L. Active surveillance with selective delayed intervention using PSA doubling time for good risk prostate cancer. Eur Urol. 2005;47:16–21. doi: 10.1016/j.eururo.2004.09.010.
    1. Klotz L. Active surveillance for prostate cancer: trials and tribulations. World J Urol. 2008;26:437–442. doi: 10.1007/s00345-008-0330-8.
    1. Klotz L. Active surveillance for favorable risk prostate cancer: what are the results, and how safe is it? Semin Radiat Oncol. 2008;18:2–6. doi: 10.1016/j.semradonc.2007.09.001.
    1. Klotz LH. Active surveillance for good risk prostate cancer: rationale, method, and results. Can J Urol. 2005;12(Suppl 2):21–24.
    1. Soloway MS, Soloway CT, Williams S, Ayyathurai R, Kava B, Manoharan M. Active surveillance; a reasonable management alternative for patients with prostate cancer: the Miami experience. BJU Int. 2008;101:165–169.
    1. Villers A, Puech P, Mouton D, Leroy X, Ballereau C, et al. Dynamic contrast enhanced, pelvic phased array magnetic resonance imaging of localized prostate cancer for predicting tumor volume: correlation with radical prostatectomy findings. J Urol. 2006;176:2432–2437. doi: 10.1016/j.juro.2006.08.007.
    1. Villeirs GM, De Meerleer GO, De Visschere PJ, Fonteyne VH, Verbaeys AC, Oosterlinck W. Combined magnetic resonance imaging and spectroscopy in the assessment of high grade prostate carcinoma in patients with elevated PSA: a single-institution experience of 356 patients. Eur J Radiol. 2011;77:340–345. doi: 10.1016/j.ejrad.2009.08.007.
    1. Kumar R, Nayyar R, Kumar V, et al. Potential of magnetic resonance spectroscopic imaging in predicting absence of prostate cancer in men with serum prostate-specific antigen between 4 and 10 ng/mL: a follow-up study. Urology. 2008;72:859–863. doi: 10.1016/j.urology.2008.01.014.
    1. Hambrock T, Somford DM, Hoeks C, et al. Magnetic resonance imaging guided prostate biopsy in men with repeat negative biopsies and increased prostate specific antigen. J Urol. 2010;183:520–527. doi: 10.1016/j.juro.2009.10.022.
    1. Amsellem-Ouazana D, Younes P, Conquy S, et al. Negative prostatic biopsies in patients with a high risk of prostate cancer. Is the combination of endorectal MRI and magnetic resonance spectroscopy imaging (MRSI) a useful tool? A preliminary study. Eur Urol. 2005;47:582–586. doi: 10.1016/j.eururo.2005.01.015.
    1. Prando A, Kurhanewicz J, Borges AP, Oliveira EM, Jr, Figueiredo E. Prostatic biopsy directed with endorectal MR spectroscopic imaging findings in patients with elevated prostate specific antigen levels and prior negative biopsy findings: early experience. Radiology. 2005;236:903–910. doi: 10.1148/radiol.2363040615.
    1. Hambrock T, Hoeks C, Hulsbergen-van de Kaa C, Scheenen T, Fütterer J. Prospective assessment of prostate cancer aggressiveness using 3-T diffusion-weighted magnetic resonance imaging-guided biopsies versus a systematic 10-core transrectal ultrasound prostate biopsy cohort. Eur Urol. 2012;61:177–184. doi: 10.1016/j.eururo.2011.08.042.
    1. Panebianco V, Sciarra A, Lisi D et al (2011) Prostate cancer: 1HMRS-DCEMR at 3T versus [(18)F]choline PET/CT in the detection of local prostate cancer recurrence in men with biochemical progression after radical retropubic prostatectomy (RRP). Eur J Radiol. doi:10.1016/j.ejrad.2011.01.095
    1. Pasquier D, Hugentobler A, Masson P. Which imaging methods should be used before salvage radiotherapy after prostatectomy for prostate cancer? Cancer Radiother. 2009;13:173–181. doi: 10.1016/j.canrad.2009.02.006.
    1. Cirillo S, Petracchini M, Scotti L, et al. Endorectal magnetic resonance imaging at 1.5 Tesla to assess local recurrence following radical prostatectomy using T2-weighted and contrast-enhanced imaging. Eur Radiol. 2009;19:761–769. doi: 10.1007/s00330-008-1174-8.
    1. Haider MA, Chung P, Sweet J, Toi A, Jhaveri K, et al. Dynamic contrast-enhanced magnetic resonance imaging for localization of recurrent prostate cancer after external beam radiotherapy. Int J Radiat Oncol Biol Phys. 2008;70:425–430. doi: 10.1016/j.ijrobp.2007.06.029.
    1. Yakar D, Hambrock T, Huisman H, Hulsbergen-van de Kaa CA, van Lin E. Feasibility of 3T dynamic contrast-enhanced magnetic resonance-guided biopsy in localizing local recurrence of prostate cancer after external beam radiation therapy. Invest Radiol. 2010;45:121–125. doi: 10.1097/RLI.0b013e3181c7bcda.
    1. Akin O, Sala E, Moskowitz CS, et al. Transition zone prostate cancers: features, detection, localization, and staging at endorectal MR imaging. Radiology. 2006;239:784–792. doi: 10.1148/radiol.2392050949.
    1. Wang L, Mazaheri Y, Zhang J, Ishill NM, Kuroiwa K, Hricak H. Assessment of biologic aggressiveness of prostate cancer: correlation of MR signal intensity with Gleason grade after radical prostatectomy. Radiology. 2008;246:168–176. doi: 10.1148/radiol.2461070057.
    1. Oto A, Kayhan A, Jiang Y, et al. Prostate cancer: differentiation of central gland cancer from benign prostatic hyperplasia by using diffusion-weighted and dynamic contrast-enhanced MR imaging. Radiology. 2010;257:715–723. doi: 10.1148/radiol.10100021.
    1. Collins DJ, Padhani AR. Dynamic magnetic resonance imaging of tumor perfusion. Approaches and biomedical challenges. IEEE Eng Med Biol Mag. 2004;23:65–83. doi: 10.1109/MEMB.2004.1360410.
    1. Huisman HJ, Engelbrecht MR, Barentsz JO. Accurate estimation of pharmacokinetic contrast-enhanced dynamic MRI parameters of the prostate. J Magn Reson Imaging. 2001;13:607–614. doi: 10.1002/jmri.1085.
    1. Alonzi R, Padhani AR, Allen C. Dynamic contrast enhanced MRI in prostate cancer. Eur J Radiol. 2007;63:335–350. doi: 10.1016/j.ejrad.2007.06.028.
    1. Barentsz JO, Engelbrecht M, Jager GJ, et al. Fast dynamic gadolinium-enhanced MR imaging of urinary bladder and prostate cancer. J Magn Reson Imaging. 1999;10:295–304. doi: 10.1002/(SICI)1522-2586(199909)10:3<295::AID-JMRI10>;2-Z.
    1. Engelbrecht MR, Huisman HJ, Laheij RJ, et al. Discrimination of prostate cancer from normal peripheral zone and central gland tissue by using dynamic contrast-enhanced MR imaging. Radiology. 2003;229:248–254. doi: 10.1148/radiol.2291020200.
    1. Hara N, Okuizumi M, Koike H, Kawaguchi M, Bilim V. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a useful modality for the precise detection and staging of early prostate cancer. Prostate. 2005;62:140–147. doi: 10.1002/pros.20124.
    1. Beyersdorff D, Taupitz M, Winkelmann B, et al. Patients with a history of elevated prostate-specific antigen levels and negative transrectal US-guided quadrant or sextant biopsy results: value of MR imaging. Radiology. 2002;224:701–706. doi: 10.1148/radiol.2243011553.
    1. Haider MA, van der Kwast TH, Tanguay J, et al. Combined T2-weighted and diffusion-weighted MRI for localization of prostate cancer. AJR Am J Roentgenol. 2007;189:323–328. doi: 10.2214/AJR.07.2211.
    1. Kim CK, Park BK, Lee HM, Kwon GY. Value of diffusion-weighted imaging for the prediction of prostate cancer location at 3T using a phased-array coil: preliminary results. Invest Radiol. 2007;42:842–847. doi: 10.1097/RLI.0b013e3181461d21.
    1. Lim HK, Kim JK, Kim KA, Cho KS. Prostate cancer: apparent diffusion coefficient map with T2-weighted images for detection—a multireader study. Radiology. 2009;250:145–151. doi: 10.1148/radiol.2501080207.
    1. Testa C, Schiavina R, Lodi R, et al. Prostate cancer: sextant localization with MR imaging, MR spectroscopy, and 11 C-choline PET/CT. Radiology. 2007;244:797–806. doi: 10.1148/radiol.2443061063.
    1. Jung JA, Coakley FV, Vigneron DB, et al. Prostate depiction at endorectal MR spectroscopic imaging: investigation of a standardized evaluation system. Radiology. 2004;233:701–708. doi: 10.1148/radiol.2333030672.
    1. Kurhanewicz J, Vigneron DB, Hricak H, Narayan P, Carroll P, Nelson SJ. Three-dimensional H-1 MR spectroscopic imaging of the in situ human prostate with high (0.24–0.7-cm3) spatial resolution. Radiology. 1996;198:795–805.
    1. Sciarra A, Panebianco V, Ciccariello M, et al. Magnetic resonance spectroscopic imaging (1H-MRSI) and dynamic contrast-enhanced magnetic resonance (DCE-MRI): pattern changes from inflammation to prostate cancer. Cancer Invest. 2010;28:424–432.
    1. Futterer JJ, Scheenen TW, Heijmink SW, et al. Standardized threshold approach using three-dimensional proton magnetic resonance spectroscopic imaging in prostate cancer localization of the entire prostate. Invest Radiol. 2007;42:116–122. doi: 10.1097/.
    1. Yuen JS, Thng CH, Tan PH, et al. Endorectal magnetic resonance imaging and spectroscopy for the detection of tumor foci in men with prior negative transrectal ultrasound prostate biopsy. J Urol. 2004;171:1482–1486. doi: 10.1097/01.ju.0000118380.90871.ef.
    1. Sciarra A, Panebianco V, Salciccia S, et al. Role of dynamic contrast-enhanced magnetic resonance (MR) imaging and proton MR spectroscopic imaging in the detection of local recurrence after radical prostatectomy for prostate cancer. Eur Urol. 2008;54:589–600. doi: 10.1016/j.eururo.2007.12.034.
    1. Zakian KL, Hricak H, Ishill N, et al. An exploratory study of endorectal magnetic resonance imaging and spectroscopy of the prostate as preoperative predictive biomarkers of biochemical relapse after radical prostatectomy. J Urol. 2010;184:2320–2327. doi: 10.1016/j.juro.2010.07.037.
    1. De Visschere PJ, De Meerleer GO, Futterer JJ, Villeirs GM. Role of MRI in follow-up after focal therapy for prostate carcinoma. AJR Am J Roentgenol. 2010;194:1427–1433. doi: 10.2214/AJR.10.4263.
    1. Rouviere O, Vitry T, Lyonnet D. Imaging of prostate cancer local recurrences: why and how? Eur Radiol. 2010;20:1254–1266. doi: 10.1007/s00330-009-1647-4.
    1. Shukla-Dave A, Hricak H, Ishill N, et al. Prediction of prostate cancer recurrence using magnetic resonance imaging and molecular profiles. Clin Cancer Res. 2009;15:3842–3849. doi: 10.1158/1078-0432.CCR-08-2453.
    1. Pucar D, Shukla-Dave A, Hricak H, et al. Prostate cancer: correlation of MR imaging and MR spectroscopy with pathologic findings after radiation therapy-initial experience. Radiology. 2005;236:545–553. doi: 10.1148/radiol.2362040739.
    1. Coakley FV, Teh HS, Qayyum A, et al. Endorectal MR imaging and MR spectroscopic imaging for locally recurrent prostate cancer after external beam radiation therapy: preliminary experience. Radiology. 2004;233:441–448. doi: 10.1148/radiol.2332032086.
    1. Pickett B, Kurhanewicz J, Coakley F, Shinohara K, Fein B, Roach M., III Use of MRI and spectroscopy in evaluation of external beam radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys. 2004;60:1047–1055. doi: 10.1016/j.ijrobp.2004.06.118.
    1. Kim CK, Park BK, Kim B. Diffusion-weighted MRI at 3T for the evaluation of prostate cancer. AJR Am J Roentgenol. 2010;194:1461–1469. doi: 10.2214/AJR.09.3654.
    1. BottomLey PA, Foster TH, Argersinger RE, Pfeifer LM. A review of normal tissue hydrogen NMR relaxation times and relaxation mechanisms from 1-100 MHz: dependence on tissue type, NMR frequency, temperature, species, excision, and age. Med Phys. 1984;11:425–448. doi: 10.1118/1.595535.
    1. Ahmed HU, Kirkham A, Arya M, et al. Is it time to consider a role for MRI before prostate biopsy? Nat Rev Clin Oncol. 2009;6:197–206. doi: 10.1038/nrclinonc.2009.18.
    1. Cornfeld DM, Weinreb JC. MR imaging of the prostate: 1.5 T versus 3 T. Magn Reson Imaging Clin N Am. 2007;15:433–448. doi: 10.1016/j.mric.2007.06.004.
    1. Leautaud A, Marcus C, Ben SD, Bouche O, Graesslin O, Hoeffel C. Pelvic MRI at 3.0 Tesla. J Radiol. 2009;90(3 Pt 1):277–286. doi: 10.1016/S0221-0363(09)72506-5.
    1. Mueller-Lisse U, Scheidler J, Klein G, Reiser M. Reproducibility of image interpretation in MRI of the prostate: application of the sextant framework by two different radiologists. Eur Radiol. 2005;15:1826–1833. doi: 10.1007/s00330-005-2695-z.
    1. Nogueira L, Wang L, Fine SW, et al. Focal treatment or observation of prostate cancer: pretreatment accuracy of transrectal ultrasound biopsy and T2-weighted MRI. Urology. 2010;75:472–477. doi: 10.1016/j.urology.2009.04.061.
    1. Arumainayagam N, Kumaar S, Ahmed HU, et al. Accuracy of multiparametric magnetic resonance imaging in detecting recurrent prostate cancer after radiotherapy. BJU Int. 2010;106:991–997. doi: 10.1111/j.1464-410X.2010.09291.x.
    1. Jung JA, Coakley FV, Vigneron DB, et al. Prostate depiction at endorectal MR spectroscopic imaging: investigation of a standardized evaluation system. Radiology. 2004;233:701–708. doi: 10.1148/radiol.2333030672.
    1. Villers A, Lemaitre L, Haffner J, Puech P. Current status of MRI for the diagnosis, staging and prognosis of prostate cancer: implications for focal therapy and active surveillance. Curr Opin Urol. 2009;19:274–282. doi: 10.1097/MOU.0b013e328329a2ed.

Source: PubMed

3
Se inscrever