Immunomodulatory properties and molecular effects in inflammatory diseases of low-dose x-irradiation

Franz Rödel, Benjamin Frey, Katrin Manda, Guido Hildebrandt, Stephanie Hehlgans, Ludwig Keilholz, M Heinrich Seegenschmiedt, Udo S Gaipl, Claus Rödel, Franz Rödel, Benjamin Frey, Katrin Manda, Guido Hildebrandt, Stephanie Hehlgans, Ludwig Keilholz, M Heinrich Seegenschmiedt, Udo S Gaipl, Claus Rödel

Abstract

Inflammatory diseases are the result of complex and pathologically unbalanced multicellular interactions. For decades, low-dose X-irradiation therapy (LD-RT) has been clinically documented to exert an anti-inflammatory effect on benign diseases and chronic degenerative disorders. By contrast, experimental studies to confirm the effectiveness and to reveal underlying cellular and molecular mechanisms are still at their early stages. During the last decade, however, the modulation of a multitude of immunological processes by LD-RT has been explored in vitro and in vivo. These include leukocyte/endothelial cell adhesion, adhesion molecule and cytokine/chemokine expression, apoptosis induction, and mononuclear/polymorphonuclear cell metabolism and activity. Interestingly, these mechanisms display comparable dose dependences and dose-effect relationships with a maximum effect in the range between 0.3 and 0.7 Gy, already empirically identified to be most effective in the clinical routine. This review summarizes data and models exploring the mechanisms underlying the immunomodulatory properties of LD-RT that may serve as a prerequisite for further systematic analyses to optimize low-dose irradiation procedures in future clinical practice.

Keywords: discontinuous dose dependency; immune modulation; inflammation; low-dose radiation therapy.

Figures

Figure 1
Figure 1
Actual model on the modulation of inflammatory cell activity and factors involved in the anti-inflammatory effect of LD-RT (<1 Gy). Irradiation resulted in a hampered adhesion of peripheral blood mononuclear cells (PBMC) to the endothelium, due to the secretion of the anti-inflammatory cytokine transforming growth factor β1 (TGF-β1), a decreased expression of E-selectin on the surfaces of endothelial cells, a local increase of apoptosis, and the proteolytic shedding of L-selectin from PBMC. In stimulated macrophages a diminished activity of the inducible nitric oxide synthase (iNOS) in line with reduced levels of nitric oxide (NO), a lowered production of reactive oxygen species (ROS), and a diminished secretion of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) may contribute to local anti-inflammatory effects. Moreover, polymorphonuclear cells (PMN) respond to low-dose exposure with a locally increased rate of apoptosis, a hampered secretion of CCL20 chemokine and alterations in signal transduction pathways p38 mitogen activated protein kinase (MAPK) and protein kinase B (AKT).

References

    1. Abramson S. B., Attur M., Amin A. R., Clancy R. (2001). Nitric oxide and inflammatory mediators in the perpetuation of osteoarthritis. Curr. Rheumatol. Rep. 3, 535–54110.1007/s11926-001-0069-3
    1. Adamietz B., Schulz-Wendtland R., Alibek S., Uder M., Sauer R., Ott O., Keilholz L. (2010). Calcifying tendonitis of the shoulder joint: predictive value of pretreatment sonography for the response to low-dose radiotherapy. Strahlenther. Onkol. 186, 18–2310.1007/s00066-009-2025-5
    1. Adams D. O. (1989). Molecular interactions in macrophage activation. Immunol. Today 10, 33–3510.1016/0167-5699(89)90298-3
    1. Arenas M., Gil F., Gironella M., Hernandez V., Jorcano S., Biete A., Pique J. M., Panes J. (2006). Anti-inflammatory effects of low-dose radiotherapy in an experimental model of systemic inflammation in mice. Int. J. Radiat. Oncol. Biol. Phys. 66, 560–56710.1016/j.ijrobp.2006.07.1044
    1. Asquith D. L., Miller A. M., McInnes I. B., Liew F. Y. (2009). Animal models of rheumatoid arthritis. Eur. J. Immunol. 39, 2040–204410.1002/eji.200939578
    1. Baeuerle P. A., Baltimore D. (1996). NF-kappa B: ten years after. Cell 87, 13–2010.1016/S0092-8674(00)81318-5
    1. Bakkenist C. J., Kastan M. B. (2003). DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421, 499–50610.1038/nature01368
    1. Barcellos-Hoff M. H. (2005). How tissues respond to damage at the cellular level: orchestration by transforming growth factor-{beta} (TGF-{beta}). BJR Suppl. 27, 123–127
    1. Bauer M., Goldstein M., Christmann M., Becker H., Heylmann D., Kaina B. (2011). Human monocytes are severely impaired in base and DNA double-strand break repair that renders them vulnerable to oxidative stress. Proc. Natl. Acad. Sci. U.S.A. 108, 21105–2111010.1073/pnas.1111919109
    1. Betz N., Ott O. J., Adamietz B., Sauer R., Fietkau R., Keilholz L. (2010). Radiotherapy in early-stage Dupuytren’s contracture. Long-term results after 13 years. Strahlenther. Onkol. 186, 82–9010.1007/s00066-010-2063-z
    1. Budras K. D., Hartung K., Munzer B. M. (1986). Light and electron microscopy studies of the effect of roentgen irradiation on the synovial membrane of the inflamed knee joint. Berl. Munch. Tierarztl. Wochenschr. 99, 148–152
    1. Cannon B., Randolph J. G., Murray J. E. (1959). Malignant irradiation for benign conditions. N. Engl. J. Med. 260, 197–20210.1056/NEJM195901292600501
    1. Conrad S., Ritter S., Fournier C., Nixdorff K. (2009). Differential effects of irradiation with carbon ions and x-rays on macrophage function. J. Radiat. Res. 50, 223–23110.1269/jrr.08115
    1. Court-Braun Wm D. R. (1965). Mortality from cancer and other causes after radiotherapy for ankylosing spondylitis. Br. Med. J. 2, 1327–133210.1136/bmj.2.5474.1327
    1. Criswell T., Leskov K., Miyamoto S., Luo G., Boothman D. A. (2003). Transcription factors activated in mammalian cells after clinically relevant doses of ionizing radiation. Oncogene 22, 5813–582710.1038/sj.onc.1206680
    1. Dinarello C. A. (2011). A clinical perspective of IL-1beta as the gatekeeper of inflammation. Eur. J. Immunol. 41, 1203–121710.1002/eji.201141550
    1. Ding A. H., Nathan C. F., Stuehr D. J. (1988). Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J. Immunol. 141, 2407–2412
    1. Fischer U., Kamprad F., Koch F., Ludewig E., Melzer R., Hildebrandt G. (1998). The effects of low-dose Co-60 irradiation on the course of aseptic arthritis in a rabbit knee joint. Strahlenther. Onkol. 174, 633–63910.1007/BF03038512
    1. Frey B., Gaipl U. S., Sarter K., Zaiss M. M., Stillkrieg W., Rodel F., Schett G., Herrmann M., Fietkau R., Keilholz L. (2009). Whole body low dose irradiation improves the course of beginning polyarthritis in human TNF-transgenic mice. Autoimmunity 42, 346–34810.1080/08916930902831738
    1. Fujiwara N., Kobayashi K. (2005). Macrophages in inflammation. Curr. Drug Targets Inflamm. Allergy 4, 281–28610.2174/1568010054022024
    1. Gaipl U. S., Meister S., Lödermann B., Rödel F., Fietkau R., Herrmann M., Kern P. M., Frey B. (2009). Activation-induced cell death and total Akt content of granulocytes show a biphasic course after low-dose radiation. Autoimmunity 42, 340–34210.1080/08916930902827777
    1. Gilroy D. W., Tomlinson A., Greenslade K., Seed M. P., Willoughby D. A. (1998). The effects of cyclooxygenase 2 inhibitors on cartilage erosion and bone loss in a model of Mycobacterium tuberculosis-induced monoarticular arthritis in the rat. Inflammation 22, 509–51910.1023/A:1022350111213
    1. Habraken Y., Piette J. (2006). NF-kappaB activation by double-strand breaks. Biochem. Pharmacol. 72, 1132–114110.1016/j.bcp.2006.07.015
    1. Hacker H., Karin M. (2006). Regulation and function of IKK and IKK-related kinases. Sci. STKE 2006, re13.10.1126/stke.3572006re13
    1. Hengartner M. O. (2000). The biochemistry of apoptosis. Nature 407, 770–77610.1038/35037710
    1. Heyd R., Seegenschmiedt M. H., Rades D., Winkler C., Eich H. T., Bruns F., Gosheger G., Willich N., Micke O. (2010). Radiotherapy for symptomatic vertebral hemangiomas: results of a multicenter study and literature review. Int. J. Radiat. Oncol. Biol. Phys. 77, 217–22510.1016/j.ijrobp.2009.04.055
    1. Hildebrandt G. (2010). Non-cancer diseases and non-targeted effects. Mutat. Res. 687, 73–7710.1016/j.mrfmmm.2010.01.007
    1. Hildebrandt G., Jahns J., Hindemith M., Spranger S., Sack U., Kinne R. W., Madaj-Sterba P., Wolf U., Kamprad F. (2000). Effects of low dose radiation therapy on adjuvant induced arthritis in rats. Int. J. Radiat. Biol. 76, 1143–115310.1080/09553000050111613
    1. Hildebrandt G., Maggiorella L., Rödel F., Rödel V., Willis D., Trott K. R. (2002). Mononuclear cell adhesion and cell adhesion molecule liberation after X-irradiation of activated endothelial cells in vitro. Int. J. Radiat. Biol. 78, 315–32510.1080/09553000110106027
    1. Hildebrandt G., Radlingmayr A., Rosenthal S., Rothe R., Jahns J., Hindemith M., Rodel F., Kamprad F. (2003). Low-dose radiotherapy (LD-RT) and the modulation of iNOS expression in adjuvant-induced arthritis in rats. Int. J. Radiat. Biol. 79, 993–100110.1080/09553000310001636639
    1. Hildebrandt G., Seed M. P., Freemantle C. N., Alam C. A., Colville-Nash P. R., Trott K. R. (1998). Mechanisms of the anti-inflammatory activity of low-dose radiation therapy. Int. J. Radiat. Biol. 74, 367–37810.1080/095530098141500
    1. Hofer-Warbinek R., Schmid J. A., Stehlik C., Binder B. R., Lipp J., De Martin R. (2000). Activation of NF-kappa B by XIAP, the X chromosome-linked inhibitor of apoptosis, in endothelial cells involves TAK1. J. Biol. Chem. 275, 22064–2206810.1074/jbc.M910346199
    1. Holthusen H. (1997). Involvement of the NO/cyclic GMP pathway in bradykinin-evoked pain from veins in humans. Pain 69, 87–9210.1016/S0304-3959(96)03262-9
    1. Huxford T., Ghosh G. (2009). A structural guide to proteins of the NF-kappaB signaling module. Cold Spring Harb. Perspect. Biol. 1, a000075.10.1101/cshperspect.a000075
    1. Imboden J. B. (2009). The immunopathogenesis of rheumatoid arthritis. Annu. Rev. Pathol. 4, 417–43410.1146/annurev.pathol.4.110807.092254
    1. Jahns J., Anderegg U., Saalbach A., Rosin B., Patties I., Glasow A., Kamprad M., Scholz M., Hildebrandt G. (2011). Influence of low dose irradiation on differentiation, maturation and T-cell activation of human dendritic cells. Mutat. Res. 709–710, 32–39.10.1016/j.mrfmmm.2011.02.007
    1. Jin H. S., Lee D. H., Kim D. H., Chung J. H., Lee S. J., Lee T. H. (2009). cIAP1, cIAP2, and XIAP act cooperatively via nonredundant pathways to regulate genotoxic stress-induced nuclear factor-kappaB activation. Cancer Res. 69, 1782–179110.1158/0008-5472.SABCS-09-4087
    1. Joiner M. C., Marples B., Lambin P., Short S. C., Turesson I. (2001). Low-dose hypersensitivity: current status and possible mechanisms. Int. J. Radiat. Oncol. Biol. Phys. 49, 379–38910.1016/S0360-3016(00)01471-1
    1. Keffer J., Probert L., Cazlaris H., Georgopoulos S., Kaslaris E., Kioussis D., Kollias G. (1991). Transgenic mice expressing human tumour necrosis factor: a predictive genetic model of arthritis. EMBO J. 10, 4025–4031
    1. Kern P., Keilholz L., Forster C., Seegenschmiedt M. H., Sauer R., Herrmann M. (1999). In vitro apoptosis in peripheral blood mononuclear cells induced by low-dose radiotherapy displays a discontinuous dose-dependence. Int. J. Radiat. Biol. 75, 995–100310.1080/095530099139755
    1. Kern P. M., Keilholz L., Forster C., Hallmann R., Herrmann M., Seegenschmiedt M. H. (2000a). Low-dose radiotherapy selectively reduces adhesion of peripheral blood mononuclear cells to endothelium in vitro. Radiother. Oncol. 54, 273–28210.1016/S0167-8140(00)00141-9
    1. Kern P. M., Keilholz L., Forster C., Stach C., Beyer T. D., Gaipl U. S., Kalden J. R., Hallmann R., Herrmann M. (2000b). UVB-irradiated T-cells undergoing apoptosis lose L-selectin by metalloprotese-mediated shedding. Int. J. Radiat. Biol. 76, 1265–127110.1080/09553000050134492
    1. Kobayashi S. D., Voyich J. M., Burlak C., Deleo F. R. (2005). Neutrophils in the innate immune response. Arch. Immunol. Ther. Exp. (Warsz.) 53, 505–517
    1. Kracht M., Saklatvala J. (2002). Transcriptional and post-transcriptional control of gene expression in inflammation. Cytokine 20, 91–10610.1006/cyto.2002.0895
    1. Kutzner J., Schneider L., Seegenschmiedt M. H. (2003). [Radiotherapy of keloids. Patterns of care study – results]. Strahlenther. Onkol. 179, 54–5810.1007/s00066-003-1023-2
    1. Liebmann A., Hindemith M., Jahns J., Madaj-Sterba P., Weisheit S., Kamprad F., Hildebrandt G. (2004). Low-dose X-irradiation of adjuvant-induced arthritis in rats. Efficacy of different fractionation schedules. Strahlenther. Onkol. 180, 165–17210.1007/s00066-004-1197-2
    1. Lödermann B., Wunderlich R., Frey S., Schorn C., Stangl S., Rödel F., Keilholz L., Fietkau R., Gaipl U. S., Frey B. (2012). Low dose ionising radiation leads to a NF-kappaB dependent decreased secretion of active IL-1beta by activated macrophages with a discontinuous dose-dependency. Int. J. Radiat. Biol. [Epub ahead of print].
    1. Marples B., Collis S. J. (2008). Low-dose hyper-radiosensitivity: past, present, and future. Int. J. Radiat. Oncol. Biol. Phys. 70, 1310–131810.1016/j.ijrobp.2007.11.071
    1. Marples B., Wouters B. G., Collis S. J., Chalmers A. J., Joiner M. C. (2004). Low-dose hyper-radiosensitivity: a consequence of ineffective cell cycle arrest of radiation-damaged G2-phase cells. Radiat. Res. 161, 247–25510.1667/RR3130
    1. Micke O., Seegenschmiedt M. H. (2004). Radiotherapy in painful heel spurs (plantar fasciitis) – results of a national patterns of care study. Int. J. Radiat. Oncol. Biol. Phys. 58, 828–84310.1016/S0360-3016(03)01620-1
    1. Mosmann T. R. (1994). Properties and functions of interleukin-10. Adv. Immunol. 56, 1–2610.1016/S0065-2776(08)60449-6
    1. Mothersill C., Seymour C. B. (2006). Radiation-induced bystander effects and the DNA paradigm: an “out of field” perspective. Mutat. Res. 597, 5–1010.1016/j.mrfmmm.2005.10.011
    1. Mücke R., Seegenschmiedt M. H., Heyd R., Schafer U., Prott F. J., Glatzel M., Micke O. (2010). Radiotherapy in painful gonarthrosis. Results of a national patterns-of-care study. Strahlenther. Onkol. 186, 7–1710.1007/s00066-009-1995-7
    1. Murphy K. (2011). Janeway’s Immunobiology. Abingdon: Taylor & Francis Ltd
    1. Nakatsukasa H., Tsukimoto M., Ohshima Y., Tago F., Masada A., Kojima S. (2008). Suppressing effect of low-dose gamma-ray irradiation on collagen-induced arthritis. J. Radiat. Res. 49, 381–38910.1269/jrr.08002
    1. Nakatsukasa H., Tsukimoto M., Tokunaga A., Kojima S. (2010). Repeated gamma irradiation attenuates collagen-induced arthritis via up-regulation of regulatory T cells but not by damaging lymphocytes directly. Radiat. Res. 174, 313–32410.1667/RR2121.1
    1. Niewald M., Fleckenstein J., Naumann S., Ruebe C. (2007). Long-term results of radiotherapy for periarthritis of the shoulder: a retrospective evaluation. Radiat. Oncol. 2, 34.10.1186/1748-717X-2-34
    1. Oeckinghaus A., Hayden M. S., Ghosh S. (2011). Crosstalk in NF-kappaB signaling pathways. Nat. Immunol. 12, 695–70810.1038/nrm3207
    1. Pluder F., Barjaktarovic Z., Azimzadeh O., Mortl S., Kramer A., Steininger S., Sarioglu H., Leszczynski D., Nylund R., Hakanen A., Sriharshan A., Atkinson M. J., Tapio S. (2011). Low-dose irradiation causes rapid alterations to the proteome of the human endothelial cell line EA.hY 926. Radiat. Environ. Biophys. 50, 155–16610.1007/s00411-010-0342-9
    1. Prasad A. V., Mohan N., Chandrasekar B., Meltz M. L. (1994). Activation of nuclear factor kappa B in human lymphoblastoid cells by low-dose ionizing radiation. Radiat. Res. 138, 367–37210.2307/3578685
    1. Rainsford K. D. (2007). Anti-inflammatory drugs in the 21st century. Subcell. Biochem. 42, 3–2710.1007/1-4020-5688-5_1
    1. Rödel F., Frey B., Capalbo G., Gaipl U., Keilholz L., Voll R., Hildebrandt G., Rödel C. (2010). Discontinuous induction of X-linked inhibitor of apoptosis in EA.hY 926 endothelial cells is linked to NF-kappaB activation and mediates the anti-inflammatory properties of low-dose ionising-radiation. Radiother. Oncol. 97, 346–35110.1016/j.radonc.2010.01.013
    1. Rödel F., Frey B., Gaipl U., Keilholz L., Fournier C., Manda K., Schollnberger H., Hildebrandt G., Rödel C. (2012). Modulation of inflammatory immune reactions by low-dose ionizing radiation: molecular mechanisms and clinical application. Curr. Med. Chem. 19, 1741–175010.2174/092986712800099866
    1. Rödel F., Hantschel M., Hildebrandt G., Schultze-Mosgau S., Rödel C., Herrmann M., Sauer R., Voll R. E. (2004a). Dose-dependent biphasic induction and transcriptional activity of nuclear factor kappa B (NF-kappaB) in EA.hY 926 endothelial cells after low-dose X-irradiation. Int. J. Radiat. Biol. 80, 115–12310.1080/09553000310001654701
    1. Rödel F., Schaller U., Schultze-Mosgau S., Beuscher H. U., Keilholz L., Herrmann M., Voll R., Sauer R., Hildebrandt G. (2004b). The induction of TGF-beta(1) and NF-kappaB parallels a biphasic time course of leukocyte/endothelial cell adhesion following low-dose X-irradiation. Strahlenther. Onkol. 180, 194–20010.1007/s00066-004-1237-y
    1. Rödel F., Hofmann D., Auer J., Keilholz L., Rollinghoff M., Sauer R., Beuscher H. U. (2008). The anti-inflammatory effect of low-dose radiation therapy involves a diminished CCL20 chemokine expression and granulocyte/endothelial cell adhesion. Strahlenther. Onkol. 184, 41–4710.1007/s00066-008-1776-8
    1. Rödel F., Keilholz L., Herrmann M., Sauer R., Hildebrandt G. (2007). Radiobiological mechanisms in inflammatory diseases of low-dose radiation therapy. Int. J. Radiat. Biol. 83, 357–36610.1080/09553000701317358
    1. Rödel F., Keilholz L., Herrmann M., Weiss C., Frey B., Voll R., Gaipl U., Rödel C. (2009). Activator protein 1 shows a biphasic induction and transcriptional activity after low dose X-irradiation in EA.hY 926 endothelial cells. Autoimmunity 42, 343–34510.1080/08916930902831597
    1. Rödel F., Kley N., Beuscher H. U., Hildebrandt G., Keilholz L., Kern P., Voll R., Herrmann M., Sauer R. (2002). Anti-inflammatory effect of low-dose X-irradiation and the involvement of a TGF-beta1-induced down-regulation of leukocyte/endothelial cell adhesion. Int. J. Radiat. Biol. 78, 711–71910.1080/09553000210137671
    1. Rothkamm K., Löbrich M. (2003). Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc. Natl. Acad. Sci. U.S.A. 100, 5057–506210.1073/pnas.0830918100
    1. Scapini P., Lapinet-Vera J. A., Gasperini S., Calzetti F., Bazzoni F., Cassatella M. A. (2000). The neutrophil as a cellular source of chemokines. Immunol. Rev. 177, 195–20310.1034/j.1600-065X.2000.17706.x
    1. Schaue D., Jahns J., Hildebrandt G., Trott K. R. (2005). Radiation treatment of acute inflammation in mice. Int. J. Radiat. Biol. 81, 657–66710.1080/09553000500385556
    1. Schaue D., Marples B., Trott K. R. (2002). The effects of low-dose X-irradiation on the oxidative burst in stimulated macrophages. Int. J. Radiat. Biol. 78, 567–57610.1080/09553000210126457
    1. Schmid-Monnard C. (1898). Über Heilung des Gelenkrheumatismus durch Röntgenstrahlen bei Kindern. Fortschritte auf dem Gebiet der Röntgenstrahlen 1, 209.
    1. Seegenschmiedt M. H., Makoski H. B., Trott K. R., Brady L. W. E. (2008). Radiotherapy for Non-Malignant Disorders. Berlin: Springer Verlag
    1. Seegenschmiedt M. H., Micke O., Willich N. (2004). Radiation therapy for nonmalignant diseases in Germany. Current concepts and future perspectives. Strahlenther. Onkol. 180, 718–73010.1007/s00066-004-9197-9
    1. Smolen J. S., Steiner G. (2003). Therapeutic strategies for rheumatoid arthritis. Nat. Rev. Drug Discov. 2, 473–48810.1038/nrd1109
    1. Speyer C. L., Ward P. A. (2011). Role of endothelial chemokines and their receptors during inflammation. J. Invest. Surg. 24, 18–2710.3109/08941939.2010.521232
    1. Stenbek O. (1898). Om behandling of kronsik ledgangs-rheumatism med Röntgenstralar. Sv Läk Förh 1, 117
    1. Tago F., Tsukimoto M., Nakatsukasa H., Kojima S. (2008). Repeated 0.5-Gy gamma irradiation attenuates autoimmune disease in MRL-lpr/lpr mice with suppression of CD3+CD4−CD8−B220+ T-cell proliferation and with up-regulation of CD4+CD25+Foxp3+ regulatory T cells. Radiat. Res. 169, 59–6610.1667/RR1013.1
    1. Trott K. R., Parker R., Seed M. P. (1995). The effect of x-rays on experimental arthritis in the rat. Strahlenther. Onkol. 171, 534–538
    1. Tschopp J., Martinon F., Burns K. (2003). NALPs: a novel protein family involved in inflammation. Nat. Rev. Mol. Cell Biol. 4, 95–10410.1038/nrm1019
    1. Tsukimoto M., Homma T., Mutou Y., Kojima S. (2009). 0.5 Gy gamma radiation suppresses production of TNF-alpha through up-regulation of MKP-1 in mouse macrophage RAW264.7 cells. Radiat. Res. 171, 219–22410.1667/RR1351.1
    1. Tsukimoto M., Nakatsukasa H., Sugawara K., Yamashita K., Kojima S. (2008). Repeated 0.5-Gy gamma irradiation attenuates experimental autoimmune encephalomyelitis with up-regulation of regulatory T cells and suppression of IL17 production. Radiat. Res. 170, 429–43610.1667/RR1352.1
    1. Valledor A. F., Comalada M., Santamaria-Babi L. F., Lloberas J., Celada A. (2010). Macrophage proinflammatory activation and deactivation: a question of balance. Adv. Immunol. 108, 1–2010.1016/B978-0-12-380995-7.00001-X
    1. Voll R. E., Herrmann M., Roth E. A., Stach C., Kalden J. R., Girkontaite I. (1997). Immunosuppressive effects of apoptotic cells. Nature 390, 350–35110.1038/37022
    1. von Pannewitz G. (1933). Die Röntgentherapie der Arthritis deformans. Ergebnisse der medizinischen Strahlenforschung 6, 62–126
    1. Weng L., Williams R. O., Vieira P. L., Screaton G., Feldmann M., Dazzi F. (2010). The therapeutic activity of low-dose irradiation on experimental arthritis depends on the induction of endogenous regulatory T cell activity. Ann. Rheum. Dis. 69, 1519–152610.1136/ard.2009.121111
    1. Williams J., Chen Y., Rubin P., Finkelstein J., Okunieff P. (2003). The biological basis of a comprehensive grading system for the adverse effects of cancer treatment. Semin. Radiat. Oncol. 13, 182–18810.1016/S1053-4296(03)00045-6
    1. Winsauer G., Resch U., Hofer-Warbinek R., Schichl Y. M., De Martin R. (2008). XIAP regulates bi-phasic NF-kappaB induction involving physical interaction and ubiquitination of MEKK2. Cell. Signal. 20, 2107–211210.1016/j.cellsig.2008.08.004
    1. Witko-Sarsat V., Rieu P., Descamps-Latscha B., Lesavre P., Halbwachs-Mecarelli L. (2000). Neutrophils: molecules, functions and pathophysiological aspects. Lab. Invest. 80, 617–65310.1038/labinvest.3780067
    1. Xu B., Kim S. T., Lim D. S., Kastan M. B. (2002). Two molecularly distinct G(2)/M checkpoints are induced by ionizing irradiation. Mol. Cell. Biol. 22, 1049–105910.1128/MCB.22.12.4419-4432.2002
    1. Yang Z. Z., Tschopp O., Baudry A., Dummler B., Hynx D., Hemmings B. A. (2004). Physiological functions of protein kinase B/Akt. Biochem. Soc. Trans. 32, 350–35410.1042/BST0320350
    1. Zaiss M. M., Frey B., Hess A., Zwerina J., Luther J., Nimmerjahn F., Engelke K., Kollias G., Hunig T., Schett G., David J. P. (2010). Regulatory T cells protect from local and systemic bone destruction in arthritis. J. Immunol. 184, 7238–724610.4049/jimmunol.0903841

Source: PubMed

3
Se inscrever