The vascular endothelium and human diseases

Peramaiyan Rajendran, Thamaraiselvan Rengarajan, Jayakumar Thangavel, Yutaka Nishigaki, Dhanapal Sakthisekaran, Gautam Sethi, Ikuo Nishigaki, Peramaiyan Rajendran, Thamaraiselvan Rengarajan, Jayakumar Thangavel, Yutaka Nishigaki, Dhanapal Sakthisekaran, Gautam Sethi, Ikuo Nishigaki

Abstract

Alterations of endothelial cells and the vasculature play a central role in the pathogenesis of a broad spectrum of the most dreadful of human diseases, as endothelial cells have the key function of participating in the maintenance of patent and functional capillaries. The endothelium is directly involved in peripheral vascular disease, stroke, heart disease, diabetes, insulin resistance, chronic kidney failure, tumor growth, metastasis, venous thrombosis, and severe viral infectious diseases. Dysfunction of the vascular endothelium is thus a hallmark of human diseases. In this review the main endothelial abnormalities found in various human diseases such as cancer, diabetes mellitus, atherosclerosis, and viral infections are addressed.

Keywords: Atherosclerosis; Cancer.; Endothelial dysfunction; Endothelium; Stroke.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interest exists.

Figures

Fig 1
Fig 1
The healthy endothelium not only arbitrates endothelium-dependent vasodilation, but also actively suppresses thrombosis, vascular inflammation, and hypertrophy. This schematic depicts differences between a healthy endothelium (A) and a dysfunctional one (B). A healthy endothelium displays a vasodilatory phenotype consisting of high levels of vasodilators such as nitric oxide (NO) and prostacyclin (PGI2) and low levels of reactive oxygen species (ROS) and uric acid. A healthy endothelium also has an anticoagulative phenotype consisting of low levels of plasminogen activator inhibitor 1 (PAI-1), von Willebrand factor (vWF), and P-selectin. Very little inflammation may be present, as indicated by low levels of soluble vascular cell adhesion molecule (sVCAM.), soluble intercellular adhesion molecule (sICAM), E-selectin, C-reactive protein (CRP), tumor necrosis factor alpha (TNF-α), and interleukin-6 (IL-6). Finally, the population of endothelial progenitor cells (EPCs, indicative of vascular repair capacity) is high; whereas levels of endothelial microparticles (EMPs) and circulating endothelial cells (CECs), indicative of endothelial stress/damage, are low. In the case of a dysfunctional endothelium, the phenotypic characteristics include impaired vasodilation, increased oxidative stress/uric acid, lipid peroxide radical,Nitrotyrosine and Nitirc oxide, and a procoagulant and pro-inflammatory phenotype with decreased vascular repair capacity and increased numbers of EMPs and CECs. 6-keto PGF1α: 6 keto prostaglandin F1-alpha, a stable product of PGI2; ADMA; asymmetric dimethyl arginine, inhibitor of NO biosynthesis; EC: endothelial cell; NO2-: nitrite ion, stable degradation product of NO; NO3- nitrate ion, stable degradation product of NO; ONOO-: peroxynitrite, the product of superoxide-mediated inactivation of NO; VSMC: vascular smooth muscle cell; WBC: white blood cell. (Modified from Dylan Burger and Rhian MT 2012).
Fig 2
Fig 2
Schematic representation of endothelial dysfunction on human diseases.

References

    1. Wilson SH, Lerman A. Function of Vascular Endothelium. Heart Physiology and Pathophysiology. 2001:27.
    1. Durand MJ, Gutterman DD. Diversity in Mechanisms of Endothelium-Dependent Vasodilation in Health and Disease. Microcirculation. 2013;20(3):239–247.
    1. Douglas B Cines, Eleanor S Pollak, Clayton A Buck. et al. Endothelial Cells in Physiology and in the Pathophysiology of Vascular Disorders. The Journal of The American Society of Hematology Blood. 1998;91(10):3527–3561.
    1. Patel JC. Functions of endothelium. Indian Journal of Medical Sciences. 2001;55:165–6.
    1. Verhamme P, Hoylaerts MF. The pivotal role of the endothelium in haemostasis and thrombosis. Acta clinica Belgica. 2006;61(5):213–9.
    1. Stern DM. et al. Endothelium and Regulation of Coagulation. Diabetes care. 1991 Feb;14(2):160–6.
    1. Atherton A, Born GV. Quantitative investigations of the adhesiveness of circulating polymorphonuclear leucocytes to blood vessel walls. Journal of Physiology. 1972;222:447–74.
    1. Cerletti C, Evangelista V, de Gaetano G. P-selectin-β2 integrin cross-talk: a molecular mechanism for polymorphonuclear leukocyte recruitment at the site of vascular damage. The Journal of Thrombosis and Haemostasis. 1999;82:787–93.
    1. De Gaetano G, Donati MB, Cerletti C. Prevention of thrombosis and vascular inflammation: benefits and limitations of selective or combined COX-1, COX-2 and 5-LOX inhibitors. Trends Pharmacolology Science. 2003;24:245–52.
    1. Wagner DD, Frenette PS. The vessel wall and its interactions. Blood. 2008;111:5271–81.
    1. Smyth SS, McEver RP, Weyrich AS. et al. Platelet Colloquium Participants. Platelet functions beyond hemostasis. The Journal of Thrombosis and Haemostasis. 2009;7:1759–66.
    1. Wagner R. Erlauterungstalfeln zur Physiologie and Entwicklungsgeschichte. Leipzig, Germany: Leopold Voss; 1839.
    1. Boilard E, Nigrovic PA, Larabee K. et al. Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science. 2010;327:580–3.
    1. Hara T, Shimizu K, Ogawa F. et al. Platelets control leukocyte recruitment in a murine model of cutaneous arthus reaction. American Journal of Pathology. 2010;176:259–69.
    1. Barton M, Baretella O, Meyer MR. Obesity and risk of vascular disease: importance of endothelium-dependent vasoconstriction. Br J Pharmacol. 2012;165(3):591–602.
    1. Michiels C. Endothelial Cell Functions. Journal of Cellular Physiology. 2003;196:430–443.
    1. Rubanyi GM, Vanhoutte PM. Superoxide anions and hyperoxia inactivate endothelium-derived relaxing factor(s) American Journal of Physiology. 1986;250:H822–H827.
    1. Devaraj S, Singh U, Jialal I. The Evolving Role of C-Reactive Protein in Atherothrombosis. Clinical Chemistry. 2009;55:229–238.
    1. Paulo Roberto BE. et al. Endothelium dysfunction classification: Why is it still an open discussion? International Journal of Cardiology. 2009;137(2):175–176.
    1. Hadi AR Hadi, Cornelia S Carr, Jassim Al Suwaidi. Endothelial Dysfunction: Cardiovascular Risk Factors, Therapy, and Outcome. Vascular Health Risk Management. 2005;1(3):183–198.
    1. Vita JA, Hamburg NM. Does endothelial dysfunction contribute to the clinical status of patients with peripheral arterial disease? Canadian Journal of Cardiology. 2010;26( A):45A–50A.
    1. Gordon MB, Jain R, Beckman JA. et al. The contribution of nitric oxide to exercise hyperemia in the human forearm. Vascular Medicine. 2002;7:163–8.
    1. Gokce N, Keaney JF, Menzoian JO. et al. Risk stratification for postoperative cardiovascular events via noninvasive assessment of endothelial function. Circulation. 2002;105:1567–72.
    1. Widlansky ME, Gokce N, Keaney JF. et al. The clinical implications of endothelial dysfunction. Journal of the American College of Cardiology. 2003;42:1149–60.
    1. Glagov S, Weisenberg E, Zarins CK. et al. Compensatory enlargement of human atherosclerotic coronary arteries. New England Journal of Medicine. 1987;316:1371–5.
    1. Kawashima S, Yamashita T, Ozaki M. et al. Endothelial NO synthase overexpression inhibits lesion formation in mouse model of vascular remodeling. Arteriosclerosis Thrombosis and Vascular Biology. 2001;21:201–7.
    1. Vita JA, Holbrook M, Palmisano J. et al. Flow-induced arterial remodeling relates to endothelial function in the human forearm. Circulation. 2008;117:3126–33.
    1. McGuigan MR, Bronks R, Newton RU. et al. Muscle fiber characteristics in patients with peripheral arterial disease. Medicine & Science in Sports & Exercise. 2001;33:2016–21.
    1. Porcu P, Emanueli C, Kapatsoris M. et al. Reversal of angiogenic growth factor upregulation by revascularization of lower limb ischemia. Circulation. 2002;105:67–72.
    1. Tsui JC, Baker DM, Biecker E. et al. Potential role of endothelin 1 in ischaemia-induced angiogenesis in critical leg ischaemia. British Journal of Surgery. 2002;89:741–7.
    1. Yu J, deMuinck ED, Zhuang Z. et al. Endothelial nitric oxide synthase is critical for ischemic remodeling, mural cell recruitment, and blood flow reserve. Proceedings of the National Academy of Sciences. 2005;102:10999–1004.
    1. Shiojima I, Walsh K. Role of Akt signaling in vascular homeostasis and angiogenesis. Circulation Research. 2002;90:1243–50.
    1. Libby P. Current concepts of the pathogenesis of the acute coronary syndromes. Circulation. 2001;104:365–72.
    1. Faxon DP, Fuster V, Libby P. et al. Atherosclerotic Vascular Disease Conference: Writing Group III: Pathophysiology. Circulation. 2004;109:2617–25.
    1. Huang AL, Silver AE, Shvenke E. et al. Predictive value of reactive hyperemia for cardiovascular events in patients with peripheral arterial disease undergoing vascular surgery. Arteriosclerosis, Thrombosis, and Vascular Biology. 2007;27:2113–9.
    1. Gokce N, Keaney JF, Hunter LM. et al. Predictive value of noninvasively- determined endothelial dysfunction for long-term cardiovascular events in patients with peripheral vascular disease. Journal of American College of Cardiology. 2003:1769–75.
    1. Burke AP, Kolodgie FD, Farb A. et al. Healed plaque ruptures and sudden coronary death: Evidence that subclinical rupture has a role in plaque progression. Circulation. 2001;103:934–40.
    1. Makin A, Silverman SH, Lip GY. Peripheral vascular disease and Virchow's triad for thrombogenesis. QJM. 2002;95:199–210.
    1. Virmani R, Kolodgie FD, Burke AP. et al. Atherosclerotic plaque progression and vulnerability to rupture: Angiogenesis as a source of intraplaque hemorrhage. Arteriosclerosis, Thrombosis, and Vascular Biology. 2005;25:2054–61.
    1. Fronek A, DiTomasso DG, Allison M. Noninvasive assessment of endothelial activity in patients with peripheral arterial disease and cardiovascular risk factors. Endothelium. 2007;14:199–205.
    1. Komai H, Higami Y, Tanaka H. et al. Impaired flow-mediated endothelium-dependent and endothelium-independent vasodilation of the brachial artery in patients with atherosclerotic peripheral vascular disease. Angiology. 2008;59:52–6.
    1. Poredos P, Golob M, Jensterle M. Interrelationship between peripheral arterial occlusive disease, carotid atherosclerosis and flow mediated dilation of the brachial artery. International Angiology. 2003;22:83–7.
    1. Brevetti G, Silvestro A, Di Giacomo S. et al. Endothelial dysfunction in peripheral arterial disease is related to increase in plasma markers of inflammation and severity of peripheral circulatory impairment but not to classic risk factors and atherosclerotic burden. Journal of vascular surgery. 2003;8:374–9.
    1. Kull I.J, Greene MT, Boerwinkle E. et al. Association of polymorphisms in NOS3 with the ankle-brachial index in hypertensive adults. Atherosclerosis. 2008;196:905–12.
    1. Silvestro A, Scopacasa F, Ruocco A. et al. Inflammatory status and endothelial function in asymptomatic and symptomatic peripheral arterial disease. Vascular Medicine. 2003;8:225–32.
    1. Tsui JC, Baker DM, Biecker E. et al. Evidence for the involvement of endothelin-1 but not urotensin-II in chronic lower limb ischaemia in man. European Journal of Vascular and Endovascular Surgery. 2003;25:443–50.
    1. Chang CC, Chen CJ. Secular trend of mortality from cerebral infarction and cerebral hemorrhage in Taiwan, 1974-1988. Stroke. 1993;24:212–18.
    1. Diaz JF, Hachinski VC, Pederson LL, Donald A. Aggregation of multiple risk factors for stroke in siblings of patients with brain infarction and transient ischemic attacks. Stroke. 1986;17:1239–42.
    1. Michael A. Moskowitz, Eng H. Lo, Costantino Iadecol. The Science of Stroke: Mechanisms in Search of Treatments. Neuron Review. 2010;67:181–198.
    1. Cosentino F, Sill JC, Katusic ZS. Endothelial L-arginine pathway and relaxations to vasopressin in canine basilar artery. American Journal of Physiology. 1993;33:H413–18.
    1. Cosentino F, Rubattu S, Savoia C. et al. Endothelial Dysfunction and Stroke. Journal of Cardiovascular Pharmacology. 2001;38(2):S75–S78.
    1. Schiffrin EL, Park JB, Intengan HD. et al. Correction of arterial structure and endothelial dysfunction in human essential hypertension by the angiotensin receptor antagonist losartan. Circulation. 2000;101:1653–1659.
    1. Park JB, Charbonneau F, Schiffrin EL. Correlation of endothelial function in large and small arteries in human essential hypertension. Journal of Hypertenion. 2001;19:415–420.
    1. Moncada S, Vane JR. Mechanisms of Vasodilation, ed. by P.A. Vanhoutte and I. Leusen, pp 107-121. Karger, Basel; 1978. Prostacyclin (PGI2), the vascular wall and vasodilation.
    1. Panza JA, Quyyumi AA, Callahan TS. et al. Effect of antihypertensive treatment on endothelium-dependent vascular relaxation in patients with essential hypertension. Journal of the American College of Cardiology. 1993;21:1145–1151.
    1. Schiffrin EL, Park JB, Pu Q. Effect of crossing over hypertensive patients from a beta-blocker to an angiotensin receptor antagonist onresistance artery structure and on endothelial function. Journal of Hypertension. 2002;20:71–78.
    1. Taddei S, Virdis A, Ghiadoni L. et al. Vitamin C improves endothelium-dependent vasodilation by restoring nitric oxide activity in essential hypertension. Circulation. 1998;97:2222–2229.
    1. Taddei S, Virdis A, Mattei P. et al. Defective L-arginine-nitric oxide pathway in offspring of essential hypertensive patients. Circulation. 1996;94:1298–1303.
    1. Chen X, Touyz RM, Park JB. et al. Antioxidant effects of vitamins C and E are associated with altered activation of vascular NADPH oxidase and superoxide dismutase in stroke-prone SHR. Hypertension. 2001;38:606–611.
    1. Touyz RM, Chen X, Tabet F. et al. Expression of a functionally active gp91phoxcontaining neutrophil-type NAD(P)H oxidase in smooth muscle cells from human resistance arteries: regulation by angiotensin II. Circulation Research. 2002;90:1205–1213.
    1. Lockette W, Otsuka Y, Carretero O. The loss of endotheliumdependent vascular relaxation in hypertension. Hypertension. 1986;8:II61–II66.
    1. Yoshibayashi M, Nishioka M, Nakao K. et al. Plasma endothelin concentrations in patients with pulmonary hypertension associated with congenital heart defects. Evidence for increased production of endothelin in pulmonary circulation. Circulation. 1991;84:2280–2285.
    1. Channick RN, Sitbon O, Barst RJ. et al. Endothelin receptor antagonists in pulmonary arterial hypertension. Journal of American College of Cardiology. 2004;43:62S–67S.
    1. Landmesser U, Hornig B, Drexler H. Endothelial function: a critical determinant in atherosclerosis? Circulation. 2004;109:II27–II33.
    1. Landmesser U, Harrison DG. Oxidant stress as a marker for cardiovascular events: Ox marks the spot. Circulation. 2001;104:2638–2640.
    1. Landmesser U, Dikalov S, Price SR. et al. Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. Journal of Clinical Investigation. 2003;111:1201–1209.
    1. White CR, Darley-Usmar V, Berrington WR. et al. Circulating plasma xanthine oxidase contributes to vascular dysfunction in hypercholesterolemic rabbits. Proceedings of the National Academy of Sciences. 1996;93:8745–8749.
    1. Maier W, Cosentino F, Lutolf RB. et al. Tetrahydrobiopterin improves endothelial function in patients with coronary artery disease. Journal of Cardiovascular Pharmacology. 2000;35:173–178.
    1. Pasceri V, Willerson JT, Yeh ET. Direct proinflammatory effect of C-reactive protein on human endothelial cells. Circulation. 2000;102:2165–2168.
    1. Eizawa Z, Yui Y, Inoue R. et al. Lysophosphatidylcholine inhibits endothelium-dependent hyperpolarization and N omega-nitro-l-arginine/indomethacinresistant endothelium-dependent relaxation in the porcine coronary artery. Circulation. 1995;92:3520–3526.
    1. Chan H, Lougheed M, Laher I. et al. Oxidized low-density lipoprotein inhibits endothelium-dependent vasodilation by an antioxidant-sensitive, lysophosphatidylcholine-independent mechanism. Journal of Cardiovascular Pharmacology. 2003;41:856–865.
    1. Galley HF, Webster NR. Physiology of the endothelium. British Journal of Anaesthesia. 2004;93:105–113.
    1. Cunningham ME, Huribal M, Bala RJ. et al. Endothelin-1 and endothelin-4 stimulate monocyte production of cytokines. Critical Care Medicine. 1997;25:958–964.
    1. Best PJ, Lerman A. Endothelin in cardiovascular disease: from atherosclerosis to heart failure. Journal of Cardiovascular Pharmacology. 2000;35:S61–S63.
    1. Halim A, Kanayama N, Maradny E, Maehara K. et al. Endothelin-1 evoked an increase and oscillations in cytosolic calcium concentration in adherent single human platelets and increased GMP-140 (P-selectin) in platelet suspension. Thrombosis Research. 1995;80:105–112.
    1. Behrendt Ganz P. Endothelial function. From vascular biology to clinical applications. American Journal of Cardiology. 2002;90:40L–48L.
    1. Daniele Versari, Elena Daghini, Agostino Virdis. et al. Endothelial Dysfunction as a Target for Prevention of Cardiovascular Disease. Diabetes Care. 2009;32(2):314–321.
    1. Mohanty P, Ghanim H, Hamouda W. et al. Both lipid and protein intakes stimulate increased generation of reactive oxygen species by polymorphonuclear leukocytes and mononuclear cells. American Journal of Clinical Nutrition. 2002;75:767–772.
    1. Mohanty P, Hamouda W, Garg R. et al. Glucose challenge stimulates reactive oxygen species (ROS) generation by leucocytes. Journal of Clinicla Endocrinology Metabolism. 2000;85:2970–2973.
    1. Vogel RA, Corretti MC, Plotnick GD. Effect of a single high-fat meal on endothelial function in healthy subjects. The American Journal of Cardiology. 1997;79:350–354.
    1. Tripathy D, Mohanty P, Dhindsa S. et al. Elevation of free fatty acids induces inflammation and impairs vascular reactivity in healthy subjects. Diabetes. 2003;52:2882– 2887.
    1. Calles-Escandon J, Cipolla M. Diabetes and endothelial dysfunction: a clinical perspective. Endocrinology Review. 2001;22:36–52.
    1. Baron AD, Brechtel G. Insulin differentially regulates systemic and skeletal muscle vascular resistance. American Journal of Physiology. 1993;265:E61–E67.
    1. Clerk LH, Vincent MA, Lindner JR. et al. The vasodilatory actions of insulin on resistance and terminal arterioles and their impact on muscle glucose uptake. Diabetes Metabolism Resesach and Reviews. 2004;20:3–12.
    1. Muniyappa R, Iantorno M, Quon M.J. An integrated view of insulin resistance and endothelial dysfunction. Endocrinology and Metabolism Clinics of North America. 2008;37:685–711.
    1. Aljada A, Dandona P. Effect of insulin on human aortic endothelial nitric oxide synthase. Metabolism. 2000;49:147–150.
    1. Mather K, Laakso M, Edelman S. et al. Evidence for physiological coupling of insulin-mediated glucose metabolism and limb blood flow. American Journal Physiology Endocrinology Metabolism. 2000;279:E1264–E1270.
    1. Taddei S, Virdis A, Mattei P. et al. Effect of insulin on acetylcholine-induced vasodilation in normotensive subjects and patients with essential hypertension. Circulation. 1995;92:2911–2918.
    1. Paradisi G, Steinberg HO, Hempfling A. et al. Polycystic ovary syndrome is associated with endothelial dysfunction. Circulation. 2001;103:1410–1415.
    1. Xu J, Zou MH. Molecular Insights and Therapeutic Targets for Diabetic Endothelial Dysfunction. Circulation. 2009;120:1266–1286.
    1. Zhu D. et al. Luteolin inhibits inflammatory response and improves insulin sensitivity in the endothelium. Biochimie. 2011;93:506–512.
    1. Li R. et al. Vascular resistance in prehypertensive rats: Role of PI3- kinase/Akt/eNOS signaling. European Journal of Pharmacology. 2010;628(1-3):140–147.
    1. Yang Z, Li JC. Stimulation of endothelin-1 gene expression by insulin via phosphoinositide-3 kinase-glycogen synthase kinase-3β signaling in endothelial cells. Life Sciences. 2008;82(9-10):512–518.
    1. Barrett EJ, Wang H, Upchurch CT. et al. Insulin regulates its own delivery to skeletal muscle by feed-forward actions on the vasculature. American Journal of Physiology Endocrinology Metabolism. 2011;301(2):E252–63.
    1. Barrett EJ, Eggleston EM, Inyard AC. et al. The vascular actions of insulin control its delivery to muscle and regulate the rate-limiting step in skeletal muscle insulin action. iabetologia. 2009;52(5):752–64.
    1. Genders AJ, Frison V, Abramson SR. et al. Endothelial cells actively concentrate insulin during its transendothelial transport. Microcirculation. 2013 doi: 10.1111/micc.12044.
    1. Kim JA, Montagnani M, Koh KK. et al. Reciprocal relationships between insulin resistance and endothelial dysfunction: molecular and pathophysiological mechanisms. Circulation. 2006;113:1888–1904.
    1. Jonathan H Pinkney, Coen DA Stehouwer, Simon W Coppack. et al. Endothelial Dysfunction: Cause of the Insulin Resistance Syndrome. Diabetes. 1997;46(2):9–13.
    1. Carmine Zoccali. The endothelium as a target in renal diseases. Journal of Nephrology. 2007;20(12):S39–S44.
    1. Keller G, Zimmer G, Mall G. et al. Nephron number in patients with primary hypertension. The New England Journal of Medicine. 2003;348:101–8.
    1. Jolanta Malyszko. Mechanism of endothelial dysfunction in chronic kidney disease. Clinical Chimica Acta. 2010;411:1412–1420.
    1. Bombeli T, Mueller M, Haeberli A. Anticoagulant properties of the vascular endothelium. The Journal of Thrombosis and Haemostasis. 1997;77:408–23.
    1. Perticone F, Sciacqua A, Maio R. et al. Asymmetric dimethylarginine, L-arginine, and endothelial dysfunction in essential hypertension. Journal of the American College of Cardiology. 2005;46:518–23.
    1. Raff U, Schwarz TK, Schmidt BM. et al. Renal resistive index—a valid tool to assess renal endothelial function in humans? Nephrology Dialysis Transplantation. 2010;25:1869–74.
    1. Faber DR, de Groot PG, Visseren FL. Role of adipose tissue in haemostasis, coagulation and fibrinolysis. Obesity Review. 2009;10:554–63.
    1. Malyszko J, Malyszko JS, Kozminski P. et al. Adipokines, linking adipocytes and vascular function in hemodialyzed patients, may also be possibly related to CD146, a novel adhesion molecule. Clinical and Applied Thrombosis/Hemostasis. 2008;14:338–45.
    1. Stam F, Van GC, Becker A, Dekker JM, Heine RJ, Bouter LM, Stehouwer CD. Endothelial dysfunction contributes to renal function-associated cardiovascular mortality in a population with mild renal insufficiency: the Hoorn study. J Am Soc Nephrol. 2006;17:537–45.
    1. Panichi V, Migliori M, De PS, Taccola D, Bianchi AM, Giovannini L, Norpoth M, Metelli MR, Cristofani R, Bertelli AA, Sbragia G, Tetta C, Palla R, Colombo R. C-reactive protein and interleukin-6 levels are related to renal function in predialytic chronic renal failure. Nephron. 2002;91:594–600.
    1. Landray MJ, Wheeler DC, Lip GY, Newman DJ, Blann AD, McGlynn FJ, Ball S, Townend JN, Baigent C. Inflammation, endothelial dysfunction, and platelet activation in patients with chronic kidney disease: the chronic renal impairment in Birmingham (CRIB) study. Am J Kidney Dis. 2004;43:244–53.
    1. Stam F, van Guldener C, Schalkwijk CG, Ter Wee PM, Donker AJ, Stehouwer CD. Impaired renal function is associated with markers of endothelial dysfunction and increased inflammatory activity. Nephrol Dial Transplant. 2003;18:892–8.
    1. Tonelli M, Sacks F, Pfeffer M, Jhangri GS, Curhan G. Biomarkers of inflammation and progression of chronic kidney disease. Kidney Int. 2005;68:237–45.
    1. Annuk M, Lind L, Linde T, Fellstrom B. Impaired endothelium-dependent vasodilatation in renal failure in humans. Nephrol Dial Transplant. 2001;16:302–6.
    1. Yilmaz MI, Saglam M, Caglar K, Cakir E, Sonmez A, Ozgurtas T, Aydin A, Eyileten T, Ozcan O, Acikel C, Tasar M, Genctoy G, Erbil K, Vural A, Zoccali C. The determinants of endothelial dysfunction in CKD: oxidative stress and asymmetric dimethylarginine. Am J Kidney Dis. 2006;47:42–50.
    1. Małyszko J, Małyszko JS, Myśliwiec M. Endothelial cell injury markers in chronic renal failure on conservative treatment and continuous ambulatory peritoneal dialysis (CAPD) Kidney Blood Pressure Research. 2004;27:71–7.
    1. Disanza A, Steffen A, Hertzog M. et al. Actin polymerization machinery: the finish line of signaling networks, the starting point of cellular movement. Cell Molecular Life Science. 2005;62:955–970.
    1. Small JV, Resch GP. The comings and goings of actin: coupling protrusion and retraction in cell motility. Current Opinion in Cell Biology. 2005;17:517–523.
    1. Small JV, Stradal T, Vignal E. et al. The lamellipodium: where motility begins. Trends in Cell Biology. 2002;12:112–120.
    1. Atanu Basu, Umesh C. Chaturvedi. Vascular endothelium: the battle¢eld of dengue viruses. FEMS Immunol Med Microbiol. 2008;53:287–299.
    1. Spiropoulou CF, Srikiatkhachorn A. The role of endothelial activation in dengue hemorrhagic fever and hantavirus pulmonary syndrome. Virulence. 2013 Aug 15;4(6):525–36.
    1. Higashi Y, Yoshizumi M. Exercise and endothelial function: Role of endothelium-derived nitric oxide and oxidative stress in healthy subjects and hypertensive patients. Pharmacology & Therapeutics. 2004;102:87– 96.
    1. Balakumar P. et al. Pharmacological Interventions to Prevent Vascular Endothelial Dysfunction:Future Directions. Journal of health science. 2008;54(1):1–16.

Source: PubMed

3
Se inscrever