A Randomized Controlled Clinical Trial in Healthy Older Adults to Determine Efficacy of Glycine and N-Acetylcysteine Supplementation on Glutathione Redox Status and Oxidative Damage

Giulia Lizzo, Eugenia Migliavacca, Daniela Lamers, Adrien Frézal, John Corthesy, Gerard Vinyes-Parès, Nabil Bosco, Leonidas G Karagounis, Ulrike Hövelmann, Tim Heise, Maximilian von Eynatten, Philipp Gut, Giulia Lizzo, Eugenia Migliavacca, Daniela Lamers, Adrien Frézal, John Corthesy, Gerard Vinyes-Parès, Nabil Bosco, Leonidas G Karagounis, Ulrike Hövelmann, Tim Heise, Maximilian von Eynatten, Philipp Gut

Abstract

Glycine and cysteine are non-essential amino acids that are required to generate glutathione, an intracellular tripeptide that neutralizes reactive oxygen species and prevents tissue damage. During aging glutathione demand is thought to increase, but whether additional dietary intake of glycine and cysteine contributes towards the generation of glutathione in healthy older adults is not well understood. We investigated supplementation with glycine and n-acetylcysteine (GlyNAC) at three different daily doses for 2 weeks (low dose: 2.4 g, medium dose: 4.8 g, or high dose: 7.2 g/day, 1:1 ratio) in a randomized, controlled clinical trial in 114 healthy volunteers. Despite representing a cohort of healthy older adults (age mean = 65 years), we found significantly higher baseline levels of markers of oxidative stress, including that of malondialdehyde (MDA, 0.158 vs. 0.136 µmol/L, p < 0.0001), total cysteine (Cysteine-T, 314.8 vs. 276 µM, p < 0.0001), oxidized glutathione (GSSG, 174.5 vs. 132.3 µmol/L, p < 0.0001), and a lower ratio of reduced to oxidized glutathione (GSH-F:GSSG) (11.78 vs. 15.26, p = 0.0018) compared to a young reference group (age mean = 31.7 years, n = 20). GlyNAC supplementation was safe and well tolerated by the subjects, but did not increase levels of GSH-F:GSSG (end of study, placebo = 12.49 vs. 7.2 g = 12.65, p-value = 0.739) or that of total glutathione (GSH-T) (end of study, placebo = 903.5 vs. 7.2 g = 959.6 mg/L, p-value = 0.278), the primary endpoint of the study. Post-hoc analyses revealed that a subset of subjects characterized by high oxidative stress (above the median for MDA) and low baseline GSH-T status (below the median), who received the medium and high doses of GlyNAC, presented increased glutathione generation (end of study, placebo = 819.7 vs. 4.8g/7.2 g = 905.4 mg/L, p-value = 0.016). In summary GlyNAC supplementation is safe, well tolerated, and may increase glutathione levels in older adults with high glutathione demand. Clinical Trial Registration: https://ichgcp.net/clinical-trials-registry/NCT05041179, NCT05041179.

Keywords: cardiometabolic diseases; glutathione; glycine; healthy aging; n-acetylcysteine; nutrition; oxidative stress; total cysteine.

Conflict of interest statement

GL, EM, AF, JC, NB, and PG are employees of Nestlé Institute of Health Sciences, Nestlé Research, Societé des Produits de Nestlé. GV-P, LK, and ME are employees of Nestlé Health Sciences, a subsidiary of Nestlé. Nestlé Health Sciences holds patents and licenses to patents and markets products for the use of glycine and n-acetylcysteine in conditions related to impaired mitochondrial functions. DL and UH are employees and TH is an employee and shareholder of Profil Institute for Metabolic Research GmbH, which has received research funding from Nestlé Health Sciences.

Copyright © 2022 Lizzo, Migliavacca, Lamers, Frézal, Corthesy, Vinyes-Parès, Bosco, Karagounis, Hövelmann, Heise, von Eynatten and Gut.

Figures

FIGURE 1
FIGURE 1
Flowchart of study design. Summary of recruitment process of healthy young subjects and healthy older adults and their randomization to the placebo arm and the three treatment groups. Follow-up indicates the interim time point at 3 days after first dosing (V3). V= Visit; N= Numbers.
FIGURE 2
FIGURE 2
Healthy older adults show increased levels of markers of oxidative stress. (A) Levels of MDA, (B) total cysteine and (C) glycine measured in plasma samples of the study volunteers. (D) Levels of GSH-T, (E) GSSG and (F) free to oxidized glutathione (GSH-F:GSSG) in whole blood samples. Boxplot shows the median, the first to third quartile, the 1.5x interquartile ranges, and outliers. p = p-values, parametric t-statistics of LS-means.
FIGURE 3
FIGURE 3
Dosing efficacy of GlyNAC. (A) Dose responses to acute oral intake of GlyNAC on glycine and (B) oxidized cysteine in plasma of older adults at Visit 2. Values were obtained at −60 min prior and 60 min after consumption of the active doses or placebo. Red lines represent the means. p = p-values, parametric paired t-tests between pre and post dose.
FIGURE 4
FIGURE 4
Effects of GlyNAC on circulating levels of GSH-T. (A) Effects of daily intake of placebo or three different doses of GlyNAC on GSH-T at Visit 4. Values were measured in whole blood samples in fasted subjects. The last GlyNAC dose was consumed the evening before the measurement. (B,C) Post-hoc subset analysis of response to (B) placebo or (C) GlyNAC treatment (4.8 and 7.2 g groups) in subjects characterized by elevated levels of oxidative stress (MDA above the median) and low baseline glutathione values (GSH-T below the median) in fasted state at Visit 2 and Visit 4. (D) Post-hoc subset analysis of response to high doses of GlyNAC treatment (4.8 and 7.2 g) in subjects characterized by low oxidative stress in fasted state at Visit 2 and Visit 4. Boxplots show the median, the first to third quartile, the 1.5x interquartile ranges, and outliers. p = p-value, nonparametric paired Wilcoxon/Mann-Whitney tests.
FIGURE 5
FIGURE 5
Dose dependent effects of GlyNAC supplementation on glycine status. Effects of daily intake of placebo or different doses of GlyNAC on whole blood glycine levels in a subpopulation of older adults (excluding the group above the third quartile). Glycine levels have been compared before (baseline, Visit 2) and after the 2-weeks of treatment (end of study, Visit 4) in samples taken prior to the dosing with GlyNAC (−60 min) The red dashed lines represent the median of the young adults. p = p-value, linear mixed model testing intra-individual changes from baseline to end of study within each dose group and from placebo group.

References

    1. Beckman K. B., Ames B. N. (1998). The Free Radical Theory of Aging Matures. Physiol. Rev. 78, 547–581. 10.1152/physrev.1998.78.2.547
    1. Borgström L., Kågedal B. (1990). Dose Dependent Pharmacokinetics ofN-ACETYLCYSTEINE AFTER ORAL DOSING TO MAN. Biopharm. Drug Dispos. 11, 131–136. 10.1002/bdd.2510110205
    1. Butterworth C. E., Jr., Santini R., Jr., Perez-Santiago E. (1958). The Absorption of glycine and its Conversion to Serine in Patients with Sprue. J. Clin. Invest. 37, 20–27. 10.1172/jci103580
    1. Cruz M., Maldonado-Bernal C., Mondragón-Gonzalez R., Sanchez-Barrera R., Wacher N. H., Carvajal-Sandoval G., et al. (2008). Glycine Treatment Decreases Proinflammatory Cytokines and Increases Interferon-γ in Patients with Type 2 Diabetes. J. Endocrinol. Invest. 31, 694–699. 10.1007/bf03346417
    1. De Rosa S. C., Zaretsky M. D., Dubs J. G., Roederer M., Anderson M., Green A., et al. (2000). N-acetylcysteine Replenishes Glutathione in HIV Infection. Eur. J. Clin. Invest. 30, 915–929. 10.1046/j.1365-2362.2000.00736.x
    1. El-Khairy L., Ueland P. M., Refsum H., Graham I. M., Vollset S. E., European Concerted Action P. (2001). Plasma Total Cysteine as a Risk Factor for Vascular Disease: The European Concerted Action Project. Circulation 103, 2544–2549. 10.1161/01.cir.103.21.2544
    1. Forman H. J., Zhang H., Rinna A. (2009). Glutathione: Overview of its Protective Roles, Measurement, and Biosynthesis. Mol. Aspects Med. 30, 1–12. 10.1016/j.mam.2008.08.006
    1. Forrester S. J., Kikuchi D. S., Hernandes M. S., Xu Q., Griendling K. K. (2018). Reactive Oxygen Species in Metabolic and Inflammatory Signaling. Circ. Res. 122, 877–902. 10.1161/circresaha.117.311401
    1. Fu X., Cate S. A., Dominguez M., Osborn W., Özpolat T., Konkle B. A., et al. (2019). Cysteine Disulfides (Cys-Ss-X) as Sensitive Plasma Biomarkers of Oxidative Stress. Sci. Rep. 9, 115. 10.1038/s41598-018-35566-2
    1. Gannon M. C., Nuttall J. A., Nuttall F. Q. (2002). The Metabolic Response to Ingested glycine. Am. J. Clin. Nutr. 76, 1302–1307. 10.1093/ajcn/76.6.1302
    1. García-Prat L., Martínez-Vicente M., Perdiguero E., Ortet L., Rodríguez-Ubreva J., Rebollo E., et al. (2016). Autophagy Maintains Stemness by Preventing Senescence. Nature 529, 37–42. 10.1038/nature16187
    1. Gupta S. K., Kamendulis L. M., Clauss M. A., Liu Z. (2016). A Randomized, Placebo-Controlled Pilot Trial of N-Acetylcysteine on Oxidative Stress and Endothelial Function in HIV-Infected Older Adults Receiving Antiretroviral Treatment. AIDS 30, 2389–2391. 10.1097/qad.0000000000001222
    1. Hamanishi T., Furuta H., Kato H., Doi A., Tamai M., Shimomura H., et al. (2004). Functional Variants in the Glutathione Peroxidase-1 (GPx-1) Gene Are Associated with Increased Intima-media Thickness of Carotid Arteries and Risk of Macrovascular Diseases in Japanese Type 2 Diabetic Patients. Diabetes 53, 2455–2460. 10.2337/diabetes.53.9.2455
    1. Hargreaves I. P., Sheena Y., Land J. M., Heales S. J. R. (2005). Glutathione Deficiency in Patients with Mitochondrial Disease: Implications for Pathogenesis and Treatment. J. Inherit. Metab. Dis. 28, 81–88. 10.1007/s10545-005-4160-1
    1. Harman D. (1992). Free Radical Theory of Aging. Mutat. Research/DNAging 275, 257–266. 10.1016/0921-8734(92)90030-s
    1. Herzenberg L. A., De Rosa S. C., Dubs J. G., Roederer M., Anderson M. T., Ela S. W., et al. (1997). Glutathione Deficiency Is Associated with Impaired Survival in HIV Disease. Proc. Natl. Acad. Sci. 94, 1967–1972. 10.1073/pnas.94.5.1967
    1. Hildebrandt W., Sauer R., Bonaterra G., Dugi K. A., Edler L., Kinscherf R. (2015). Oral N-Acetylcysteine Reduces Plasma Homocysteine Concentrations Regardless of Lipid or Smoking Status. Am. J. Clin. Nutr. 102, 1014–1024. 10.3945/ajcn.114.101964
    1. Hirai D. M., Jones J. H., Zelt J. T., Da Silva M. L., Bentley R. F., Edgett B. A., et al. (2017). Oral N-Acetylcysteine and Exercise Tolerance in Mild Chronic Obstructive Pulmonary Disease. J. Appl. Physiol. (1985) 122, 1351–1361. 10.1152/japplphysiol.00990.2016
    1. Ho E., Karimi Galougahi K., Liu C.-C., Bhindi R., Figtree G. A. (2013). Biological Markers of Oxidative Stress: Applications to Cardiovascular Research and Practice. Redox Biol. 1, 483–491. 10.1016/j.redox.2013.07.006
    1. Kumar P., Liu C., Suliburk J. W., Minard C. G., Muthupillai R., Chacko S., et al. (2020). Supplementing Glycine and N-Acetylcysteine (GlyNAC) in Aging HIV Patients Improves Oxidative Stress, Mitochondrial Dysfunction, Inflammation, Endothelial Dysfunction, Insulin Resistance, Genotoxicity, Strength, and Cognition: Results of an Open-Label Clinical Trial. Biomedicines 8, 390. 10.3390/biomedicines8100390
    1. Kumar P., Liu C., Hsu J. W., Chacko S., Minard C., Jahoor F., et al. (2021a). Glycine and N-Acetylcysteine (GlyNAC) Supplementation in Older Adults Improves Glutathione Deficiency, Oxidative Stress, Mitochondrial Dysfunction, Inflammation, Insulin Resistance, Endothelial Dysfunction, Genotoxicity, Muscle Strength, and Cognition: Results of a Pilot Clinical Trial. Clin. Transl Med. 11, e372. 10.1002/ctm2.372
    1. Kumar P., Osahon O., Vides D. B., Hanania N., Minard C. G., Sekhar R. V. (2021b). Severe Glutathione Deficiency, Oxidative Stress and Oxidant Damage in Adults Hospitalized with COVID-19: Implications for GlyNAC (Glycine and N-Acetylcysteine) Supplementation. Antioxidants (Basel) 11, 50. 10.3390/antiox11010050
    1. Lang C. A., Naryshkin S., Schneider D. L., Mills B. J., Lindeman R. D. (1992). Low Blood Glutathione Levels in Healthy Aging Adults. J. Lab. Clin. Med. 120, 720–725.
    1. Lang C. A., Mills B. J., Mastropaolo W., Liu M. C. (2000). Blood Glutathione Decreases in Chronic Diseases. J. Lab. Clin. Med. 135, 402–405. 10.1067/mlc.2000.105977
    1. Lauterburg B. H., Corcoran G. B., Mitchell J. R. (1983). Mechanism of Action of N-Acetylcysteine in the protection against the Hepatotoxicity of Acetaminophen in Rats In Vivo . J. Clin. Invest. 71, 980–991. 10.1172/jci110853
    1. Lee J., Giordano S., Zhang J. (2012). Autophagy, Mitochondria and Oxidative Stress: Cross-Talk and Redox Signalling. Biochem. J. 441, 523–540. 10.1042/bj20111451
    1. Malmezat T., Breuille D., Capitan P., Mirand P. P., Obled C. (2000). Glutathione Turnover Is Increased during the Acute Phase of Sepsis in Rats. J. Nutr. 130, 1239–1246. 10.1093/jn/130.5.1239
    1. Martina V., Masha A., Gigliardi V. R., Brocato L., Manzato E., Berchio A., et al. (2008). Long-term N-Acetylcysteine and L-Arginine Administration Reduces Endothelial Activation and Systolic Blood Pressure in Hypertensive Patients with Type 2 Diabetes. Diabetes Care 31, 940–944. 10.2337/dc07-2251
    1. Meléndez-Hevia E., De Paz-Lugo P., Cornish-Bowden A., Cárdenas M. L. (2009). A Weak Link in Metabolism: the Metabolic Capacity for glycine Biosynthesis Does Not Satisfy the Need for Collagen Synthesis. J. Biosci. 34, 853–872. 10.1007/s12038-009-0100-9
    1. Milne G. L., Sanchez S. C., Musiek E. S., Morrow J. D. (2007). Quantification of F2-Isoprostanes as a Biomarker of Oxidative Stress. Nat. Protoc. 2, 221–226. 10.1038/nprot.2006.375
    1. Newgard C. B., An J., Bain J. R., Muehlbauer M. J., Stevens R. D., Lien L. F., et al. (2009). A Branched-Chain Amino Acid-Related Metabolic Signature that Differentiates Obese and Lean Humans and Contributes to Insulin Resistance. Cel Metab. 9, 311–326. 10.1016/j.cmet.2009.02.002
    1. Nguyen D., Samson S. L., Reddy V. T., Gonzalez E. V., Sekhar R. V. (2013). Impaired Mitochondrial Fatty Acid Oxidation and Insulin Resistance in Aging: Novel Protective Role of Glutathione. Aging Cell 12, 415–425. 10.1111/acel.12073
    1. Nguyen D., Hsu J. W., Jahoor F., Sekhar R. V. (2014). Effect of Increasing Glutathione with Cysteine and glycine Supplementation on Mitochondrial Fuel Oxidation, Insulin Sensitivity, and Body Composition in Older HIV-Infected Patients. J. Clin. Endocrinol. Metab. 99, 169–177. 10.1210/jc.2013-2376
    1. Peng P.-S., Kao T.-W., Chang P.-K., Chen W.-L., Peng P.-J., Wu L.-W. (2019). Association between HOMA-IR and Frailty Among U.S. Middle-Aged and Elderly Population. Sci. Rep. 9, 4238. 10.1038/s41598-019-40902-1
    1. Redman L. M., Smith S. R., Burton J. H., Martin C. K., Il'yasova D., Ravussin E. (2018). Metabolic Slowing and Reduced Oxidative Damage with Sustained Caloric Restriction Support the Rate of Living and Oxidative Damage Theories of Aging. Cel Metab. 27, 805–815.e4. 10.1016/j.cmet.2018.02.019
    1. Ristow M., Zarse K., Oberbach A., Kloting N., Birringer M., Kiehntopf M., et al. (2009). Antioxidants Prevent Health-Promoting Effects of Physical Exercise in Humans. Proc. Natl. Acad. Sci. 106, 8665–8670. 10.1073/pnas.0903485106
    1. Ristow M. (2014). Unraveling the Truth about Antioxidants: Mitohormesis Explains ROS-Induced Health Benefits. Nat. Med. 20, 709–711. 10.1038/nm.3624
    1. Roum J. H., Buhl R., Mcelvaney N. G., Borok Z., Crystal R. G. (1993). Systemic Deficiency of Glutathione in Cystic Fibrosis. J. Appl. Physiol. (1985) 75, 2419–2424. 10.1152/jappl.1993.75.6.2419
    1. Rushworth G. F., Megson I. L. (2014). Existing and Potential Therapeutic Uses for N-Acetylcysteine: the Need for Conversion to Intracellular Glutathione for Antioxidant Benefits. Pharmacol. Ther. 141, 150–159. 10.1016/j.pharmthera.2013.09.006
    1. Samiec P. S., Drews-Botsch C., Flagg E. W., Kurtz J. C., Sternberg P., Jr., Reed R. L., et al. (1998). Glutathione in Human Plasma: Decline in Association with Aging, Age-Related Macular Degeneration, and Diabetes. Free Radic. Biol. Med. 24, 699–704. 10.1016/s0891-5849(97)00286-4
    1. Sekhar R. V., Patel S. G., Guthikonda A. P., Reid M., Balasubramanyam A., Taffet G. E., et al. (2011). Deficient Synthesis of Glutathione Underlies Oxidative Stress in Aging and Can Be Corrected by Dietary Cysteine and glycine Supplementation. Am. J. Clin. Nutr. 94, 847–853. 10.3945/ajcn.110.003483
    1. Shadel G. S., Horvath T. L. (2015). Mitochondrial ROS Signaling in Organismal Homeostasis. Cell 163, 560–569. 10.1016/j.cell.2015.10.001
    1. Sies H. (1997). Oxidative Stress: Oxidants and Antioxidants. Exp. Physiol. 82, 291–295. 10.1113/expphysiol.1997.sp004024
    1. Sies H. (1999). Glutathione and its Role in Cellular Functions. Free Radic. Biol. Med. 27, 916–921. 10.1016/s0891-5849(99)00177-x
    1. Sies H. (2015). Oxidative Stress: a Concept in Redox Biology and Medicine. Redox Biol. 4, 180–183. 10.1016/j.redox.2015.01.002
    1. Smilkstein M. J., Knapp G. L., Kulig K. W., Rumack B. H. (1988). Efficacy of Oral N-Acetylcysteine in the Treatment of Acetaminophen Overdose. Analysis of the National Multicenter Study (1976 to 1985). N. Engl. J. Med. 319, 1557–1562. 10.1056/nejm198812153192401
    1. Szkudlinska M. A., Von Frankenberg A. D., Utzschneider K. M. (2016). The Antioxidant N-Acetylcysteine Does Not Improve Glucose Tolerance or β-cell Function in Type 2 Diabetes. J. Diabetes its Complications 30, 618–622. 10.1016/j.jdiacomp.2016.02.003
    1. Townsend D. M., Tew K. D., Tapiero H. (2003). The Importance of Glutathione in Human Disease. Biomed. Pharmacother. 57, 145–155. 10.1016/s0753-3322(03)00043-x
    1. van Zandwijk N., Dalesio O., Pastorino U., De Vries N., Van Tinteren H. (2000). EUROSCAN, a Randomized Trial of Vitamin A and N-Acetylcysteine in Patients with Head and Neck Cancer or Lung Cancer. For the EUropean Organization for Research and Treatment of Cancer Head and Neck and Lung Cancer Cooperative Groups. J. Natl. Cancer Inst. 92, 977–986. 10.1093/jnci/92.12.977
    1. Weisbord S. D., Gallagher M., Jneid H., Garcia S., Cass A., Thwin S.-S., et al. (2018). Outcomes after Angiography with Sodium Bicarbonate and Acetylcysteine. N. Engl. J. Med. 378, 603–614. 10.1056/nejmoa1710933
    1. Wittemans L. B. L., Lotta L. A., Oliver-Williams C., Stewart I. D., Surendran P., Karthikeyan S., et al. (2019). Assessing the Causal Association of glycine with Risk of Cardio-Metabolic Diseases. Nat. Commun. 10, 1060. 10.1038/s41467-019-08936-1
    1. Wu G., Fang Y.-Z., Yang S., Lupton J. R., Turner N. D. (2004). Glutathione Metabolism and its Implications for Health. J. Nutr. 134, 489–492. 10.1093/jn/134.3.489
    1. Zhang J. X., Wang Z. M., Zhang J. J., Zhu L. L., Gao X. F., Chen S. L. (2014). Association of Glutathione Peroxidase-1 (GPx-1) Rs1050450 Pro198Leu and Pro197Leu Polymorphisms with Cardiovascular Risk: a Meta-Analysis of Observational Studies. J. Geriatr. Cardiol. 11, 141–150. 10.3969/j.issn.1671-5411.2014.02.003
    1. Zheng J.-P., Wen F.-Q., Bai C.-X., Wan H.-Y., Kang J., Chen P., et al. (2014). Twice Daily N-Acetylcysteine 600 Mg for Exacerbations of Chronic Obstructive Pulmonary Disease (PANTHEON): a Randomised, Double-Blind Placebo-Controlled Trial. Lancet Respir. Med. 2, 187–194. 10.1016/s2213-2600(13)70286-8

Source: PubMed

3
Se inscrever