Probiotics: How Effective Are They in the Fight against Obesity?

Kiran Mazloom, Imran Siddiqi, Mihai Covasa, Kiran Mazloom, Imran Siddiqi, Mihai Covasa

Abstract

Obesity has been associated with structural and functional changes in the gut microbiota. The abundance in, and diversity of, certain bacteria may favor energy harvest and metabolic pathways leading to obesity. Therefore, gut microbiota has become a potential target that can be manipulated to obtain optimal health. Probiotics have been shown to influence the composition of the gut microbiota, improve gut integrity, and restore the microbial shifts characteristic of obesity. Based on physical and biochemical parameters, metabolic and inflammatory markers, and alterations in gut microbe diversity, animal studies revealed beneficial results in obese models whereas the results in humans are sparse and inconsistent. Thus, the purpose of this review is to present evidence from animal studies and human clinical trials demonstrating the effects of various probiotic strains and their potential efficacy in improving obesity and associated metabolic dysfunctions. Furthermore, the review discusses current gaps in our understanding of how probiotics modulate gut microflora to protect against obesity. Finally, we propose future studies and methodological approaches that may shed light on the challenges facing the scientific community in deciphering the host⁻bacteria interaction in obesity.

Keywords: adiposity; bifidobacterium; inflammation; lactobacillus; microbiota.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Agha M., Agha R. The rising prevalence of obesity: Part A: Impact on public health. Int. J. Surg. Oncol. (N. Y.) 2017;2:e17. doi: 10.1097/IJ9.0000000000000017.
    1. O’Hara A.M., Shanahan F. The gut flora as a forgotten organ. EMBO Rep. 2006;7:688–693. doi: 10.1038/sj.embor.7400731.
    1. Shahid S.U., Irfan U. The gut microbiota and its potential role in obesity. Future Microbiol. 2018;13:589–603.
    1. Wolever T., Brighenti F., Royall D., Jenkins A.L., Jenkins D.J. Effect of rectal infusion of short chain fatty acids in human subjects. Am. J. Gastroenterol. 1989;84:1027–1033.
    1. Wolever T.M.S., Spadafora P., Eshuis H. Interaction between colonic acetate and propionate in humans. Am. J. Clin. Nutr. 1991;53:681–687. doi: 10.1093/ajcn/53.3.681.
    1. Cotillard A., Kennedy S.P., Kong L.C., Prifti E., Pons N., Le Chatelier E., Almeida M., Quinquis B., Levenez F., Galleron N., et al. Dietary intervention impact on gut microbial gene richness. Nature. 2013;500:585–588. doi: 10.1038/nature12480.
    1. Le Chatelier E., Nielsen T., Qin J., Prifti E., Hildebrand F., Falony G., Almeida M., Arumugam M., Batto J.M., Kennedy S., et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500:541–546. doi: 10.1038/nature12506.
    1. Eckburg P.B., Bik E.M., Bernstein C.N., Purdom E., Dethlefsen L., Sargent M., Gill S.R., Nelson K.E., Relman D.A. Diversity of the human intestinal microbial flora. Science. 2005;308:1635–1638. doi: 10.1126/science.1110591.
    1. Azad M.A.K., Sarker M., Li T., Yin J. Probiotic species in the modulation of gut microbiota: An overview. BioMed Res. Int. 2018;2018:9478630. doi: 10.1155/2018/9478630.
    1. Hentges D.J. The anaerobic microflora of the human body. Clin. Infect. Dis. J. 1993;16:S175–S180. doi: 10.1093/clinids/16.Supplement_4.S175.
    1. Kobyliak N., Virchenko O., Falalyeyeva T. Pathophysiological role of host microbiota in the development of obesity. Nutr. J. 2016;15:43. doi: 10.1186/s12937-016-0166-9.
    1. Backhed F., Ding H., Wang T., Hooper L.V., Koh G.Y., Nagy A., Semenkovich C.F., Gordon J.I. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA. 2004;101:15718–15723. doi: 10.1073/pnas.0407076101.
    1. Flint H.J., Bayer E.A., Rincon M.T., Lamed R., White B.A. Polysaccharide utilization by gut bacteria: Potential for new insights from genomic analysis. Nat. Rev. Microbiol. 2008;6:121–131. doi: 10.1038/nrmicro1817.
    1. Samuel B.S., Gordon J.I. A humanized gnotobiotic mouse model of host–archaeal–bacterial mutualism. Proc. Natl. Acad. Sci. USA. 2006;103:10011–10016. doi: 10.1073/pnas.0602187103.
    1. Schele E., Grahnemo L., Anesten F., Hallen A., Backhed F., Jansson J.O. The gut microbiota reduces leptin sensitivity and the expression of the obesity-suppressing neuropeptides proglucagon (Gcg) and brain-derived neurotrophic factor (Bdnf) in the central nervous system. Endocrinology. 2013;154:3643–3651. doi: 10.1210/en.2012-2151.
    1. Queipo-Ortuno M.I., Seoane L.M., Murri M., Pardo M., Gomez-Zumaquero J.M., Cardona F., Casanueva F., Tinahones F.J. Gut microbiota composition in male rat models under different nutritional status and physical activity and its association with serum leptin and ghrelin levels. PLoS ONE. 2013;8:e65465. doi: 10.1371/journal.pone.0065465.
    1. Kimura I., Inoue D., Hirano K., Tsujimoto G. The SCFA receptor GPR43 and energy metabolism. Front. Endocrinol. (Lausanne) 2014;5:85. doi: 10.3389/fendo.2014.00085.
    1. Hong Y.-H., Nishimura Y., Hishikawa D., Tsuzuki H., Miyahara H., Gotoh C., Choi K.-C., Feng D.D., Chen C., Lee H.-G., et al. Acetate and propionate short chain fatty acids stimulate adipogenesis via GPCR43. Endocrinology. 2005;146:5092–5099. doi: 10.1210/en.2005-0545.
    1. Samuel B.S., Shaito A., Motoike T., Rey F.E., Backhed F., Manchester J.K., Hammer R.E., Williams S.C., Crowley J., Yanagisawa M., et al. Effects of the gut microbiota on host adiposity are modulated by the short-chain fatty-acid binding G protein-coupled receptor, Gpr41. Proc. Natl. Acad. Sci. USA. 2008;105:16767–16772. doi: 10.1073/pnas.0808567105.
    1. Grandt D., Schimiczek M., Beglinger C., Layer P., Goebell H., Eysselein V.E., Reeve J.R., Jr. Two molecular forms of peptide YY (PYY) are abundant in human blood: Characterization of a radioimmunoassay recognizing PYY 1-36 and PYY 3-36. Regul. Pept. 1994;51:151–159. doi: 10.1016/0167-0115(94)90204-6.
    1. Batterham R.L., Cohen M.A., Ellis S.M., Le Roux C.W., Withers D.J., Frost G.S., Ghatei M.A., Bloom S.R. Inhibition of food intake in obese subjects by peptide YY3-36. N. Engl. J. Med. 2003;349:941–948. doi: 10.1056/NEJMoa030204.
    1. Bauer P.V., Hamr S.C., Duca F.A. Regulation of energy balance by a gut-brain axis and involvement of the gut microbiota. Cell. Mol. Life Sci. 2016;73:737–755. doi: 10.1007/s00018-015-2083-z.
    1. Holst J.J. Incretin hormones and the satiation signal. Int. J. Obes. (Lond.) 2013;37:1161–1168. doi: 10.1038/ijo.2012.208.
    1. El Homsi M., Ducroc R., Claustre J., Jourdan G., Gertler A., Estienne M., Bado A., Scoazec J.Y., Plaisancie P. Leptin modulates the expression of secreted and membrane-associated mucins in colonic epithelial cells by targeting PKC, PI3K, and MAPK pathways. Am. J. Physiol. Gastrointest. Liver Physiol. 2007;293:G365–G373. doi: 10.1152/ajpgi.00091.2007.
    1. Lu Y., Fan C., Li P., Lu Y., Chang X., Qi K. Short chain fatty acids prevent high-fat-diet-induced obesity in mice by regulating G protein-coupled receptors and gut microbiota. Sci. Rep. 2016;6:37589. doi: 10.1038/srep37589.
    1. Dahiya D.K., Renuka, Puniya M., Shandilya U.K., Dhewa T., Kumar N., Kumar S., Puniya A.K., Shukla P. Gut microbiota modulation and its relationship with obesity using prebiotic fibers and probiotics: A review. Front. Microbiol. 2017;8:563. doi: 10.3389/fmicb.2017.00563.
    1. Yoon J.C., Chickering T.W., Rosen E.D., Dussault B., Qin Y., Soukas A., Friedman J.M., Holmes W.E., Spiegelman B.M. Peroxisome proliferator-activated receptor gamma target gene encoding a novel angiopoietin-related protein associated with adipose differentiation. Mol. Cell. Biol. 2000;20:5343–5349. doi: 10.1128/MCB.20.14.5343-5349.2000.
    1. Fleissner C.K., Huebel N., Abd El-Bary M.M., Loh G., Klaus S., Blaut M. Absence of intestinal microbiota does not protect mice from diet-induced obesity. Br. J. Nutr. 2010;104:919–929. doi: 10.1017/S0007114510001303.
    1. Bäckhed F., Manchester J.K., Semenkovich C.F., Gordon J.I. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl. Acad. Sci. USA. 2007;104:979–984. doi: 10.1073/pnas.0605374104.
    1. Boulange C.L., Neves A.L., Chilloux J., Nicholson J.K., Dumas M.E. Impact of the gut microbiota on inflammation, obesity, and metabolic disease. Genome Med. 2016;8:42. doi: 10.1186/s13073-016-0303-2.
    1. Kuwahara A. Contributions of colonic short-chain fatty acid receptors in energy homeostasis. Front. Endocrinol. (Lausanne) 2014;5:144. doi: 10.3389/fendo.2014.00144.
    1. Boroni Moreira A.P., Fiche Salles Teixeira T., Gouveia Peluzio M.d.C., Cássia Gonçalves Alfenas R.d. Gut microbiota and the development of obesity. Nutrición Hospitalaria. 2012;27:1408–1414.
    1. Tilg H., Kaser A. Gut microbiome, obesity, and metabolic dysfunction. J. Clin. Investig. 2011;121:2126–2132. doi: 10.1172/JCI58109.
    1. Amar J., Burcelin R., Ruidavets J.B., Cani P.D., Fauvel J., Alessi M.C., Chamontin B., Ferrieres J. Energy intake is associated with endotoxemia in apparently healthy men. Am. J. Clin. Nutr. 2008;87:1219–1223. doi: 10.1093/ajcn/87.5.1219.
    1. Erridge C., Attina T., Spickett C.M., Webb D.J. A high-fat meal induces low-grade endotoxemia: Evidence of a novel mechanism of postprandial inflammation. Am. J. Clin. Nutr. 2007;86:1286–1292. doi: 10.1093/ajcn/86.5.1286.
    1. Cani P.D., Bibiloni R., Knauf C., Waget A., Neyrinck A.M., Delzenne N.M., Burcelin R. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57:1470–1481. doi: 10.2337/db07-1403.
    1. Rakoff-Nahoum S., Paglino J., Eslami-Varzaneh F., Edberg S., Medzhitov R. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell. 2004;118:229–241. doi: 10.1016/j.cell.2004.07.002.
    1. Cani P.D. Human gut microbiome: Hopes, threats and promises. Gut. 2018;67:1716–1725. doi: 10.1136/gutjnl-2018-316723.
    1. Wang Z., Xiao G., Yao Y., Guo S., Lu K., Sheng Z. The role of bifidobacteria in gut barrier function after thermal injury in rats. J. Trauma. 2006;61:650–657. doi: 10.1097/01.ta.0000196574.70614.27.
    1. Kennedy A., Martinez K., Schmidt S., Mandrup S., LaPoint K., McIntosh M. Antiobesity mechanisms of action of conjugated linoleic acid. J. Nutr. Biochem. 2010;21:171–179. doi: 10.1016/j.jnutbio.2009.08.003.
    1. Obsen T., Faergeman N.J., Chung S., Martinez K., Gobern S., Loreau O., Wabitsch M., Mandrup S., McIntosh M. Trans-10, cis-12 conjugated linoleic acid decreases de novo lipid synthesis in human adipocytes. J. Nutr. Biochem. 2012;23:580–590. doi: 10.1016/j.jnutbio.2011.02.014.
    1. Ryder J.W., Portocarrero C.P., Song X.M., Cui L., Yu M., Combatsiaris T., Galuska D., Bauman D.E., Barbano D.M., Charron M.J., et al. Isomer-specific antidiabetic properties of conjugated linoleic acid. Improved glucose tolerance, skeletal muscle insulin action, and UCP-2 gene expression. Diabetes. 2001;50:1149–1157. doi: 10.2337/diabetes.50.5.1149.
    1. Belury M.A. Dietary conjugated linoleic acid in health: Physiological effects and mechanisms of action. Annu. Rev. Nutr. 2002;22:505–531. doi: 10.1146/annurev.nutr.22.021302.121842.
    1. Ohnuki K., Haramizu S., Oki K., Ishihara K., Fushiki T. A single oral administration of conjugated linoleic acid enhanced energy metabolism in mice. Lipids. 2001;36:583–587. doi: 10.1007/s11745-001-0760-2.
    1. Turnbaugh P.J., Ley R.E., Mahowald M.A., Magrini V., Mardis E.R., Gordon J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–1031. doi: 10.1038/nature05414.
    1. Pryde S.E., Duncan S.H., Hold G.L., Stewart C.S., Flint H.J. The microbiology of butyrate formation in the human colon. FEMS Microbiol. Lett. 2002;217:133–139. doi: 10.1111/j.1574-6968.2002.tb11467.x.
    1. Duncan S.H., Hold G.L., Barcenilla A., Stewart C.S., Flint H.J. Roseburia intestinalis sp. nov., a novel saccharolytic, butyrate-producing bacterium from human faeces. Int. J. Syst. Evol. Microbiol. 2002;52:1615–1620.
    1. Kasai C., Sugimoto K., Moritani I., Tanaka J., Oya Y., Inoue H., Tameda M., Shiraki K., Ito M., Takei Y., et al. Comparison of the gut microbiota composition between obese and non-obese individuals in a Japanese population, as analyzed by terminal restriction fragment length polymorphism and next-generation sequencing. BMC Gastroenterol. 2015;15:100. doi: 10.1186/s12876-015-0330-2.
    1. Koliada A., Syzenko G., Moseiko V., Budovska L., Puchkov K., Perederiy V., Gavalko Y., Dorofeyev A., Romanenko M., Tkach S., et al. Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiol. 2017;17:120. doi: 10.1186/s12866-017-1027-1.
    1. Turnbaugh P.J., Hamady M., Yatsunenko T., Cantarel B.L., Duncan A., Ley R.E., Sogin M.L., Jones W.J., Roe B.A., Affourtit J.P., et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–484. doi: 10.1038/nature07540.
    1. Ley R.E., Turnbaugh P.J., Klein S., Gordon J.I. Human gut microbes associated with obesity. Nature. 2006;444:1022–1023. doi: 10.1038/4441022a.
    1. Ignacio A., Fernandes M.R., Rodrigues V.A., Groppo F.C., Cardoso A.L., Avila-Campos M.J., Nakano V. Correlation between body mass index and faecal microbiota from children. Clin. Microbiol. Infect. 2016;22:258.e1–258.e8. doi: 10.1016/j.cmi.2015.10.031.
    1. Haro C., Rangel-Zuniga O.A., Alcala-Diaz J.F., Gomez-Delgado F., Perez-Martinez P., Delgado-Lista J., Quintana-Navarro G.M., Landa B.B., Navas-Cortes J.A., Tena-Sempere M., et al. Intestinal microbiota is influenced by gender and body mass index. PLoS ONE. 2016;11:e0154090. doi: 10.1371/journal.pone.0154090.
    1. Hu H.J., Park S.G., Jang H.B., Choi M.K., Park K.H., Kang J.H., Park S.I., Lee H.J., Cho S.H. Obesity alters the microbial community profile in Korean adolescents. PLoS ONE. 2015;10:e0134333. doi: 10.1371/journal.pone.0134333.
    1. Aron-Wisnewsky J., Prifti E., Belda E., Ichou F., Kayser B.D., Dao M.C., Verger E.O., Hedjazi L., Bouillot J.-L., Chevallier J.-M., et al. Major microbiota dysbiosis in severe obesity: Fate after bariatric surgery. Gut. 2018;68:70–82. doi: 10.1136/gutjnl-2018-316103.
    1. Million M., Maraninchi M., Henry M., Armougom F., Richet H., Carrieri P., Valero R., Raccah D., Vialettes B., Raoult D. Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. Int. J. Obes. (Lond.) 2012;36:817–825. doi: 10.1038/ijo.2011.153.
    1. Balamurugan R., George G., Kabeerdoss J., Hepsiba J., Chandragunasekaran A.M., Ramakrishna B.S. Quantitative differences in intestinal Faecalibacterium prausnitzii in obese Indian children. Br. J. Nutr. 2010;103:335–338. doi: 10.1017/S0007114509992182.
    1. Fuller R. Probiotics in man and animals. J. Appl. Bacteriol. 1989;66:365–378.
    1. Schrezenmeir J., de Vrese M. Probiotics, prebiotics, and synbiotics—Approaching a definition. Am. J. Clin. Nutr. 2001;73:361S–364S. doi: 10.1093/ajcn/73.2.361s.
    1. He M., Shi B. Gut microbiota as a potential target of metabolic syndrome: The role of probiotics and prebiotics. Cell Biosci. 2017;7:54. doi: 10.1186/s13578-017-0183-1.
    1. Selle K., Klaenhammer T.R. Genomic and phenotypic evidence for probiotic influences of Lactobacillus gasseri on human health. FEMS Microbiol. Rev. 2013;37:915–935. doi: 10.1111/1574-6976.12021.
    1. Ohland C.L., Macnaughton W.K. Probiotic bacteria and intestinal epithelial barrier function. Am. J. Physiol. Gastrointest. Liver Physiol. 2010;298:G807–G819. doi: 10.1152/ajpgi.00243.2009.
    1. Hooper L.V., Wong M.H., Thelin A., Hansson L., Falk P.G., Gordon J.I. Molecular analysis of commensal host-microbial relationships in the intestine. Science. 2001;291:881–884. doi: 10.1126/science.291.5505.881.
    1. Anderson R.C., Cookson A.L., McNabb W.C., Park Z., McCann M.J., Kelly W.J., Roy N.C. Lactobacillus plantarum MB452 enhances the function of the intestinal barrier by increasing the expression levels of genes involved in tight junction formation. BMC Microbiol. 2010;10:316. doi: 10.1186/1471-2180-10-316.
    1. Hummel S., Veltman K., Cichon C., Sonnenborn U., Schmidt M.A. Differential targeting of the e-cadherin/beta-catenin complex by gram-positive probiotic lactobacilli improves epithelial barrier function. Appl. Environ. Microbiol. 2012;78:1140–1147. doi: 10.1128/AEM.06983-11.
    1. Zyrek A.A., Cichon C., Helms S., Enders C., Sonnenborn U., Schmidt M.A. Molecular mechanisms underlying the probiotic effects of Escherichia coli nissle 1917 involve ZO-2 and PKCzeta redistribution resulting in tight junction and epithelial barrier repair. Cell Microbiol. 2007;9:804–816. doi: 10.1111/j.1462-5822.2006.00836.x.
    1. Caballero-Franco C., Keller K., De Simone C., Chadee K. The VSL#3 probiotic formula induces mucin gene expression and secretion in colonic epithelial cells. Am. J. Physiol. Gastrointest. Liver Physiol. 2007;292:G315–G322.
    1. Dai C., Zhao D.H., Jiang M. Vsl#3 probiotics regulate the intestinal epithelial barrier in vivo and in vitro via the p38 and erk signaling pathways. Int. J. Mol. Med. 2012;29:202–208.
    1. Juntunen M., Kirjavainen P.V., Ouwehand A.C., Salminen S.J., Isolauri E. Adherence of probiotic bacteria to human intestinal mucus in healthy infants and during rotavirus infection. Clin. Diagn. Lab. Immunol. 2001;8:293–296. doi: 10.1128/CDLI.8.2.293-296.2001.
    1. Buck B.L., Altermann E., Svingerud T., Klaenhammer T.R. Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM. Appl. Environ. Microbiol. 2005;71:8344–8351. doi: 10.1128/AEM.71.12.8344-8351.2005.
    1. Candela M., Bergmann S., Vici M., Vitali B., Turroni S., Eikmanns B.J., Hammerschmidt S., Brigidi P. Binding of human plasminogen to bifidobacterium. J. Bacteriol. 2007;189:5929–5936. doi: 10.1128/JB.00159-07.
    1. Lee K., Paek K., Lee H.Y., Park J.H., Lee Y. Antiobesity effect of trans-10,cis-12-conjugated linoleic acid-producing Lactobacillus plantarum PL62 on diet-induced obese mice. J. Appl. Microbiol. 2007;103:1140–1146. doi: 10.1111/j.1365-2672.2007.03336.x.
    1. O’Shea E.F., Cotter P.D., Stanton C., Ross R.P., Hill C. Production of bioactive substances by intestinal bacteria as a basis for explaining probiotic mechanisms: Bacteriocins and conjugated linoleic acid. Int. J. Food Microbiol. 2012;152:189–205. doi: 10.1016/j.ijfoodmicro.2011.05.025.
    1. Nielsen D.S., Cho G.S., Hanak A., Huch M., Franz C.M., Arneborg N. The effect of bacteriocin-producing lactobacillus plantarum strains on the intracellular pH of sessile and planktonic listeria monocytogenes single cells. Int. J. Food Microbiol. 2010;141(Suppl. 1):S53–S59. doi: 10.1016/j.ijfoodmicro.2010.03.040.
    1. Callaway T.R., Edrington T.S., Anderson R.C., Harvey R.B., Genovese K.J., Kennedy C.N., Venn D.W., Nisbet D.J. Probiotics, prebiotics and competitive exclusion for prophylaxis against bacterial disease. Anim. Health Res. Rev. 2008;9:217–225. doi: 10.1017/S1466252308001540.
    1. Chenoll E., Casinos B., Bataller E., Astals P., Echevarria J., Iglesias J.R., Balbarie P., Ramon D., Genoves S. Novel probiotic Bifidobacterium bifidum cect 7366 strain active against the pathogenic bacterium helicobacter pylori. Appl. Environ. Microbiol. 2011;77:1335–1343. doi: 10.1128/AEM.01820-10.
    1. Coconnier M.H., Bernet M.F., Chauviere G., Servin A.L. Adhering heat-killed human Lactobacillus acidophilus, strain LB, inhibits the process of pathogenicity of diarrhoeagenic bacteria in cultured human intestinal cells. J. Diarrhoeal Dis. Res. 1993;11:235–242.
    1. Shokryazdan P., Sieo C.C., Kalavathy R., Liang J.B., Alitheen N.B., Faseleh Jahromi M., Ho Y.W. Probiotic potential of lactobacillus strains with antimicrobial activity against some human pathogenic strains. BioMed Res. Int. 2014;2014:927268. doi: 10.1155/2014/927268.
    1. Yan F., Polk D.B. Probiotics and immune health. Curr. Opin. Gastroenterol. 2011;27:496–501. doi: 10.1097/MOG.0b013e32834baa4d.
    1. van Baarlen P., Wells J.M., Kleerebezem M. Regulation of intestinal homeostasis and immunity with probiotic lactobacilli. Trends Immunol. 2013;34:208–215. doi: 10.1016/j.it.2013.01.005.
    1. Wells J.M. Immunomodulatory mechanisms of lactobacilli. Microb. Cell Fact. 2011;10(Suppl. 1):S17. doi: 10.1186/1475-2859-10-S1-S17.
    1. Kang Y., Cai Y. The development of probiotics therapy to obesity: A therapy that has gained considerable momentum. Hormones (Athens) 2018;17:141–151. doi: 10.1007/s42000-018-0003-y.
    1. Lee H.Y., Park J.H., Seok S.H., Baek M.W., Kim D.J., Lee K.E., Paek K.S., Lee Y., Park J.H. Human originated bacteria, Lactobacillus rhamnosus PL60, produce conjugated linoleic acid and show anti-obesity effects in diet-induced obese mice. Biochim. Biophys. Acta. 2006;1761:736–744. doi: 10.1016/j.bbalip.2006.05.007.
    1. Kim S.W., Park K.Y., Kim B., Kim E., Hyun C.K. Lactobacillus rhamnosus gg improves insulin sensitivity and reduces adiposity in high-fat diet-fed mice through enhancement of adiponectin production. Biochem. Biophys. Res. Commun. 2013;431:258–263. doi: 10.1016/j.bbrc.2012.12.121.
    1. Singh S., Sharma R.K., Malhotra S., Pothuraju R., Shandilya U.K. Lactobacillus rhamnosus ncdc17 ameliorates type-2 diabetes by improving gut function, oxidative stress and inflammation in high-fat-diet fed and streptozotocintreated rats. Benef. Microbes. 2017;8:243–255. doi: 10.3920/BM2016.0090.
    1. Pothuraju R., Sharma R.K., Chagalamarri J., Kavadi P.K., Jangra S. Influence of milk fermented with Lactobacillus rhamnosus ncdc 17 alone and in combination with herbal ingredients on diet induced adiposity and related gene expression in c57bl/6j mice. Food Funct. 2015;6:3576–3584. doi: 10.1039/C5FO00781J.
    1. Park S.Y., Seong K.S., Lim S.D. Anti-obesity effect of yogurt fermented by Lactobacillus plantarum Q180 in diet-induced obese rats. Korean J. Food Sci. Anim. Resour. 2016;36:77–83. doi: 10.5851/kosfa.2016.36.1.77.
    1. Hong S.M., Chung E.C., Kim C.H. Anti-obesity effect of fermented whey beverage using lactic acid bacteria in diet-induced obese rats. Korean J. Food Sci. Anim. Resour. 2015;35:653–659. doi: 10.5851/kosfa.2015.35.5.653.
    1. Park J.E., Oh S.H., Cha Y.S. Lactobacillus plantarum LG42 isolated from gajami sik-hae decreases body and fat pad weights in diet-induced obese mice. J. Appl. Microbiol. 2014;116:145–156. doi: 10.1111/jam.12354.
    1. Ben Salah R., Trabelsi I., Hamden K., Chouayekh H., Bejar S. Lactobacillus plantarum TN8 exhibits protective effects on lipid, hepatic and renal profiles in obese rat. Anaerobe. 2013;23:55–61. doi: 10.1016/j.anaerobe.2013.07.003.
    1. Lee E., Jung S.R., Lee S.Y., Lee N.K., Paik H.D., Lim S.I. Lactobacillus plantarum strain Ln4 attenuates diet-induced obesity, insulin resistance, and changes in hepatic mrna levels associated with glucose and lipid metabolism. Nutrients. 2018;10:643. doi: 10.3390/nu10050643.
    1. Takemura N., Okubo T., Sonoyama K. Lactobacillus plantarum strain no. 14 reduces adipocyte size in mice fed high-fat diet. Exp. Biol. Med. (Maywood) 2010;235:849–856. doi: 10.1258/ebm.2010.009377.
    1. Pothuraju R., Sharma R.K., Kavadi P.K., Chagalamarri J., Jangra S., Bhakri G., De S. Anti-obesity effect of milk fermented by Lactobacillus plantarum ncdc 625 alone and in combination with herbs on high fat diet fed c57bl/6j mice. Benef. Microbes. 2016;7:375–385. doi: 10.3920/BM2015.0083.
    1. Miyoshi M., Ogawa A., Higurashi S., Kadooka Y. Anti-obesity effect of Lactobacillus gasseri SBT2055 accompanied by inhibition of pro-inflammatory gene expression in the visceral adipose tissue in diet-induced obese mice. Eur. J. Nutr. 2014;53:599–606. doi: 10.1007/s00394-013-0568-9.
    1. Sato M., Uzu K., Yoshida T., Hamad E.M., Kawakami H., Matsuyama H., Abd El-Gawad I.A., Imaizumi K. Effects of milk fermented by Lactobacillus gasseri SBT2055 on adipocyte size in rats. Br. J. Nutr. 2008;99:1013–1017. doi: 10.1017/S0007114507839006.
    1. Kang J.H., Yun S.I., Park H.O. Effects of Lactobacillus gasseri BNR17 on body weight and adipose tissue mass in diet-induced overweight rats. J. Microbiol. 2010;48:712–714. doi: 10.1007/s12275-010-0363-8.
    1. Kang J.H., Yun S.I., Park M.H., Park J.H., Jeong S.Y., Park H.O. Anti-obesity effect of Lactobacillus gasseri BNR17 in high-sucrose diet-induced obese mice. PLoS ONE. 2013;8:e54617. doi: 10.1371/journal.pone.0054617.
    1. Tanida M., Shen J., Maeda K., Horii Y., Yamano T., Fukushima Y., Nagai K. High-fat diet-induced obesity is attenuated by probiotic strain Lactobacillus paracasei ST11 (NCC2461) in rats. Obes. Res. Clin. Pract. 2008;2:159–169. doi: 10.1016/j.orcp.2008.04.003.
    1. Thiennimitr P., Yasom S., Tunapong W., Chunchai T., Wanchai K., Pongchaidecha A., Lungkaphin A., Sirilun S., Chaiyasut C., Chattipakorn N., et al. Lactobacillus paracasei hii01, xylooligosaccharides, and synbiotics reduce gut disturbance in obese rats. Nutrition. 2018;54:40–47. doi: 10.1016/j.nut.2018.03.005.
    1. Ji Y.S., Kim H.N., Park H.J., Lee J.E., Yeo S.Y., Yang J.S., Park S.Y., Yoon H.S., Cho G.S., Franz C.M., et al. Modulation of the murine microbiome with a concomitant anti-obesity effect by Lactobacillus rhamnosus gg and lactobacillus sakei nr28. Benef. Microbes. 2012;3:13–22. doi: 10.3920/BM2011.0046.
    1. Pothuraju R., Sharma R.K. Interplay of gut microbiota, probiotics in obesity: A review. Endocr. Metab. Immune Disord. Drug Targets. 2018;18:212–220. doi: 10.2174/1871530318666180131092203.
    1. Everard A., Matamoros S., Geurts L., Delzenne N.M., Cani P.D. Saccharomyces boulardii administration changes gut microbiota and reduces hepatic steatosis, low-grade inflammation, and fat mass in obese and type 2 diabetic db/db mice. MBio. 2014;5:e01011-14. doi: 10.1128/mBio.01011-14.
    1. Murphy E.F., Cotter P.D., Hogan A., O’Sullivan O., Joyce A., Fouhy F., Clarke S.F., Marques T.M., O’Toole P.W., Stanton C., et al. Divergent metabolic outcomes arising from targeted manipulation of the gut microbiota in diet-induced obesity. Gut. 2013;62:220–226. doi: 10.1136/gutjnl-2011-300705.
    1. Arora T., Anastasovska J., Gibson G., Tuohy K., Sharma R.K., Bell J., Frost G. Effect of lactobacillus acidophilus ncdc 13 supplementation on the progression of obesity in diet-induced obese mice. Br. J. Nutr. 2012;108:1382–1389. doi: 10.1017/S0007114511006957.
    1. An H.M., Park S.Y., Lee D.K., Kim J.R., Cha M.K., Lee S.W., Lim H.T., Kim K.J., Ha N.J. Antiobesity and lipid-lowering effects of Bifidobacterium spp. In high fat diet-induced obese rats. Lipids Health Dis. 2011;10:116. doi: 10.1186/1476-511X-10-116.
    1. Yin Y.N., Yu Q.F., Fu N., Liu X.W., Lu F.G. Effects of four bifidobacteria on obesity in high-fat diet induced rats. World J. Gastroenterol. 2010;16:3394–3401. doi: 10.3748/wjg.v16.i27.3394.
    1. Chen J., Wang R., Li X.F., Wang R.L. Bifidobacterium adolescentis supplementation ameliorates visceral fat accumulation and insulin sensitivity in an experimental model of the metabolic syndrome. Br. J. Nutr. 2012;107:1429–1434. doi: 10.1017/S0007114511004491.
    1. Reichold A., Brenner S.A., Spruss A., Forster-Fromme K., Bergheim I., Bischoff S.C. Bifidobacterium adolescentis protects from the development of nonalcoholic steatohepatitis in a mouse model. J. Nutr. Biochem. 2014;25:118–125. doi: 10.1016/j.jnutbio.2013.09.011.
    1. Wang J., Tang H., Zhang C., Zhao Y., Derrien M., Rocher E., van-Hylckama Vlieg J.E., Strissel K., Zhao L., Obin M., et al. Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice. ISME J. 2015;9:1–15. doi: 10.1038/ismej.2014.99.
    1. Zhao X., Higashikawa F., Noda M., Kawamura Y., Matoba Y., Kumagai T., Sugiyama M. The obesity and fatty liver are reduced by plant-derived Pediococcus pentosaceus lp28 in high fat diet-induced obese mice. PLoS ONE. 2012;7:e30696. doi: 10.1371/journal.pone.0030696.
    1. Gauffin Cano P., Santacruz A., Moya A., Sanz Y. Bacteroides uniformis cect 7771 ameliorates metabolic and immunological dysfunction in mice with high-fat-diet induced obesity. PLoS ONE. 2012;7:e41079. doi: 10.1371/journal.pone.0041079.
    1. Poutahidis T., Kleinewietfeld M., Smillie C., Levkovich T., Perrotta A., Bhela S., Varian B.J., Ibrahim Y.M., Lakritz J.R., Kearney S.M., et al. Microbial reprogramming inhibits western diet-associated obesity. PLoS ONE. 2013;8:e68596. doi: 10.1371/journal.pone.0068596.
    1. Santacruz A., Collado M.C., Garcia-Valdes L., Segura M.T., Martin-Lagos J.A., Anjos T., Marti-Romero M., Lopez R.M., Florido J., Campoy C., et al. Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. Br. J. Nutr. 2010;104:83–92. doi: 10.1017/S0007114510000176.
    1. Derrien M., Vaughan E.E., Plugge C.M., de Vos W.M. Akkermansia muciniphila gen. Nov., sp. Nov., a human intestinal mucin-degrading bacterium. Int. J. Syst. Evol. Microbiol. 2004;54:1469–1476. doi: 10.1099/ijs.0.02873-0.
    1. Everard A., Belzer C., Geurts L., Ouwerkerk J.P., Druart C., Bindels L.B., Guiot Y., Derrien M., Muccioli G.G., Delzenne N.M., et al. Cross-talk between akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA. 2013;110:9066–9071. doi: 10.1073/pnas.1219451110.
    1. Yoo S.R., Kim Y.J., Park D.Y., Jung U.J., Jeon S.M., Ahn Y.T., Huh C.S., McGregor R., Choi M.S. Probiotics L. plantarum and L. curvatus in combination alter hepatic lipid metabolism and suppress diet-induced obesity. Obesity (Silver Spring) 2013;21:2571–2578. doi: 10.1002/oby.20428.
    1. Savcheniuk O., Kobyliak N., Kondro M., Virchenko O., Falalyeyeva T., Beregova T. Short-term periodic consumption of multiprobiotic from childhood improves insulin sensitivity, prevents development of non-alcoholic fatty liver disease and adiposity in adult rats with glutamate-induced obesity. BMC Complement. Altern. Med. 2014;14:247. doi: 10.1186/1472-6882-14-247.
    1. Kobyliak N., Falalyeyeva T., Beregova T., Spivak M. Probiotics for experimental obesity prevention: Focus on strain dependence and viability of composition. Endokrynol. Pol. 2017;68:659–667. doi: 10.5603/EP.a2017.0055.
    1. Alard J., Lehrter V., Rhimi M., Mangin I., Peucelle V., Abraham A.L., Mariadassou M., Maguin E., Waligora-Dupriet A.J., Pot B., et al. Beneficial metabolic effects of selected probiotics on diet-induced obesity and insulin resistance in mice are associated with improvement of dysbiotic gut microbiota. Environ. Microbiol. 2016;18:1484–1497. doi: 10.1111/1462-2920.13181.
    1. Karimi G., Jamaluddin R., Mohtarrudin N., Ahmad Z., Khazaai H., Parvaneh M. Single-species versus dual-species probiotic supplementation as an emerging therapeutic strategy for obesity. Nutr. Metab. Cardiovasc. Dis. 2017;27:910–918. doi: 10.1016/j.numecd.2017.06.020.
    1. Roselli M., Finamore A., Brasili E., Rami R., Nobili F., Orsi C., Zambrini A.V., Mengheri E. Beneficial effects of a selected probiotic mixture administered to high fat-fed mice before and after the development of obesity. J. Funct. Foods. 2018;45:321–329. doi: 10.1016/j.jff.2018.03.039.
    1. Luoto R., Kalliomäki M., Laitinen K., Isolauri E. The impact of perinatal probiotic intervention on the development of overweight and obesity: Follow-up study from birth to 10 years. Int. J. Obes. 2010;34:1531–1537. doi: 10.1038/ijo.2010.50.
    1. Kadooka Y., Sato M., Imaizumi K., Ogawa A., Ikuyama K., Akai Y., Okano M., Kagoshima M., Tsuchida T. Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri sbt2055) in adults with obese tendencies in a randomized controlled trial. Eur. J. Clin. Nutr. 2010;64:636–643. doi: 10.1038/ejcn.2010.19.
    1. Jung S.P., Lee K.M., Kang J.H., Yun S.I., Park H.O., Moon Y., Kim J.Y. Effect of Lactobacillus gasseri bnr17 on overweight and obese adults: A randomized, double-blind clinical trial. Korean J. Fam. Med. 2013;34:80–89. doi: 10.4082/kjfm.2013.34.2.80.
    1. Stadlbauer V., Leber B., Lemesch S., Trajanoski S., Bashir M., Horvath A., Tawdrous M., Stojakovic T., Fauler G., Fickert P., et al. Lactobacillus casei shirota supplementation does not restore gut microbiota composition and gut barrier in metabolic syndrome: A randomized pilot study. PLoS ONE. 2015;10:e0141399. doi: 10.1371/journal.pone.0141399.
    1. Brahe L.K., Le Chatelier E., Prifti E., Pons N., Kennedy S., Blaedel T., Hakansson J., Dalsgaard T.K., Hansen T., Pedersen O., et al. Dietary modulation of the gut microbiota—A randomised controlled trial in obese postmenopausal women. Br. J. Nutr. 2015;114:406–417. doi: 10.1017/S0007114515001786.
    1. Jones M.L., Martoni C.J., Di Pietro E., Simon R.R., Prakash S. Evaluation of clinical safety and tolerance of a Lactobacillus reuteri ncimb 30242 supplement capsule: A randomized control trial. Regul. Toxicol. Pharmacol. 2012;63:313–320. doi: 10.1016/j.yrtph.2012.04.003.
    1. Chung H.J., Yu J.G., Lee I.A., Liu M.J., Shen Y.F., Sharma S.P., Jamal M.A., Yoo J.H., Kim H.J., Hong S.T. Intestinal removal of free fatty acids from hosts by lactobacilli for the treatment of obesity. FEBS Open Bio. 2016;6:64–76. doi: 10.1002/2211-5463.12024.
    1. Hariri M., Salehi R., Feizi A., Mirlohi M., Kamali S., Ghiasvand R. The effect of probiotic soy milk and soy milk on anthropometric measures and blood pressure in patients with type II diabetes mellitus: A randomized double-blind clinical trial. ARYA Atheroscler. 2015;11:74–80.
    1. Sharafedtinov K.K., Plotnikova O.A., Alexeeva R.I., Sentsova T.B., Songisepp E., Stsepetova J., Smidt I., Mikelsaar M. Hypocaloric diet supplemented with probiotic cheese improves body mass index and blood pressure indices of obese hypertensive patients—A randomized double-blind placebo-controlled pilot study. Nutr. J. 2013;12:138. doi: 10.1186/1475-2891-12-138.
    1. Schwiertz A., Taras D., Schafer K., Beijer S., Bos N.A., Donus C., Hardt P.D. Microbiota and scfa in lean and overweight healthy subjects. Obesity (Silver Spring) 2010;18:190–195. doi: 10.1038/oby.2009.167.
    1. Gøbel R.J., Larsen N., Jakobsen M., Mølgaard C., Michaelsen K.F. Probiotics to adolescents with obesity: Effects on inflammation and metabolic syndrome. J. Pediatr. Gastroenterol. Nutr. 2012;55:673–678. doi: 10.1097/MPG.0b013e318263066c.
    1. Larsen N., Vogensen F.K., Gobel R.J., Michaelsen K.F., Forssten S.D., Lahtinen S.J., Jakobsen M. Effect of lactobacillus salivarius ls-33 on fecal microbiota in obese adolescents. Clin. Nutr. 2013;32:935–940. doi: 10.1016/j.clnu.2013.02.007.
    1. Jones R.B., Alderete T.L., Martin A.A., Geary B.A., Hwang D.H., Palmer S.L., Goran M.I. Probiotic supplementation increases obesity with no detectable effects on liver fat or gut microbiota in obese hispanic adolescents: A 16-week, randomized, placebo-controlled trial. Pediatr. Obes. 2018;13:705–714. doi: 10.1111/ijpo.12273.
    1. Higashikawa F., Noda M., Awaya T., Danshiitsoodol N., Matoba Y., Kumagai T., Sugiyama M. Antiobesity effect of Pediococcus pentosaceus lp28 on overweight subjects: A randomized, double-blind, placebo-controlled clinical trial. Eur. J. Clin. Nutr. 2016;70:582–587. doi: 10.1038/ejcn.2016.17.
    1. Bernini L.J., Simao A.N., Alfieri D.F., Lozovoy M.A., Mari N.L., de Souza C.H., Dichi I., Costa G.N. Beneficial effects of bifidobacterium lactis on lipid profile and cytokines in patients with metabolic syndrome: A randomized trial. Effects of probiotics on metabolic syndrome. Nutrition. 2016;32:716–719. doi: 10.1016/j.nut.2015.11.001.
    1. Chang B.J., Park S.U., Jang Y.S., Ko S.H., Joo N.M., Kim S.I., Kim C.H., Chang D.K. Effect of functional yogurt NY-YP901 in improving the trait of metabolic syndrome. Eur. J. Clin. Nutr. 2011;65:1250–1255. doi: 10.1038/ejcn.2011.115.
    1. Spaiser S.J., Culpepper T., Nieves C., Jr., Ukhanova M., Mai V., Percival S.S., Christman M.C., Langkamp-Henken B. Lactobacillus gasseri ks-13, bifidobacterium bifidum g9-1, and bifidobacterium longum mm-2 ingestion induces a less inflammatory cytokine profile and a potentially beneficial shift in gut microbiota in older adults: A randomized, double-blind, placebo-controlled, crossover study. J. Am. Coll. Nutr. 2015;34:459–469.
    1. Nabavi S., Rafraf M., Somi M.-H., Homayouni-Rad A., Asghari-Jafarabadi M. Probiotic yogurt improves body mass index and fasting insulin levels without affecting serum leptin and adiponectin levels in non-alcoholic fatty liver disease (NAFLD) J. Funct. Foods. 2015;18:684–691. doi: 10.1016/j.jff.2015.08.031.
    1. Madjd A., Taylor M.A., Mousavi N., Delavari A., Malekzadeh R., Macdonald I.A., Farshchi H.R. Comparison of the effect of daily consumption of probiotic compared with low-fat conventional yogurt on weight loss in healthy obese women following an energy-restricted diet: A randomized controlled trial1. Am. J. Clin. Nutr. 2016;103:323–329. doi: 10.3945/ajcn.115.120170.
    1. Gomes A.C., de Sousa R.G., Botelho P.B., Gomes T.L., Prada P.O., Mota J.F. The additional effects of a probiotic mix on abdominal adiposity and antioxidant status: A double-blind, randomized trial. Obesity (Silver Spring) 2017;25:30–38. doi: 10.1002/oby.21671.
    1. Szulinska M., Loniewski I., van Hemert S., Sobieska M., Bogdanski P. Dose-dependent effects of multispecies probiotic supplementation on the lipopolysaccharide (LPS) level and cardiometabolic profile in obese postmenopausal women: A 12-week randomized clinical trial. Nutrients. 2018;10:773. doi: 10.3390/nu10060773.
    1. Hamad E.M., Sato M., Uzu K., Yoshida T., Higashi S., Kawakami H., Kadooka Y., Matsuyama H., Abd El-Gawad I.A., Imaizumi K. Milk fermented by Lactobacillus gasseri sbt2055 influences adipocyte size via inhibition of dietary fat absorption in zucker rats. Br. J. Nutr. 2009;101:716–724. doi: 10.1017/S0007114508043808.
    1. Renga B., Mencarelli A., Vavassori P., Brancaleone V., Fiorucci S. The bile acid sensor fxr regulates insulin transcription and secretion. Biochim. Biophys. Acta. 2010;1802:363–372. doi: 10.1016/j.bbadis.2010.01.002.
    1. Shyangdan D.S., Royle P., Clar C., Sharma P., Waugh N., Snaith A. Glucagon-like peptide analogues for type 2 diabetes mellitus. Cochrane Database Syst. Rev. 2011;10:CD006423. doi: 10.1002/14651858.CD006423.pub2.
    1. Mei L., Tang Y., Li M., Yang P., Liu Z., Yuan J., Zheng P. Co-administration of cholesterol-lowering probiotics and anthraquinone from cassia obtusifolia l. Ameliorate non-alcoholic fatty liver. PLoS ONE. 2015;10:e0138078. doi: 10.1371/journal.pone.0138078.
    1. Cani P.D., Amar J., Iglesias M.A., Poggi M., Knauf C., Bastelica D., Neyrinck A.M., Fava F., Tuohy K.M., Chabo C., et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes. 2007;56:1761–1772. doi: 10.2337/db06-1491.
    1. Puddu A., Sanguineti R., Montecucco F., Viviani G.L. Evidence for the gut microbiota short-chain fatty acids as key pathophysiological molecules improving diabetes. Mediators Inflamm. 2014;2014:162021. doi: 10.1155/2014/162021.
    1. Cani P.D., Van Hul M. Novel opportunities for next-generation probiotics targeting metabolic syndrome. Curr. Opin. Biotechnol. 2015;32:21–27. doi: 10.1016/j.copbio.2014.10.006.
    1. Hiippala K., Jouhten H., Ronkainen A., Hartikainen A., Kainulainen V., Jalanka J., Satokari R. The potential of gut commensals in reinforcing intestinal barrier function and alleviating inflammation. Nutrients. 2018;10:988. doi: 10.3390/nu10080988.
    1. Rutten N.B., Gorissen D.M., Eck A., Niers L.E., Vlieger A.M., Besseling-van der Vaart I., Budding A.E., Savelkoul P.H., van der Ent C.K., Rijkers G.T. Long term development of gut microbiota composition in atopic children: Impact of probiotics. PLoS ONE. 2015;10:e0137681. doi: 10.1371/journal.pone.0137681.
    1. Lundelin K., Poussa T., Salminen S., Isolauri E. Long-term safety and efficacy of perinatal probiotic intervention: Evidence from a follow-up study of four randomized, double-blind, placebo-controlled trials. Pediatr. Allergy Immunol. 2017;28:170–175. doi: 10.1111/pai.12675.
    1. Karimi G., Sabran M.R., Jamaluddin R., Parvaneh K., Mohtarrudin N., Ahmad Z., Khazaai H., Khodavandi A. The anti-obesity effects of Lactobacillus casei strain Shirota versus orlistat on high fat diet-induced obese rats. Food Nutr. Res. 2015;59:29273. doi: 10.3402/fnr.v59.29273.
    1. Nagata S., Chiba Y., Wang C., Yamashiro Y. The effects of the Lactobacillus casei strain on obesity in children: A pilot study. Benef. Microbes. 2017;8:535–543. doi: 10.3920/BM2016.0170.

Source: PubMed

3
Se inscrever