Efficacy of throwing exercise with TheraBand in male volleyball players with shoulder internal rotation deficit: a randomized controlled trial

Mohsen Moradi, Malihe Hadadnezhad, Amir Letafatkar, Zohre Khosrokiani, Julien S Baker, Mohsen Moradi, Malihe Hadadnezhad, Amir Letafatkar, Zohre Khosrokiani, Julien S Baker

Abstract

Background: The Glenohumeral internal-rotation deficit (GIRD) is related to the altered eccentric external-rotator (ER), the concentric internal-rotator (IR), muscle strength, and the ER: IR ratio. GIRD has been documented as a risk factor for shoulder injuries. However, few studies have investigated the effect of an exercise training on these parameters in athletes with GIRD. Therefore, the purpose of this study was to evaluate the effects of an 8-week throwing exercise with a TheraBand for retraining the rotator cuff on Electromyography (EMG) activity of selected muscles, rotator cuff muscle strength, the glenohumeral (GH) joint IR range of motion (ROM) and GH joint position sense in asymptomatic male volleyball players with GIRD.

Methods: Sixty male volleyball players with GIRD were randomized into either a training group or a control group. The experimental group underwent an 8-week throwing exercise with a TheraBand including 5 sessions of stretching and 3 sessions of strengthening exercises per week. The control group received an active self-exercise program. EMG (onset time and muscle activation), shoulder range of motion (ROMs), strength and GH joint position sense were all assessed pre and post trainings.

Results: There were statistically significant within-group differences in the EMG activity of the anterior deltoid (p = 0.005), middle deltoid (p = 0.007), posterior deltoid (p = 0.004), infraspinatus (p = 0.001) and supraspinatus (p = 0.001) muscles, IR ROM (p = 0.001), rotator cuff muscle strength ratio (p = 0.001), and GH joint position sense (p = 0.033) in the experimental group. A 2 × 2 analysis of variance with a mixed model design and independent and paired t-tests were used for statistical analysis.

Conclusions: Throwing exercise with a TheraBand improved shoulder muscle activation, IR ROM, rotator cuff muscle strength ratio and GH joint position sense in participants with GIRD. These findings may improve the treatment of GIRD in a clinical setting. Although the results are significant, further studies should follow up the long-term effects of the Throwing exercise with a TheraBand on GIRD.

Trial registration: Current Controlled Trials using the UMIN-RCT website with ID number of, UMIN000038416 "Retrospectively registered" at 2019/10/29.

Keywords: Glenohumeral internal-rotation deficit; Injury prevention; Volleyball player.

Conflict of interest statement

The authors declare that they have no competing interest.

Figures

Fig. 1
Fig. 1
Consort flow diagram
Fig. 2
Fig. 2
Muscle activation (%MVC) alteration from pretest to post-test
Fig. 3
Fig. 3
Muscle onset time (ms) alteration from pretest to post-test
Fig. 4
Fig. 4
Internal rotation ROM, Eccentric strength for external rotators, Concentric strength internal rotators, Joint position sense error, and Functional strength ratio (Eccentric ER strength:concentric IR strength)

References

    1. Rose MB, Noonan T. Glenohumeral internal rotation deficit in throwing athletes: current perspectives. Open J Sports Med. 2018;9:69–78.
    1. Keller MD, De Giacomo FA, Julie A. Neumann, Limpisvasti, and James E. Tibone. Glenohumeral internal rotation deficit and risk of upper extremity injury in overhead athletes: a meta-analysis and systematic review. Sports Health. 2018;10(2):125–132.
    1. Baltacı G, Johnson R, Kohl HW., 3rd Shoulder range of characteristics in collegiate baseball players. J Sports Med Phys Fitness. 2001;41(2):236–242.
    1. Almeida GPL, Silveira PF, Rosseto NP, Barbosa G, Ejnisman B, Cohen M. Glenohumeral range of motion in handball players with and without throwing-related shoulder pain. J Shoulder Elb Surg. 2013;22(5):602–607.
    1. Noonan TJ, Shanley E, Bailey LB, Wyland DJ, Kissenberth MJ, Hawkins RJ, Thigpen CA. Professional pitchers with Glenohumeral internal rotation deficit (GIRD) display greater humeral Retrotorsion than pitchers without GIRD. Am J Sports Med. 2015;43(6):1448–1454.
    1. Manske R, Wilk KE, Davies G, Ellenbecker T, Reinold M. Glenohumeral motion deficits: friend or foe? Int J Sports Phys Ther. 2013;8(5):537–553.
    1. Ellenbecker TS, Cools A. Rehabilitation of shoulder impingement syndrome and rotator cuff injuries: an evidence-based review. Br J Sports Med. 2010;44(5):319–327.
    1. Lubiatowski P, Ogrodowicz P, Wojtaszek M, Romanowski L. Bilateral shoulder proprioception deficit in unilateral anterior shoulder instability. J Shoulder Elb Surg. 2019;28(3):561–569.
    1. Warner JJP, Micheli LJ, Arslanian LE, Kennedy J, Kennedy R. Patterns of flexibility, laxity, and strength in normal shoulders and shoulders with instability and impingement. Am J Sports Med. 1990;18(4):366–375.
    1. Guney H, Harput G, Colakoglu F, Baltaci G. Glenohumeral internal rotation deficit affects functional rotator strength ratio in adolescent overhead athletes. J Sport Rehabil. 2016;25(1):52–57.
    1. Mine K, Nakayama T, Steve M, Grimmer K. Effectiveness of stretching on posterior shoulder tightness and glenohumeral internal-rotation deficit: a systematic review of randomized controlled trials. J Sport Rehabil. 2017;26(4):294–305.
    1. Ozer D, Duzgun I, Baltacı G, Karacan S, Colakoglu FF. The effects of rope or weighted rope jump training on strength, coordination and proprioception in adolescent female volleyball players. J Sport Med Phys Fit. 2011;51(2):211–219.
    1. Guney H, Karabicak GO, Ozunlu Pekyavas N, Nohutlu Gunaydin E, Teker B, Balci P, Baltaci G. Which stretching technique is effective in decreasing Glenohumeral internal rotation deficit? Med Dello Sport. 2015;68(2):291–302.
    1. Duzgun I, Baltaci G, Colakoglu FF, Tunay VB, Ozer D. The effects of rope jump training on shoulder isokinetic strength in adolescent volleyball players. J Sport Rehabil. 2010;19(2):184–199.
    1. Lin YL, Karduna A. Four-week exercise program does not change rotator cuff muscle activation and scapular kinematics in healthy subjects. J Orthop Res. 2016;34(12):2079–2088.
    1. Kryger AI, Andersen JL. Resistance training in the oldest old: consequences for muscle strength, fiber types, fiber size, and MHC isoforms. Scan J Med Sci sports. 2007;17(4):422–430.
    1. Merletti R, di Torino P. Standards for reporting EMG data. J Electromyogr Kines. 1999;9(1):3–4.
    1. Hodges PW, Bui BH. A comparison of computer-based methods for the determination of onset of muscle contraction using electromyography. Electroencephalogr Clin Neurophysiol. 1996;101(6):511–519.
    1. Patten C, Dozono J, Schmidt SG, Jue ME, Lum PS. Combined functional task practice and dynamic high intensity resistance training promotes recovery of upper-extremity motor function in post-stroke hemiparesis: a case study. J Neurol Phys Ther. 2006;30(3):99–115.
    1. Salles JI, Velasques B, Cossich V, Nicoliche E, Ribeiro P, Amaral MV, Motta G. Strength training and shoulder proprioception. J Athl Train. 2015;50(3):277–280.
    1. Laudner KG, Sipes RC, Wilson JT. The acute effects of sleeper stretches on shoulder range of motion. J Athl Train. 2008;43(4):359–363.
    1. Fathollahnejad K, Letafatkar A, Hadadnezhad M. The effect of manual therapy and exercises on forward head and rounded shoulder postures: a six-week intervention with a one-month follow-up study. BMC Musculoskelet Disord. 2019;20(86):1–8.
    1. Andrade MDS, Fleury AM, de Lira CAB, Dubas JP, da Silva AC. Profile of isokinetic eccentric-to-concentric strength ratios of shoulder rotator muscles in elite female team handball players. J Sports Sci. 2010;28(7):743–749.
    1. Scoville CR, Arciero RA, Taylor DC, Stoneman PD. End range eccentric antagonist/concentric agonist strength ratios: a new perspective in shoulder strength assessment. J Orthop Sport Phys Ther. 1997;25(3):203–207.
    1. McMaster WC, Long SC, Caiozzo VJ. Isokinetic torque imbalances in the rotator cuff of the elite water polo player. Am J Sports Med. 1991;19(1):72–75.
    1. Leroux JL, Codine P, Thomas E, Pocholle M, Mailhe D, Blotman F. Isokinetic evaluation of rotational strength in normal shoulders and shoulders with impingement syndrome. Clin Orthop Relat Res. 1994;304:108–115.
    1. Ellenbecker TS, Davies GJ. The application of isokinetics in testing and rehabilitation of the shoulder complex. J Athl Train. 2000;35(3):338.
    1. Tucker WS, Slone SW. The acute effects of hold-relax proprioceptive neuromuscular facilitation with vibration therapy on Glenohumeral internal-rotation deficit. J Sport Rehabil. 2016;25(3):248–254.
    1. Ludewig PM, Cook TM. Alterations in shoulder kinematics and associated muscle activity in people with symptoms of shoulder impingement. Phys Ther. 2000;80:276–291.
    1. De Oliveira FC, Bouyer LJ, Ager AL, Roy JS. Electromyographic analysis of rotator cuff muscles in patients with rotator cuff tendinopathy: a systematic review. J Electromyogr Kines. 2017;35:100–114.
    1. Jurgel J, Rannama L, Gapeyeva H, Ereline J, Kolts I, Paasuke M. Shoulder function in patients with frozen shoulder before and after 4-week rehabilitation. Medicina. 2005;41(1):30–38.
    1. Bailey LB, Thigpen CA, Hawkins RJ, Beattie PF, Shanley E. Effectiveness of manual therapy and stretching for baseball players with shoulder range of motion deficits. Sports Health. 2017;9(3):230–237.
    1. Maenhout A, Van Eessel V, Van Dyck L, Vanraes A, Cools A. Quantifying acromiohumeral distance in overhead athletes with glenohumeral internal rotation loss and the influence of a stretching program. Am J Sports Med. 2012;40(9):2105–2112.
    1. Baum S, van Kampen H, Ballenberger N, von Piekartz H. Do changes in dental occlusion influence the rehabilitation of a Glenohumeral internal rotation deficit (GIRD) in professional female volleyball players? A Pilot Study. Sportverletz Sportschaden. 2019;33(3):160–171.
    1. Hamill J, Knutzen KM. Biomechanical basis of human movement. Philadelphia: Lippincott Williams & Wilkins; 2006.
    1. Cicchetti DV. Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychol Assess. 1994;6(4):284–290.

Source: PubMed

3
Se inscrever