Interactions between sleep, stress, and metabolism: From physiological to pathological conditions

Camila Hirotsu, Sergio Tufik, Monica Levy Andersen, Camila Hirotsu, Sergio Tufik, Monica Levy Andersen

Abstract

Poor sleep quality due to sleep disorders and sleep loss is highly prevalent in the modern society. Underlying mechanisms show that stress is involved in the relationship between sleep and metabolism through hypothalamic-pituitary-adrenal (HPA) axis activation. Sleep deprivation and sleep disorders are associated with maladaptive changes in the HPA axis, leading to neuroendocrine dysregulation. Excess of glucocorticoids increase glucose and insulin and decrease adiponectin levels. Thus, this review provides overall view of the relationship between sleep, stress, and metabolism from basic physiology to pathological conditions, highlighting effective treatments for metabolic disturbances.

Keywords: Cortisol; Hypothalamic–pituitary–adrenal axis; Metabolism; Obesity; Sleep; Stress.

Figures

Fig. 1
Fig. 1
24-h individual cortisol profile showing the minimum (nadir), the maximum (acrophase), the onset of the circadian rise, and the amplitude of the cortisol profile. After a nadir during the early night, there is an important rise in ACTH and cortisol in the late night, reaching a peak near the awakening time, driven by circadian oscillators, such as sleep.
Fig. 2
Fig. 2
Schematic of the main interactions between sleep, stress and metabolism. Sleep disorders which can lead to sleep loss share common pathways with stress system via HPA axis activation on the metabolic dysfunction, contributing to increased risk of developing obesity and diabetes.

References

    1. Seetho I.W., Wilding J.P. Sleep-disordered breathing, type 2 diabetes and the metabolic syndrome. Chron Respir Dis. 2014;11(4):257–275.
    1. Meerlo P., Sgoifo A., Suchecki D. Restricted and disrupted sleep: effects on autonomic function, neuroendocrine stress systems and stress responsivity. Sleep Med Rev. 2008;12(3):197–210.
    1. Spencer R.L., Kim P.J., Kalman B.A., Cole M.A. Evidence for mineralocorticoid receptor facilitation of glucocorticoid receptor-dependent regulation of hypothalamic-pituitary-adrenal axis activity. Endocrinology. 1998;139(6):2718–2726.
    1. Buckley T.M., Schatzberg A.F. On the interactions of the hypothalamic-pituitary-adrenal (HPA) axis and sleep: normal HPA axis activity and circadian rhythm, exemplary sleep disorders. J Clin Endocrinol Metab. 2005;90(5):3106–3114.
    1. Kalsbeek A., van der Spek R., Lei J., Endert E., Buijs R.M., Fliers E. Circadian rhythms in the hypothalamo-pituitary-adrenal (HPA) axis. Mol Cell Endocrinol. 2012;349(1):20–29.
    1. Spiegel K., Tasali E., Leproult R., Van Cauter E. Effects of poor and short sleep on glucose metabolism and obesity risk. Nat Rev Endocrinol. 2009;5(5):253–261.
    1. Steiger A. Neurochemical regulation of sleep. J Psychiatr Res. 2007;41(7):537–552.
    1. Gonnissen H.K., Hulshof T., Westerterp-Plantenga M.S. Chronobiology, endocrinology, and energy- and food-reward homeostasis. Obes Rev. 2013;14(5):405–416.
    1. Buxton O.M., Copinschi G., Van Onderbergen A., Karrison T.G., Van Cauter E. A benzodiazepine hypnotic facilitates adaptation of circadian rhythms and sleep-wake homeostasis to an eight hour delay shift simulating westward jet lag. Sleep. 2000;23(7):915–927.
    1. Caufriez A., Moreno-Reyes R., Leproult R., Vertongen F., Van Cauter E., Copinschi G. Immediate effects of an 8-h advance shift of the rest-activity cycle on 24-h profiles of cortisol. Am J Physiol Endocrinol Metab. 2002;282(5):E1147–E1153.
    1. Roth T. Insomnia: definition, prevalence, etiology, and consequences. J. Clin. Sleep Med. 2007;3(5 Suppl):S7–10.
    1. Adam K., Tomeny M., Oswald I. Physiological and psychological differences between good and poor sleepers. J Psychiatr Res. 1986;20(4):301–316.
    1. Vgontzas A.N., Tsigos C., Bixler E.O., Stratakis C.A., Zachman K., Kales A. Chronic insomnia and activity of the stress system: a preliminary study. J Psychosom Res. 1998;45(1):21–31.
    1. Vgontzas A.N., Bixler E.O., Lin H.M., Prolo P., Mastorakos G., Vela-Bueno A. Chronic insomnia is associated with nyctohemeral activation of the hypothalamic-pituitary-adrenal axis: clinical implications. J Clin Endocrinol Metab. 2001;86(8):3787–3794.
    1. Rodenbeck A., Hajak G. Neuroendocrine dysregulation in primary insomnia. Rev. Neurol. (Paris) 2001;157(11 Pt 2):S57–S61.
    1. Spiegel K., Leproult R., Van Cauter E. Impact of sleep debt on metabolic and endocrine function. Lancet. 1999;354(9188):1435–1439.
    1. Balbo M., Leproult R., Van Cauter E. Impact of sleep and its disturbances on hypothalamo-pituitary-adrenal axis activity. Int J Endocrinol. 2010;2010:759234.
    1. Grunstein R.R., Stewart D.A., Lloyd H., Akinci M., Cheng N., Sullivan C.E. Acute withdrawal of nasal CPAP in obstructive sleep apnea does not cause a rise in stress hormones. Sleep. 1996;19(10):774–782.
    1. Bratel T., Wennlund A., Carlstrom K. Pituitary reactivity, androgens and catecholamines in obstructive sleep apnoea. Effects of continuous positive airway pressure treatment (CPAP). Respir Med. 1999;93(1):1–7.
    1. Tomfohr L.M., Edwards K.M., Dimsdale J.E. Is obstructive sleep apnea associated with cortisol levels? A systematic review of the research evidence. Sleep Med Rev. 2012;16(3):243–249.
    1. Rapoport D., Rothenburg S.A., Hollander C.S., Goldring R.M. Obstructive sleep apnea (OSA) alters ultradian rhythm of ACTH secretion. American Review of Respiratory Disease. 139. 1999:A80.
    1. Dadoun F., Darmon P., Achard V., Boullu-Ciocca S., Philip-Joet F., Alessi M.C. Effect of sleep apnea syndrome on the circadian profile of cortisol in obese men. Am. J. Physiol. Endocrinol. Metab. 2007;293(2):E466–E474.
    1. Lanfranco F., Gianotti L., Pivetti S., Navone F., Rossetto R., Tassone F. Obese patients with obstructive sleep apnoea syndrome show a peculiar alteration of the corticotroph but not of the thyrotroph and lactotroph function. Clin Endocrinol (Oxf) 2004;60(1):41–48.
    1. Karaca Z., Ismailogullari S., Korkmaz S., Cakir I., Aksu M., Baydemir R. Obstructive sleep apnoea syndrome is associated with relative hypocortisolemia and decreased hypothalamo-pituitary-adrenal axis response to 1 and 250mug ACTH and glucagon stimulation tests. Sleep Med. 2013;14(2):160–164.
    1. Weitzman E.D., Zimmerman J.C., Czeisler C.A., Ronda J. Cortisol secretion is inhibited during sleep in normal man. J Clin Endocrinol Metab. 1983;56(2):352–358.
    1. Leproult R., Copinschi G., Buxton O., Van Cauter E. Sleep loss results in an elevation of cortisol levels the next evening. Sleep. 1997;20(10):865–870.
    1. Follenius M., Brandenberger G., Bandesapt J.J., Libert J.P., Ehrhart J. Nocturnal cortisol release in relation to sleep structure. Sleep. 1992;15(1):21–27.
    1. Seifritz E., Hemmeter U., Trachsel L., Lauer C.J., Hatzinger M., Emrich H.M. Effects of flumazenil on recovery sleep and hormonal secretion after sleep deprivation in male controls. Psychopharmacology (Berl) 1995;120(4):449–456.
    1. Kant G.J., Genser S.G., Thorne D.R., Pfalser J.L., Mougey E.H. Effects of 72 hour sleep deprivation on urinary cortisol and indices of metabolism. Sleep. 1984;7(2):142–146.
    1. Akerstedt T., Palmblad J., de la Torre B., Marana R., Gillberg M. Adrenocortical and gonadal steroids during sleep deprivation. Sleep. 1980;3(1):23–30.
    1. Andersen M.L., Bignotto M., Tufik S. Influence of paradoxical sleep deprivation and cocaine on development of spontaneous penile reflexes in rats of different ages. Brain Res. 2003;968(1):130–138.
    1. Spath-Schwalbe E., Scholler T., Kern W., Fehm H.L., Born J. Nocturnal adrenocorticotropin and cortisol secretion depends on sleep duration and decreases in association with spontaneous awakening in the morning. J Clin Endocrinol Metab. 1992;75(6):1431–1435.
    1. Hasler G., Buysse D.J., Klaghofer R., Gamma A., Ajdacic V., Eich D. The association between short sleep duration and obesity in young adults: a 13-year prospective study. Sleep. 2004;27(4):661–666.
    1. Vorona R.D., Winn M.P., Babineau T.W., Eng B.P., Feldman H.R., Ware J.C. Overweight and obese patients in a primary care population report less sleep than patients with a normal body mass index. Arch. Intern. Med. 2005;165(1):25–30.
    1. Ehlers C.L., Reed T.K., Henriksen S.J. Effects of corticotropin-releasing factor and growth hormone-releasing factor on sleep and activity in rats. Neuroendocrinology. 1986;42(6):467–474.
    1. Holsboer F., von Bardeleben U., Steiger A. Effects of intravenous corticotropin-releasing hormone upon sleep-related growth hormone surge and sleep EEG in man. Neuroendocrinology. 1988;48(1):32–38.
    1. Gillin J.C., Jacobs L.S., Fram D.H., Snyder F. Acute effect of a glucocorticoid on normal human sleep. Nature. 1972;237(5355):398–399.
    1. Born J., DeKloet E.R., Wenz H., Kern W., Fehm H.L. Gluco- and antimineralocorticoid effects on human sleep: a role of central corticosteroid receptors. Am. J. Physiol. 1991;260(2 Pt 1):E183–E188.
    1. Vazquez-Palacios G., Retana-Marquez S., Bonilla-Jaime H., Velazquez-Moctezuma J. Further definition of the effect of corticosterone on the sleep-wake pattern in the male rat. Pharmacol Biochem Behav. 2001;70(2-3):305–310.
    1. Born J., Spath-Schwalbe E., Schwakenhofer H., Kern W., Fehm H.L. Influences of corticotropin-releasing hormone, adrenocorticotropin, and cortisol on sleep in normal man. J Clin Endocrinol Metab. 1989;68(5):904–911.
    1. Bierwolf C., Kern W., Molle M., Born J., Fehm H.L. Rhythms of pituitary-adrenal activity during sleep in patients with Cushing׳s disease. Exp Clin Endocrinol Diabetes. 2000;108(7):470–479.
    1. Spiegel K., Knutson K., Leproult R., Tasali E., Van Cauter E. Sleep loss: a novel risk factor for insulin resistance and Type 2 diabetes. J. Appl. Physiol. 2005;99(5):2008–2019.
    1. Vioque J., Torres A., Quiles J. Time spent watching television, sleep duration and obesity in adults living in Valencia, Spain. Int J Obes Relat Metab Disord. 2000;24(12):1683–1688.
    1. Padilha H.G., Crispim C.A., Zimberg I.Z., De-Souza D.A., Waterhouse J., Tufik S. A link between sleep loss, glucose metabolism and adipokines. Braz J Med Biol Res. 2011;44(10):992–999.
    1. Zimberg I.Z., Damaso A., Del Re M., Carneiro A.M. H. de Sa Souza, F.S. de Lira, et al., Short sleep duration and obesity: mechanisms and future perspectives. Cell Biochem Funct. 2012;30(6):524–529.
    1. Kohatsu N.D., Tsai R., Young T., Vangilder R., Burmeister L.F., Stromquist A.M. Sleep duration and body mass index in a rural population. Arch Intern Med. 2006;166(16):1701–1705.
    1. Gupta N.K., Mueller W.H., Chan W., Meininger J.C. Is obesity associated with poor sleep quality in adolescents? Am J Hum Biol. 2002;14(6):762–768.
    1. Patel S.R., Hu F.B. Short sleep duration and weight gain: a systematic review. Obesity (Silver Spring) 2008;16(3):643–653.
    1. Spiegel K., Tasali E., Penev P., Van Cauter E. Brief communication: Sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann Intern Med. 2004;141(11):846–850.
    1. Taheri S. The link between short sleep duration and obesity: we should recommend more sleep to prevent obesity. Arch Dis Child. 2006;91(11):881–884.
    1. Cappuccio F.P., Taggart F.M., Kandala N.B., Currie A., Peile E., Stranges S. Meta-analysis of short sleep duration and obesity in children and adults. Sleep. 2008;31(5):619–626.
    1. Maquet P. Sleep function(s) and cerebral metabolism. Behav Brain Res. 1995;69(1-2):75–83.
    1. Cirelli C., Faraguna U., Tononi G. Changes in brain gene expression after long-term sleep deprivation. J Neurochem. 2006;98(5):1632–1645.
    1. Simon C., Gronfier C., Schlienger J.L., Brandenberger G. Circadian and ultradian variations of leptin in normal man under continuous enteral nutrition: relationship to sleep and body temperature. J Clin Endocrinol Metab. 1998;83(6):1893–1899.
    1. Sinton C.M., Fitch T.E., Gershenfeld H.K. The effects of leptin on REM sleep and slow wave delta in rats are reversed by food deprivation. J Sleep Res. 1999;8(3):197–203.
    1. Crispim C.A., Zalcman I., Dattilo M., Padilha H.G., Edwards B., Waterhouse J. The influence of sleep and sleep loss upon food intake and metabolism. Nutr Res Rev. 2007;20(2):195–212.
    1. Weikel J.C., Wichniak A., Ising M., Brunner H., Friess E., Held K. Ghrelin promotes slow-wave sleep in humans. Am J Physiol Endocrinol Metab. 2003;284(2):E407–E415.
    1. Schussler P., Uhr M., Ising M., Weikel J.C., Schmid D.A., Held K. Nocturnal ghrelin, ACTH, GH and cortisol secretion after sleep deprivation in humans. Psychoneuroendocrinology. 2006;31(8):915–923.
    1. Spiegel K., Leproult R., L׳Hermite-Baleriaux M., Copinschi G., Penev P.D., Van Cauter E. Leptin levels are dependent on sleep duration: relationships with sympathovagal balance, carbohydrate regulation, cortisol, and thyrotropin. J Clin Endocrinol Metab. 2004;89(11):5762–5771.
    1. Taheri S., Lin L., Austin D., Young T., Mignot E. Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index. PLoS Med. 2004;1(3):e62.
    1. Mullington J.M., Chan J.L., Van Dongen H.P., Szuba M.P. J. Samaras, N.J. Price, et al., Sleep loss reduces diurnal rhythm amplitude of leptin in healthy men. J Neuroendocrinol. 2003;15(9):851–854.
    1. Bodosi B., Gardi J., Hajdu I., Szentirmai E., Obal F., Jr., Krueger J.M. Rhythms of ghrelin, leptin, and sleep in rats: effects of the normal diurnal cycle, restricted feeding, and sleep deprivation. Am J Physiol Regul Integr Comp Physiol. 2004;287(5):R1071–R1079.
    1. Buxton O.M., Pavlova M., Reid E.W., Wang W., Simonson D.C., Adler G.K. Sleep restriction for 1 week reduces insulin sensitivity in healthy men. Diabetes. 2010;59(9):2126–2133.
    1. Nedeltcheva A.V., Kilkus J.M. J. Imperial, D.A. Schoeller and P.D. Penev, Insufficient sleep undermines dietary efforts to reduce adiposity. Ann Intern Med. 2010;153(7):435–441.
    1. Pejovic S., Vgontzas A.N., Basta M., Tsaoussoglou M., Zoumakis E., Vgontzas A. Leptin and hunger levels in young healthy adults after one night of sleep loss. J Sleep Res. 2010;19(4):552–558.
    1. St-Onge M.P. The role of sleep duration in the regulation of energy balance: effects on energy intakes and expenditure. J Clin Sleep Med. 2013;9(1):73–80.
    1. Gonnissen H.K., Hursel R., Rutters F., Martens E.A., Westerterp-Plantenga M.S. Effects of sleep fragmentation on appetite and related hormone concentrations over 24 h in healthy men. Br J Nutr. 2012:1–9.
    1. Shaw J.E., Punjabi N.M., Wilding J.P., Alberti K.G., Zimmet P.Z. E. International Diabetes Federation Taskforce on, et al., Sleep-disordered breathing and type 2 diabetes: a report from the International Diabetes Federation Taskforce on Epidemiology and Prevention. Diabetes Res Clin Pract. 2008;81(1):2–12.
    1. Foster G.D., Sanders M.H., Millman R., Zammit G., Borradaile K.E., Newman A.B. Obstructive sleep apnea among obese patients with type 2 diabetes. Diabetes Care. 2009;32(6):1017–1019.
    1. Laaban J.P., Daenen S., Leger D., Pascal S., Bayon V., Slama G. Prevalence and predictive factors of sleep apnoea syndrome in type 2 diabetic patients. Diabetes Metab. 2009;35(5):372–377.
    1. Lurie A. Metabolic disorders associated with obstructive sleep apnea in adults. Adv Cardiol. 2011;46:67–138.
    1. Hecht L., Mohler R., Meyer G. Effects of CPAP-respiration on markers of glucose metabolism in patients with obstructive sleep apnoea syndrome: a systematic review and meta-analysis. Ger Med Sci. 9. 2011:Doc20.
    1. Rolls A., Schaich Borg J. and L. de Lecea, Sleep and metabolism: role of hypothalamic neuronal circuitry. Best Pract Res Clin Endocrinol Metab. 2010;24(5):817–828.
    1. Kok S.W., Overeem S., Visscher T.L., Lammers G.J., Seidell J.C., Pijl H. Hypocretin deficiency in narcoleptic humans is associated with abdominal obesity. Obes Res. 2003;11(9):1147–1154.
    1. Fortuyn H.A., Swinkels S., Buitelaar J., Renier W.O., Furer J.W., Rijnders C.A. High prevalence of eating disorders in narcolepsy with cataplexy: a case-control study. Sleep. 2008;31(3):335–341.
    1. Tsujino N., Sakurai T. Orexin/hypocretin: a neuropeptide at the interface of sleep, energy homeostasis, and reward system. Pharmacol Rev. 2009;61(2):162–176.
    1. Beitinger P.A., Fulda S., Dalal M.A., Wehrle R., Keckeis M., Wetter T.C. Glucose tolerance in patients with narcolepsy. Sleep. 2012;35(2):231–236.
    1. Poli F., Plazzi G., Di Dalmazi G., Ribichini D., Vicennati V., Pizza F. Body mass index-independent metabolic alterations in narcolepsy with cataplexy. Sleep. 2009;32(11):1491–1497.
    1. van Drongelen A., Boot C.R., Merkus S.L., Smid T., van der Beek A.J. The effects of shift work on body weight change - a systematic review of longitudinal studies. Scand J Work Environ Health. 2011;37(4):263–275.
    1. Crispim C.A., Waterhouse J., Damaso A.R., Zimberg I.Z., Padilha H.G., Oyama L.M. Hormonal appetite control is altered by shift work: a preliminary study. Metabolism. 2011;60(12):1726–1735.
    1. Ortega F.B., Chillon P., Ruiz J.R., Delgado M., Albers U., Alvarez-Granda J.L. Sleep patterns in Spanish adolescents: associations with TV watching and leisure-time physical activity. Eur J Appl Physiol. 2010;110(3):563–573.
    1. Knutson K.L. Sex differences in the association between sleep and body mass index in adolescents. J Pediatr. 2005;147(6):830–834.
    1. Jung C.M., Melanson E.L., Frydendall E.J., Perreault L., Eckel R.H., Wright K.P. Energy expenditure during sleep, sleep deprivation and sleep following sleep deprivation in adult humans. J. Physiol. 2011;589(Pt 1):235–244.
    1. Benedict C., Hallschmid M., Lassen A., Mahnke C., Schultes B., Schioth H.B. Acute sleep deprivation reduces energy expenditure in healthy men. Am J Clin Nutr. 2011;93(6):1229–1236.
    1. Schmid S.M., Hallschmid M., Jauch-Chara K., Wilms B., Benedict C., Lehnert H. Short-term sleep loss decreases physical activity under free-living conditions but does not increase food intake under time-deprived laboratory conditions in healthy men. Am J Clin Nutr. 2009;90(6):1476–1482.
    1. St-Onge M.P., Roberts A.L., Chen J., Kelleman M., O׳Keeffe M., RoyChoudhury A. Short sleep duration increases energy intakes but does not change energy expenditure in normal-weight individuals. Am J Clin Nutr. 2011;94(2):410–416.
    1. Nedeltcheva A.V., Kilkus J.M. J. Imperial, K. Kasza, D.A. Schoeller and P.D. Penev, Sleep curtailment is accompanied by increased intake of calories from snacks. Am J Clin Nutr. 2009;89(1):126–133.
    1. Hursel R., Rutters F., Gonnissen H.K., Martens E.A., Westerterp-Plantenga M.S. Effects of sleep fragmentation in healthy men on energy expenditure, substrate oxidation, physical activity, and exhaustion measured over 48 h in a respiratory chamber. Am J Clin Nutr. 2011;94(3):804–808.
    1. Buman M.P., Hekler E.B., Bliwise D.L., King A.C. Exercise effects on night-to-night fluctuations in self-rated sleep among older adults with sleep complaints. J. Sleep Res. 2011;20(1 Pt 1):28–37.
    1. Fuller P.M., Lu J., Saper C.B. Differential rescue of light- and food-entrainable circadian rhythms. Science. 2008;320(5879):1074–1077.
    1. Karklin A., Driver H.S., Buffenstein R. Restricted energy intake affects nocturnal body temperature and sleep patterns. Am J Clin Nutr. 1994;59(2):346–349.
    1. Penev P.D. Sleep deprivation and energy metabolism: to sleep, perchance to eat? Curr Opin Endocrinol Diabetes Obes. 2007;14(5):374–381.
    1. Champaneri S., Wand G.S., Malhotra S.S., Casagrande S.S., Golden S.H. Biological basis of depression in adults with diabetes. Curr Diab Rep. 2010;10(6):396–405.
    1. Beauquis J., Homo-Delarche F., Revsin Y., De Nicola A.F., Saravia F. Brain alterations in autoimmune and pharmacological models of diabetes mellitus: focus on hypothalamic-pituitary-adrenocortical axis disturbances. Neuroimmunomodulation. 2008;15(1):61–67.
    1. Krolow R., Noschang C., Arcego D.M., Huffell A.P., Marcolin M.L., Benitz A.N. Sex-specific effects of isolation stress and consumption of palatable diet during the prepubertal period on metabolic parameters. Metabolism. 2013;62(9):1268–1278.
    1. Chrousos G.P. The role of stress and the hypothalamic-pituitary-adrenal axis in the pathogenesis of the metabolic syndrome: neuro-endocrine and target tissue-related causes. Int J Obes Relat Metab Disord. 24. 2000;Suppl 2:S50–S55.
    1. Pervanidou P., Chrousos G.P. Metabolic consequences of stress during childhood and adolescence. Metabolism. 2012;61(5):611–619.
    1. de Oliveira C., de Mattos A.B., Biz C., Oyama L.M., Ribeiro E.B., do Nascimento C.M. High-fat diet and glucocorticoid treatment cause hyperglycemia associated with adiponectin receptor alterations. Lipids Health Dis. 2011;10:11.
    1. Ely D.R., Dapper V., Marasca J., Correa J.B., Gamaro G.D., Xavier M.H. Effect of restraint stress on feeding behavior of rats. Physiol Behav. 1997;61(3):395–398.
    1. Varma M., Chai J.K., Meguid M.M., Gleason J.R., Yang Z.J. Effect of operative stress on food intake and feeding pattern in female rats. Nutrition. 1999;15(5):365–372.
    1. Willner P. Animal models as simulations of depression. Trends Pharmacol Sci. 1991;12(4):131–136.
    1. Dallman M.F., Strack A.M., Akana S.F., Bradbury M.J., Hanson E.S., Scribner K.A. Feast and famine: critical role of glucocorticoids with insulin in daily energy flow. Front Neuroendocrinol. 1993;14(4):303–347.
    1. Stephens T.W., Basinski M., Bristow P.K., Bue-Valleskey J.M., Burgett S.G., Craft L. The role of neuropeptide Y in the antiobesity action of the obese gene product. Nature. 1995;377(6549):530–532.
    1. Garcia-Prieto M.D., Tebar F.J., Nicolas F., Larque E., Zamora S., Garaulet M. Cortisol secretary pattern and glucocorticoid feedback sensitivity in women from a Mediterranean area: relationship with anthropometric characteristics, dietary intake and plasma fatty acid profile. Clin Endocrinol (Oxf) 2007;66(2):185–191.
    1. Pecoraro N., Gomez F., Dallman M.F. Glucocorticoids dose-dependently remodel energy stores and amplify incentive relativity effects. Psychoneuroendocrinology. 2005;30(9):815–825.
    1. Pecoraro N., Reyes F., Gomez F., Bhargava A., Dallman M.F. Chronic stress promotes palatable feeding, which reduces signs of stress: feedforward and feedback effects of chronic stress. Endocrinology. 2004;145(8):3754–3762.
    1. Rask E., Olsson T., Soderberg S., Andrew R., Livingstone D.E., Johnson O. Tissue-specific dysregulation of cortisol metabolism in human obesity. J Clin Endocrinol Metab. 2001;86(3):1418–1421.
    1. Travison T.G., O׳Donnell A.B., Araujo A.B., Matsumoto A.M., McKinlay J.B. Cortisol levels and measures of body composition in middle-aged and older men. Clin Endocrinol (Oxf) 2007;67(1):71–77.
    1. Vgontzas A.N., Pejovic S., Zoumakis E., Lin H.M., Bentley C.M., Bixler E.O. Hypothalamic-pituitary-adrenal axis activity in obese men with and without sleep apnea: effects of continuous positive airway pressure therapy. J Clin Endocrinol Metab. 2007;92(11):4199–4207.
    1. Anagnostis P., Athyros V.G., Tziomalos K., Karagiannis A., Mikhailidis D.P. Clinical review: The pathogenetic role of cortisol in the metabolic syndrome: a hypothesis. J Clin Endocrinol Metab. 2009;94(8):2692–2701.
    1. Tomlinson J.W., Walker E.A., Bujalska I.J., Draper N., Lavery G.G., Cooper M.S. 11beta-hydroxysteroid dehydrogenase type 1: a tissue-specific regulator of glucocorticoid response. Endocr Rev. 2004;25(5):831–866.
    1. Bose M., Olivan B., Laferrere B. Stress and obesity: the role of the hypothalamic-pituitary-adrenal axis in metabolic disease. Curr Opin Endocrinol Diabetes Obes. 2009;16(5):340–346.
    1. Tomlinson J.W., Moore J., Cooper M.S., Bujalska I., Shahmanesh M., Burt C. Regulation of expression of 11beta-hydroxysteroid dehydrogenase type 1 in adipose tissue: tissue-specific induction by cytokines. Endocrinology. 2001;142(5):1982–1989.
    1. Dieudonne M.N., Sammari A., Dos Santos E., Leneveu M.C., Giudicelli Y., Pecquery R. Sex steroids and leptin regulate 11beta-hydroxysteroid dehydrogenase I and P450 aromatase expressions in human preadipocytes: Sex specificities. J Steroid Biochem Mol Biol. 2006;99(4-5):189–196.
    1. Masuzaki H., Paterson J., Shinyama H., Morton N.M., Mullins J.J., Seckl J.R. A transgenic model of visceral obesity and the metabolic syndrome. Science. 2001;294(5549):2166–2170.
    1. Kershaw E.E., Morton N.M., Dhillon H., Ramage L., Seckl J.R., Flier J.S. Adipocyte-specific glucocorticoid inactivation protects against diet-induced obesity. Diabetes. 2005;54(4):1023–1031.
    1. Alberts P., Engblom L., Edling N., Forsgren M., Klingstrom G., Larsson C. Selective inhibition of 11beta-hydroxysteroid dehydrogenase type 1 decreases blood glucose concentrations in hyperglycaemic mice. Diabetologia. 2002;45(11):1528–1532.
    1. Sundbom M., Kaiser C., Bjorkstrand E., Castro V.M., Larsson C., Selen G. Inhibition of 11betaHSD1 with the S-phenylethylaminothiazolone BVT116429 increases adiponectin concentrations and improves glucose homeostasis in diabetic KKAy mice. BMC Pharmacol. 8. 2008:3.
    1. Gluck M.E. Stress response and binge eating disorder. Appetite. 2006;46(1):26–30.
    1. Laue L., Gold P.W., Richmond A., Chrousos G.P. The hypothalamic-pituitary-adrenal axis in anorexia nervosa and bulimia nervosa: pathophysiologic implications. Adv. Pediatr. 1991;38:287–316.
    1. Tataranni P.A., Larson D.E., Snitker S., Young J.B., Flatt J.P., Ravussin E. Effects of glucocorticoids on energy metabolism and food intake in humans. Am. J. Physiol. 1996;271(2 Pt 1):E317–E325.
    1. Stimson R.H., Johnstone A.M., Homer N.Z., Wake D.J., Morton N.M., Andrew R. Dietary macronutrient content alters cortisol metabolism independently of body weight changes in obese men. J Clin Endocrinol Metab. 2007;92(11):4480–4484.
    1. Lucassen E.A., Cizza G. The Hypothalamic-Pituitary-Adrenal Axis, Obesity, and Chronic Stress Exposure: Sleep and the HPA Axis in Obesity. Curr Obes Rep. 2012;1(4):208–215.
    1. Galvao Mde O., Sinigaglia-Coimbra R., Kawakami S.E., Tufik S., Suchecki D. Paradoxical sleep deprivation activates hypothalamic nuclei that regulate food intake and stress response. Psychoneuroendocrinology. 2009;34(8):1176–1183.
    1. Meerlo P., Koehl M., van der Borght K., Turek F.W. Sleep restriction alters the hypothalamic-pituitary-adrenal response to stress. J Neuroendocrinol. 2002;14(5):397–402.
    1. Winsky-Sommerer R., Yamanaka A., Diano S., Borok E., Roberts A.J., Sakurai T. Interaction between the corticotropin-releasing factor system and hypocretins (orexins): a novel circuit mediating stress response. J Neurosci. 2004;24(50):11439–11448.
    1. Sandoval D.A., Davis S.N. Leptin: metabolic control and regulation. J Diabetes Complications. 2003;17(2):108–113.
    1. Seelig E., Keller U., Klarhofer M., Scheffler K., Brand S., Holsboer-Trachsler E. Neuroendocrine regulation and metabolism of glucose and lipids in primary chronic insomnia: a prospective case-control study. PLoS One. 2013;8(4):e61780.

Source: PubMed

3
Se inscrever