Association between Polymorphisms of OCT1 and Metabolic Response to Metformin in Women with Polycystic Ovary Syndrome

Hui Hua Chang, Yuan-Shuo Hsueh, Yung Wen Cheng, Huang-Tz Ou, Meng-Hsing Wu, Hui Hua Chang, Yuan-Shuo Hsueh, Yung Wen Cheng, Huang-Tz Ou, Meng-Hsing Wu

Abstract

Insulin-sensitizer treatment with metformin is widely used in polycystic ovary syndrome (PCOS). However, the treatment effectiveness shows individual differences in PCOS patients. Organic cation transporter (OCT) 1 and 2 have been reported to mediate metformin transport in the liver and kidney, respectively. In this study, we investigated the association between the polymorphisms of OCT1 and OCT2 and the treatment effectiveness of metformin in PCOS patients. The single nucleotide polymorphisms (SNPs) of OCT1 (rs683369 and rs628031) and OCT2 (rs316019) were analyzed in 87 PCOS and 113 control women. Oral glucose tolerance tests (OGTTs), which represented metformin treatment response, were conducted at the start of treatment and after six-month treatment. The results demonstrated that the SNP frequencies of OCT1 and OCT2 were not associated with PCOS pathophysiology, and that the polymorphisms of OCT1 and OCT2 were not associated with the OGTT parameters at baseline. However, PCOS patients with the G allele of OCT1 rs683369 and/or with the A allele of OCT1 rs628031 had increased insulin sensitivity compared to those with wild-type genotype after receiving metformin treatment. Moreover, the interactions of metformin*SNP were significant in both OCT1 rs683369 (p < 0.001) and rs628031 (p = 0.001) during the treatment period. Taken together, genetic polymorphisms of OCT1 contributed to different metformin treatment responses, and further study is needed to establish personalized treatment programs using a pharmacogenomic algorithm approach in PCOS patients.

Keywords: OCT1; metformin; polycystic ovary syndrome; polymorphisms.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. Dumesic D.A., Oberfield S.E., Stener-Victorin E., Marshall J.C., Laven J.S., Legro R.S. Scientific statement on the diagnostic criteria, epidemiology, pathophysiology, and molecular genetics of polycystic ovary syndrome. Endocr. Rev. 2015;36:487–525. doi: 10.1210/er.2015-1018.
    1. Stepto N.K., Cassar S., Joham A.E., Hutchison S.K., Harrison C.L., Goldstein R.F., Teede H.J. Women with polycystic ovary syndrome have intrinsic insulin resistance on euglycaemic-hyperinsulaemic clamp. Hum. Reprod. 2013;28:777–784. doi: 10.1093/humrep/des463.
    1. Sirmans S.M., Pate K.A. Epidemiology, diagnosis, and management of polycystic ovary syndrome. Clin. Epidemiol. 2013;6:1–13. doi: 10.2147/CLEP.S37559.
    1. Teede H., Deeks A., Moran L. Polycystic ovary syndrome: A complex condition with psychological, reproductive and metabolic manifestations that impacts on health across the lifespan. BMC Med. 2010;8:41. doi: 10.1186/1741-7015-8-41.
    1. Young J.M., McNeilly A.S. Theca: The forgotten cell of the ovarian follicle. Reproduction. 2010;140:489–504. doi: 10.1530/REP-10-0094.
    1. Heimark D., McAllister J., Larner J. Decreased myo-inositol to chiro-inositol (m/c) ratios and increased m/c epimerase activity in pcos theca cells demonstrate increased insulin sensitivity compared to controls. Endocr. J. 2014;61:111–117. doi: 10.1507/endocrj.EJ13-0423.
    1. Bevilacqua A., Dragotto J., Giuliani A., Bizzarri M. Myo-inositol and D-chiro-inositol (40:1) reverse histological and functional features of polycystic ovary syndrome in a mouse model. J. Cell. Physiol. 2019;234:9387–9398. doi: 10.1002/jcp.27623.
    1. Qu J., Wang Y., Wu X., Gao L., Hou L., Erkkola R. Insulin resistance directly contributes to androgenic potential within ovarian theca cells. Fertil. Steril. 2009;91:1990–1997. doi: 10.1016/j.fertnstert.2008.02.167.
    1. Palomba S., Falbo A., Zullo F., Orio F. Evidence-based and potential benefits of metformin in the polycystic ovary syndrome: A comprehensive review. Endocr. Rev. 2009;30:1–50. doi: 10.1210/er.2008-0030.
    1. Naderpoor N., Shorakae S., de Courten B., Misso M.L., Moran L.J., Teede H.J. Metformin and lifestyle modification in polycystic ovary syndrome: Systematic review and meta-analysis. Hum. Reprod. Update. 2015;21:560–574. doi: 10.1093/humupd/dmv025.
    1. Pasquali R., Gambineri A. Insulin-sensitizing agents in polycystic ovary syndrome. Eur. J. Endocrinol. 2006;154:763–775. doi: 10.1530/eje.1.02156.
    1. Morin-Papunen L., Rantala A.S., Unkila-Kallio L., Tiitinen A., Hippeläinen M., Perheentupa A., Tinkanen H., Bloigu R., Puukka K., Ruokonen A., et al. Metformin improves pregnancy and live-birth rates in women with polycystic ovary syndrome (PCOS): A multicenter, double-blind, placebo-controlled randomized trial. J. Clin. Endocrinol. Metab. 2012;97:1492–1500. doi: 10.1210/jc.2011-3061.
    1. Schweighofer N., Lerchbaum E., Trummer O., Schwetz V., Pieber T., Obermayer-Pietsch B. Metformin resistance alleles in polycystic ovary syndrome: Pattern and association with glucose metabolism. Pharmacogenomics. 2014;15:305–317. doi: 10.2217/pgs.13.223.
    1. Wang D.S., Jonker J.W., Kato Y., Kusuhara H., Schinkel A.H., Sugiyama Y. Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin. J. Pharmacol. Exp. Ther. 2002;302:510–515. doi: 10.1124/jpet.102.034140.
    1. Dresser M.J., Leabman M.K., Giacomini K.M. Transporters involved in the elimination of drugs in the kidney: Organic anion transporters and organic cation transporters. J. Pharm. Sci. 2001;90:397–421. doi: 10.1002/1520-6017(200104)90:4<397::AID-JPS1000>;2-D.
    1. Zolk O. Disposition of metformin: Variability due to polymorphisms of organic cation transporters. Ann. Med. 2012;44:119–129. doi: 10.3109/07853890.2010.549144.
    1. Reitman M.L., Schadt E.E. Pharmacogenetics of metformin response: A step in the path toward personalized medicine. J. Clin. Investig. 2007;117:1226–1229. doi: 10.1172/JCI32133.
    1. Tzvetkov M.V., Vormfelde S.V., Balen D., Meineke I., Schmidt T., Sehrt D., Sabolic I., Koepsell H., Brockmoller J. The effects of genetic polymorphisms in the organic cation transporters oct1, oct2, and oct3 on the renal clearance of metformin. Clin. Pharmacol. Ther. 2009;86:299–306. doi: 10.1038/clpt.2009.92.
    1. Takane H., Shikata E., Otsubo K., Higuchi S., Ieiri I. Polymorphism in human organic cation transporters and metformin action. Pharmacogenomics. 2008;9:415–422. doi: 10.2217/14622416.9.4.415.
    1. Graham G.G., Punt J., Arora M., Day R.O., Doogue M.P., Duong J.K., Furlong T.J., Greenfield J.R., Greenup L.C., Kirkpatrick C.M., et al. Clinical pharmacokinetics of metformin. Clin. Pharmacokinet. 2011;50:81–98. doi: 10.2165/11534750-000000000-00000.
    1. Chen L., Pawlikowski B., Schlessinger A., More S.S., Stryke D., Johns S.J., Portman M.A., Chen E., Ferrin T.E., Sali A., et al. Role of organic cation transporter 3 (slc22a3) and its missense variants in the pharmacologic action of metformin. Pharmacogenet. Genom. 2010;20:687–699. doi: 10.1097/FPC.0b013e32833fe789.
    1. Ou H.-T., Chen P.-C., Wu M.-H., Lin C.-Y. Metformin improved health-related quality of life in ethnic chinese women with polycystic ovary syndrome. Health Qual. Life Outcomes. 2016;14:119. doi: 10.1186/s12955-016-0520-9.
    1. Johnson N.P. Metformin use in women with polycystic ovary syndrome. Ann. Transl. Med. 2014;2:56.
    1. Gambineri A., Tomassoni F., Gasparini D.I., Di Rocco A., Mantovani V., Pagotto U., Altieri P., Sanna S., Fulghesu A.M., Pasquali R. Organic cation transporter 1 polymorphisms predict the metabolic response to metformin in women with the polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2010;95:E204–E208. doi: 10.1210/jc.2010-0145.
    1. Lautem A., Heise M., Gräsel A., Hoppe-Lotichius M., Weiler N., Foltys D., Knapstein J., Schattenberg J.M., Schad A., Zimmermann A., et al. Downregulation of organic cation transporter 1 (slc22a1) is associated with tumor progression and reduced patient survival in human cholangiocellular carcinoma. Int. J. Oncol. 2013;42:1297–1304. doi: 10.3892/ijo.2013.1840.
    1. Faure M., Bertoldo M.J., Khoueiry R., Bongrani A., Brion F., Giulivi C., Dupont J., Froment P. Metformin in reproductive biology. Front. Endocrinol. 2018;9:675. doi: 10.3389/fendo.2018.00675.
    1. Jablonski K.A., McAteer J.B., de Bakker P.I., Franks P.W., Pollin T.I., Hanson R.L., Saxena R., Fowler S., Shuldiner A.R., Knowler W.C., et al. Common variants in 40 genes assessed for diabetes incidence and response to metformin and lifestyle intervention in the diabetes prevention program. Diabetes. 2010;59:2672–2681. doi: 10.2337/db10-0543.
    1. Sallinen R., Kaunisto M.A., Forsblom C., Thomas M., Fagerudd J., Pettersson-Fernholm K., Groop P.H., Wessman M., Finnish Diabetic Nephropathy Study Group Association of the slc22a1, slc22a2, and slc22a3 genes encoding organic cation transporters with diabetic nephropathy and hypertension. Ann. Med. 2010;42:296–304. doi: 10.3109/07853891003777109.
    1. Ohishi Y., Nakamuta M., Ishikawa N., Saitoh O., Nakamura H., Aiba Y., Komori A., Migita K., Yatsuhashi H., Fukushima N., et al. Genetic polymorphisms of oct-1 confer susceptibility to severe progression of primary biliary cirrhosis in japanese patients. J. Gastroenterol. 2014;49:332–342. doi: 10.1007/s00535-013-0795-0.
    1. Shu Y., Brown C., Castro R.A., Shi R.J., Lin E.T., Owen R.P., Sheardown S.A., Yue L., Burchard E.G., Brett C.M., et al. Effect of genetic variation in the organic cation transporter 1, oct1, on metformin pharmacokinetics. Clin. Pharmacol. Ther. 2008;83:273–280. doi: 10.1038/sj.clpt.6100275.
    1. Shu Y., Sheardown S.A., Brown C., Owen R.P., Zhang S., Castro R.A., Ianculescu A.G., Yue L., Lo J.C., Burchard E.G., et al. Effect of genetic variation in the organic cation transporter 1 (oct1) on metformin action. J. Clin. Investig. 2007;117:1422–1431. doi: 10.1172/JCI30558.
    1. Chen Y., Li S., Brown C., Cheatham S., Castro R.A., Leabman M.K., Urban T.J., Chen L., Yee S.W., Choi J.H., et al. Effect of genetic variation in the organic cation transporter 2 on the renal elimination of metformin. Pharmacogenet. Genom. 2009;19:497–504. doi: 10.1097/FPC.0b013e32832cc7e9.
    1. Shikata E., Yamamoto R., Takane H., Shigemasa C., Ikeda T., Otsubo K., Ieiri I. Human organic cation transporter (oct1 and oct2) gene polymorphisms and therapeutic effects of metformin. J. Hum. Genet. 2007;52:117–122. doi: 10.1007/s10038-006-0087-0.
    1. Song I.S., Shin H.J., Shin J.G. Genetic variants of organic cation transporter 2 (oct2) significantly reduce metformin uptake in oocytes. Xenobiotica. 2008;38:1252–1262. doi: 10.1080/00498250802130039.
    1. Song I.S., Shin H.J., Shim E.J., Jung I.S., Kim W.Y., Shon J.H., Shin J.G. Genetic variants of the organic cation transporter 2 influence the disposition of metformin. Clin. Pharmacol. Ther. 2008;84:559–562. doi: 10.1038/clpt.2008.61.
    1. Chen L., Takizawa M., Chen E., Schlessinger A., Segenthelar J., Choi J.H., Sali A., Kubo M., Nakamura S., Iwamoto Y., et al. Genetic polymorphisms in organic cation transporter 1 (oct1) in Chinese and Japanese populations exhibit altered function. J. Pharmacol. Exp. Ther. 2010;335:42–50. doi: 10.1124/jpet.110.170159.
    1. Pernicova I., Korbonits M. Metformin--mode of action and clinical implications for diabetes and cancer. Nat. Rev. Endocrinol. 2014;10:143–156. doi: 10.1038/nrendo.2013.256.
    1. Otsuka M., Matsumoto T., Morimoto R., Arioka S., Omote H., Moriyama Y. A human transporter protein that mediates the final excretion step for toxic organic cations. Proc. Natl. Acad. Sci. USA. 2005;102:17923–17928. doi: 10.1073/pnas.0506483102.
    1. Becker M.L., Visser L.E., van Schaik R.H., Hofman A., Uitterlinden A.G., Stricker B.H. Genetic variation in the multidrug and toxin extrusion 1 transporter protein influences the glucose-lowering effect of metformin in patients with diabetes: A preliminary study. Diabetes. 2009;58:745–749. doi: 10.2337/db08-1028.
    1. Tanihara Y., Masuda S., Sato T., Katsura T., Ogawa O., Inui K. Substrate specificity of mate1 and mate2-k, human multidrug and toxin extrusions/h(+)-organic cation antiporters. Biochem. Pharmacol. 2007;74:359–371. doi: 10.1016/j.bcp.2007.04.010.
    1. Stocker S.L., Morrissey K.M., Yee S.W., Castro R.A., Xu L., Dahlin A., Ramirez A.H., Roden D.M., Wilke R.A., McCarty C.A., et al. The effect of novel promoter variants in mate1 and mate2 on the pharmacokinetics and pharmacodynamics of metformin. Clin. Pharmacol. Ther. 2013;93:186–194. doi: 10.1038/clpt.2012.210.
    1. Choi J.H., Yee S.W., Ramirez A.H., Morrissey K.M., Jang G.H., Joski P.J., Mefford J.A., Hesselson S.E., Schlessinger A., Jenkins G., et al. A common 5′-utr variant in mate2-k is associated with poor response to metformin. Clin. Pharmacol. Ther. 2011;90:674–684. doi: 10.1038/clpt.2011.165.
    1. Zhou M., Xia L., Wang J. Metformin transport by a newly cloned proton-stimulated organic cation transporter (plasma membrane monoamine transporter) expressed in human intestine. Drug Metab. Dispos. 2007;35:1956–1962. doi: 10.1124/dmd.107.015495.
    1. Stovall D.W., Bailey A.P., Pastore L.M. Assessment of insulin resistance and impaired glucose tolerance in lean women with polycystic ovary syndrome. J. Womens Health. 2011;20:37–43. doi: 10.1089/jwh.2010.2053.

Source: PubMed

3
Se inscrever