Vitamin B-6 Supplementation Could Mediate Antioxidant Capacity by Reducing Plasma Homocysteine Concentration in Patients with Hepatocellular Carcinoma after Tumor Resection

Shao-Bin Cheng, Ping-Ting Lin, Hsiao-Tien Liu, Yi-Shan Peng, Shih-Chien Huang, Yi-Chia Huang, Shao-Bin Cheng, Ping-Ting Lin, Hsiao-Tien Liu, Yi-Shan Peng, Shih-Chien Huang, Yi-Chia Huang

Abstract

Vitamin B-6 has a strong antioxidative effect. It would be useful to determine whether vitamin B-6 supplementation had effects on antioxidant capacities in patients with hepatocellular carcinoma (HCC) who had recently undergone tumor resection. Thirty-three HCC patients were randomly assigned to either the placebo (n = 16) group or the vitamin B-6 50 mg/d (n = 17) group for 12 weeks. Plasma pyridoxal 5'-phosphate, homocysteine, indicators of oxidative stress, and antioxidant capacities were measured. Plasma homocysteine in the vitamin B-6 group was significantly decreased at week 12, while the level of trolox equivalent antioxidant capacity (TEAC) was significantly increased at the end of the intervention period. Vitamin B-6 supplementation had a significant reducing effect on the change of plasma homocysteine (β = -2.4, p = 0.02) but not on the change of TEAC level after adjusting for potential confounders. The change of plasma homocysteine was significantly associated with the change of TEAC after adjusting for potential confounders (β = -162.0, p = 0.03). Vitamin B-6 supplementation seemed to mediate antioxidant capacity via reducing plasma homocysteine rather than having a direct antioxidative effect in HCC patients who had recently undergone tumor resection. The clinical trial number is NCT01964001, ClinicalTrials.gov.

References

    1. Ferlay J., Soerjomataram I., Ervik M., et al. IARC Cancer Base. 11. Lyon, France: International Agency for Research on Cancer; 2013. GLOBOCAN 2012 v1.0, cancer incidence and mortality worldwide.
    1. Butler L. M., Arning E., Wang R., et al. Prediagnostic levels of serum one-carbon metabolites and risk of hepatocellular carcinoma. Cancer Epidemiology Biomarkers & Prevention. 2013;22(10):1884–1893. doi: 10.1158/1055-9965.epi-13-0497.
    1. Galluzzi L., Vacchelli E., Michels J., et al. Effects of vitamin B6 metabolism on oncogenesis, tumor progression and therapeutic responses. Oncogene. 2013;32(42):4995–5004. doi: 10.1038/onc.2012.623.
    1. Bilski P., Li M. Y., Ehrenshaft M., Daub M. E., Chignell C. F. Vitamin B6 (pyridoxine) and its derivatives are efficient singlet oxygen quenchers and potential fungal antioxidants. Photochemistry and Photobiology. 2000;71(2):129–134.
    1. Ohta B. K., Foote C. S. Characterization of endoperoxide and hydroperoxide intermediates in the reaction of pyridoxine with singlet oxygen. Journal of the American Chemical Society. 2002;124(41):12064–12065. doi: 10.1021/ja0205481.
    1. Kannan K., Jain S. K. Effect of vitamin B6 on oxygen radicals, mitochondrial membrane potential, and lipid peroxidation in H2O2-treated U937 monocytes. Free Radical Biology & Medicine. 2004;36(4):423–428. doi: 10.1016/j.freeradbiomed.2003.09.012.
    1. Mahfouz M. M., Kummerow F. A. Vitamin C or Vitamin B6 supplementation prevent the oxidative stress and decrease of prostacyclin generation in homocysteinemic rats. The International Journal of Biochemistry & Cell Biology. 2004;36(10):1919–1932. doi: 10.1016/j.biocel.2004.01.028.
    1. Keles M., Al B., Gumustekin K., et al. Antioxidative status and lipid peroxidation in kidney tissue of rats fed with vitamin B6-deficient diet. Renal Failure. 2010;32(5):618–622. doi: 10.3109/0886022x.2010.481737.
    1. Wu L. L., Wu J. T. Hyperhomocysteinemia is a risk factor for cancer and a new potential tumor marker. Clinica Chimica Acta. 2002;322(1-2):21–28. doi: 10.1016/s0009-8981(02)00174-2.
    1. Signorello M. G., Viviani G. L., Armani U., et al. Homocysteine, reactive oxygen species and nitric oxide in type 2 diabetes mellitus. Thrombosis Research. 2007;120(4):607–613. doi: 10.1016/j.thromres.2006.11.008.
    1. Stipanuk M. H. Sulfur amino acid metabolism: pathways for production and removal of homocysteine and cysteine. Annual Review of Nutrition. 2004;24:539–577. doi: 10.1146/annurev.nutr.24.012003.132418.
    1. Wu G., Fang Y.-Z., Yang S., Lupton J. R., Turner N. D. Glutathione metabolism and its implications for health. Journal of Nutrition. 2004;134(3):489–492.
    1. Yuan L., Kaplowitz N. Glutathione in liver diseases and hepatotoxicity. Molecular Aspects of Medicine. 2009;30(1-2):29–41. doi: 10.1016/j.mam.2008.08.003.
    1. Mena S., Ortega A., Estrela J. M. Oxidative stress in environmental-induced carcinogenesis. Mutation Research—Genetic Toxicology and Environmental Mutagenesis. 2009;674(1-2):36–44. doi: 10.1016/j.mrgentox.2008.09.017.
    1. Czeczot H., Ścibior D., Skrzycki M., Podsiad M. Glutathione and GSH-dependent enzymes in patients with liver cirrhosis and hepatocellular carcinoma. Acta Biochimica Polonica. 2006;53(1):237–241.
    1. Lin C.-C., Yin M.-C. B vitamins deficiency and decreased anti-oxidative state in patients with liver cancer. European Journal of Nutrition. 2007;46(5):293–299. doi: 10.1007/s00394-007-0665-8.
    1. Tsai S.-M., Lin S.-K., Lee K.-T., et al. Evaluation of redox statuses in patients with hepatitis B virus-associated hepatocellular carcinoma. Annals of Clinical Biochemistry. 2009;46(5):394–400. doi: 10.1258/acb.2009.009029.
    1. Yahya R. S., Ghanem O. H., Foyouh A.-A. A., Atwa M. A., Enany S. A. Role of interleukin-8 and oxidative stress in patients with hepatocellular carcinoma. Clinical Laboratory. 2013;59(9-10):969–976. doi: 10.7754/Clin.Lab.2012.120712.
    1. Zaman S. N., Tredger J. M., Johnson P. J., Williams R. Vitamin B6 concentrations in patients with chronic liver disease and hepatocellular carcinoma. British Medical Journal. 1986;293(6540):p. 175.
    1. Talwar D., Quasim T., McMillan D. C., Kinsella J., Williamson C., O'Reilly D. S. J. Optimisation and validation of a sensitive high-performance liquid chromatography assay for routine measurement of pyridoxal 5-phosphate in human plasma and red cells using pre-column semicarbazide derivatisation. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences. 2003;792(2):333–343. doi: 10.1016/S1570-0232(03)00320-9.
    1. Araki A., Sako Y. Determination of free and total homocysteine in human plasma by high-performance liquid chromatography with fluorescence detection. Journal of Chromatography B. 1987;422:43–52. doi: 10.1016/0378-4347(87)80438-3.
    1. Lapenna D., Ciofani G., Pierdomenico S. D., Giamberardino M. A., Cuccurullo F. Reaction conditions affecting the relationship between thiobarbituric acid reactivity and lipid peroxides in human plasma. Free Radical Biology and Medicine. 2001;31(3):331–335. doi: 10.1016/S0891-5849(01)00584-6.
    1. Erel O. A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation. Clinical Biochemistry. 2004;37(4):277–285. doi: 10.1016/j.clinbiochem.2003.11.015.
    1. Ferré N., Gómez F., Camps J., et al. Plasma homocysteine concentrations in patients with liver cirrhosis. Clinical Chemistry. 2002;48(1):183–185.
    1. Bosy-Westphal A., Ruschmeyer M., Czech N., et al. Determinants of hyperhomocysteinemia in patients with chronic liver disease and after orthotopic liver transplantation. American Journal of Clinical Nutrition. 2003;77(5):1269–1277.
    1. Ventura P., Rosa M. C., Abbati G., et al. Hyperhomocysteinaemia in chronic liver diseases: role of disease stage, vitamin status and methylenetetrahydrofolate reductase genetics. Liver International. 2005;25(1):49–56. doi: 10.1111/j.1478-3231.2005.01042.x.
    1. Hsu C. C., Cheng C. H., Hsu C., Lee W., Huang S., Huang Y. Role of vitamin B6 status on antioxidant defenses, glutathione, and related enzyme activities in mice with homocysteine-induced oxidative stress. Food & Nutrition Research. 2015;59 doi: 10.3402/fnr.v59.25702.
    1. Mahfouz M. M., Zhou S. Q., Kummerow F. A. Vitamin B6 compounds are capable of reducing the superoxide radical and lipid peroxide levels induced by H2O2 in vascular endothelial cells in culture. International Journal for Vitamin and Nutrition Research. 2009;79(4):218–229. doi: 10.1024/0300-9831.79.4.218.
    1. Taysi S. Oxidant/antioxidant status in liver tissue of vitamin B6 deficient rats. Clinical Nutrition. 2005;24(3):385–389. doi: 10.1016/j.clnu.2004.12.001.
    1. Rasheed Z., Ahmad R., Rasheed N., Ali R. Reactive oxygen species damaged human serum albumin in patients with hepatocellular carcinoma. Journal of Experimental & Clinical Cancer Research. 2007;26(3):395–404.
    1. Tanaka H., Fujita N., Sugimoto R., et al. Hepatic oxidative DNA damage is associated with increased risk for hepatocellular carcinoma in chronic hepatitis C. British Journal of Cancer. 2008;98(3):580–586. doi: 10.1038/sj.bjc.6604204.
    1. Hayes J. D., McLellan L. I. Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stress. Free Radical Research. 1999;31(4):273–300. doi: 10.1080/10715769900300851.

Source: PubMed

3
Se inscrever