Usability and Effectiveness of Immersive Virtual Grocery Shopping for Assessing Cognitive Fatigue in Healthy Controls: Protocol for a Randomized Controlled Trial

James A Holdnack, Patricia Flatley Brennan, James A Holdnack, Patricia Flatley Brennan

Abstract

Background: Cognitive fatigue (CF) is a human response to stimulation and stress and is a common comorbidity in many medical conditions that can result in serious consequences; however, studying CF under controlled conditions is difficult. Immersive virtual reality provides an experimental environment that enables the precise measurement of the response of an individual to complex stimuli in a controlled environment.

Objective: We aim to examine the development of an immersive virtual shopping experience to measure subjective and objective indicators of CF induced by instrumental activities of daily living.

Methods: We will recruit 84 healthy participants (aged 18-75 years) for a 2-phase study. Phase 1 is a user experience study for testing the software functionality, user interface, and realism of the virtual shopping environment. Phase 2 uses a 3-arm randomized controlled trial to determine the effect that the immersive environment has on fatigue. Participants will be randomized into 1 of 3 conditions exploring fatigue response during a typical human activity (grocery shopping). The level of cognitive and emotional challenges will change during each activity. The primary outcome of phase 1 is the experience of user interface difficulties. The primary outcome of phase 2 is self-reported CF. The core secondary phase 2 outcomes include subjective cognitive load, change in task performance behavior, and eye tracking. Phase 2 uses within-subject repeated measures analysis of variance to compare pre- and postfatigue measures under 3 conditions (control, cognitive challenge, and emotional challenge).

Results: This study was approved by the scientific review committee of the National Institute of Nursing Research and was identified as an exempt study by the institutional review board of the National Institutes of Health. Data collection will begin in spring 2021.

Conclusions: Immersive virtual reality may be a useful research platform for simulating the induction of CF associated with the cognitive and emotional challenges of instrumental activities of daily living.

Trial registration: ClinicalTrials.gov NCT04883359; https://ichgcp.net/clinical-trials-registry/NCT04883359.

International registered report identifier (irrid): PRR1-10.2196/28073.

Keywords: cognitive fatigue; immersive VR; instrumental activity of daily living; user experience; virtual grocery shopping.

Conflict of interest statement

Conflicts of Interest: None declared.

©James A Holdnack, Patricia Flatley Brennan. Originally published in JMIR Research Protocols (https://www.researchprotocols.org), 04.08.2021.

Figures

Figure 1
Figure 1
Virtual reality content in sequence. NASA-TLX: National Aeronautics and Space Administration–task load index; VAS-F: Visual Analog Scale Fatigue; VR: virtual reality.
Figure 2
Figure 2
Detailed procedure of the cognitive fatigue study. BFI: Big Five Inventory; HMD: head-mounted display; NASA-TLX: National Aeronautics and Space Administration–task load index; NIHTB-CB: National Institutes of Health toolbox–cognition battery; PFS: Pittsburgh Fatigability Scale; PROMIS: Patient-Reported Outcomes Measurement Information System; SDH: social determinants of health; VAS-F: Visual Analog Scale Fatigue; VR: virtual reality.
Figure 3
Figure 3
Grocery store screenshot.

References

    1. Dascal J, Reid M, IsHak WW, Spiegel B, Recacho J, Rosen B, Danovitch I. Virtual reality and medical inpatients: a systematic review of randomized, controlled trials. Innov Clin Neurosci. 2017;14(1-2):14–21.
    1. Neguţ A, Matu S, Sava FA, David D. Virtual reality measures in neuropsychological assessment: a meta-analytic review. Clin Neuropsychol. 2016 Dec;30(2):165–84. doi: 10.1080/13854046.2016.1144793.
    1. Parsons TD, Rizzo AA. Affective outcomes of virtual reality exposure therapy for anxiety and specific phobias: a meta-analysis. J Behav Ther Exp Psychiatry. 2008 Sep;39(3):250–61. doi: 10.1016/j.jbtep.2007.07.007.
    1. Guo Z, Chen R, Liu X, Zhao G, Zheng Y, Gong M, Zhang J. The impairing effects of mental fatigue on response inhibition: an ERP study. PLoS One. 2018 Jun 1;13(6):e0198206. doi: 10.1371/journal.pone.0198206.
    1. Armougum A, Orriols E, Gaston-Bellegarde A, Marle CJ, Piolino P. Virtual reality: a new method to investigate cognitive load during navigation. J Environ Psychol. 2019 Oct;65:101338. doi: 10.1016/j.jenvp.2019.101338.
    1. Zhang L, Abreu BC, Seale GS, Masel B, Christiansen CH, Ottenbacher KJ. A virtual reality environment for evaluation of a daily living skill in brain injury rehabilitation: reliability and validity11No commercial party having a direct financial interest in the results of the research supporting this article has or will confer a benefit upon the author(s) or upon any organization with which the author(s) is/are associated. Archiv Phys Med Rehab. 2003 Aug;84(8):1118–24. doi: 10.1016/S0003-9993(03)00203-X. doi: 10.1016/S0003-9993(03)00203-X.
    1. Kandalaft MR, Didehbani N, Krawczyk DC, Allen TT, Chapman SB. Virtual reality social cognition training for young adults with high-functioning autism. J Autism Dev Disord. 2013 Jan 9;43(1):34–44. doi: 10.1007/s10803-012-1544-6.
    1. Aubin G, Béliveau MF, Klinger E. An exploration of the ecological validity of the Virtual Action Planning-Supermarket (VAP-S) with people with schizophrenia. Neuropsychol Rehabil. 2018 Jul 28;28(5):689–708. doi: 10.1080/09602011.2015.1074083.
    1. Dorrian J, Roach GD, Fletcher A, Dawson D. Simulated train driving: fatigue, self-awareness and cognitive disengagement. Appl Ergon. 2007 Mar;38(2):155–66. doi: 10.1016/j.apergo.2006.03.006.
    1. van der Linden D, Frese M, Meijman TF. Mental fatigue and the control of cognitive processes: effects on perseveration and planning. Acta Psychologica. 2003 May;113(1):45–65. doi: 10.1016/s0001-6918(02)00150-6.
    1. Akerstedt T. Consensus statement: fatigue and accidents in transport operations. J Sleep Res. 2000 Dec;9(4):395. doi: 10.1046/j.1365-2869.2000.00228.x.
    1. Dawson D, Chapman J, Thomas MJ. Fatigue-proofing: a new approach to reducing fatigue-related risk using the principles of error management. Sleep Med Rev. 2012 Apr;16(2):167–75. doi: 10.1016/j.smrv.2011.05.004.
    1. Williamson A, Lombardi DA, Folkard S, Stutts J, Courtney TK, Connor JL. The link between fatigue and safety. Accid Anal Prev. 2011 Mar;43(2):498–515. doi: 10.1016/j.aap.2009.11.011.
    1. Bakshi R. Fatigue associated with multiple sclerosis: diagnosis, impact and management. Mult Scler. 2003 Jun 02;9(3):219–27. doi: 10.1191/1352458503ms904oa.
    1. Mollaoglu M, Fertelli TK, Tuncay F. Fatigue and disability in elderly patients with chronic obstructive pulmonary disease (COPD) Arch Gerontol Geriatr. 2011 Sep;53(2):93–8. doi: 10.1016/j.archger.2010.07.001.
    1. Pittion-Vouyovitch S, Debouverie M, Guillemin F, Vandenberghe N, Anxionnat R, Vespignani H. Fatigue in multiple sclerosis is related to disability, depression and quality of life. J Neurol Sci. 2006 Apr 15;243(1-2):39–45. doi: 10.1016/j.jns.2005.11.025.
    1. Saligan LN, Olson K, Filler K, Larkin D, Cramp F, Yennurajalingam S, Sriram Y, Escalante CP, del Giglio A, Kober KM, Kamath J, Palesh O, Mustian K, Multinational Association of Supportive Care in Cancer Fatigue Study Group-Biomarker Working Group The biology of cancer-related fatigue: a review of the literature. Support Care Cancer. 2015 Aug 15;23(8):2461–78. doi: 10.1007/s00520-015-2763-0.
    1. Kwon O, Ahn HS, Kim HJ. Fatigue in epilepsy: a systematic review and meta-analysis. Seizure. 2017 Feb;45:151–9. doi: 10.1016/j.seizure.2016.11.006.
    1. Mollayeva T, Kendzerska T, Mollayeva S, Shapiro CM, Colantonio A, Cassidy JD. A systematic review of fatigue in patients with traumatic brain injury: the course, predictors and consequences. Neurosci Biobehav Rev. 2014 Nov;47:684–716. doi: 10.1016/j.neubiorev.2014.10.024.
    1. Dobryakova E, DeLuca J, Genova HM, Wylie GR. Neural correlates of cognitive fatigue: cortico-striatal circuitry and effort–reward imbalance. J Int Neuropsychol Soc. 2013 Jul 10;19(8):849–53. doi: 10.1017/s1355617713000684.
    1. Kluger BM, Pedersen KF, Tysnes O, Ongre SO, Øygarden B, Herlofson K. Is fatigue associated with cognitive dysfunction in early Parkinson's disease? Parkinsonism Relat Disord. 2017 Apr;37:87–91. doi: 10.1016/j.parkreldis.2017.02.005.
    1. Chai R, Smith M, Nguyen T, Ling S, Coutts AJ, Nguyen H. Comparing features extractors in EEG-based cognitive fatigue detection of demanding computer tasks. Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); Aug. 25-29, 2015; Milan, Italy. 2015.
    1. Dimitrakopoulos GN, Kakkos I, Dai Z, Wang H, Sgarbas K, Thakor N, Bezerianos A, Sun Y. Functional connectivity analysis of mental fatigue reveals different network topological alterations between driving and vigilance tasks. IEEE Trans Neural Syst Rehabil Eng. 2018 Apr;26(4):740–9. doi: 10.1109/tnsre.2018.2791936.
    1. Burke SE, Samuel IB, Zhao Q, Cagle J, Cohen RA, Kluger B, Ding M. Task-based cognitive fatigability for older adults and validation of mental fatigability subscore of Pittsburgh Fatigability Scale. Front Aging Neurosci. 2018 Oct 19;10:327. doi: 10.3389/fnagi.2018.00327. doi: 10.3389/fnagi.2018.00327.
    1. Feng LR, Regan J, Shrader JA, Liwang J, Ross A, Kumar S, Saligan LN. Cognitive and motor aspects of cancer-related fatigue. Cancer Med. 2019 Oct 13;8(13):5840–9. doi: 10.1002/cam4.2490. doi: 10.1002/cam4.2490.
    1. Bailey A, Channon S, Beaumont JG. The relationship between subjective fatigue and cognitive fatigue in advanced multiple sclerosis. Mult Scler. 2007 Jan 02;13(1):73–80. doi: 10.1177/1352458506071162.
    1. Borragán G, Gilson M, Atas A, Slama H, Lysandropoulos A, De Schepper M, Peigneux P. Cognitive fatigue, sleep and cortical activity in multiple sclerosis disease. A behavioral, polysomnographic and functional near-infrared spectroscopy investigation. Front Hum Neurosci. 2018 Sep 20;12:00378. doi: 10.3389/fnhum.2018.00378.
    1. Hopstaken JF, van der Linden D, Bakker AB, Kompier MA. The window of my eyes: Task disengagement and mental fatigue covary with pupil dynamics. Biol Psychol. 2015 Sep;110:100–6. doi: 10.1016/j.biopsycho.2015.06.013.
    1. Delliaux S, Delaforge A, Deharo J, Chaumet G. Mental workload alters heart rate variability, lowering non-linear dynamics. Front Physiol. 2019 May 14;10:565. doi: 10.3389/fphys.2019.00565. doi: 10.3389/fphys.2019.00565.
    1. Gergelyfi M, Jacob B, Olivier E, Zénon A. Dissociation between mental fatigue and motivational state during prolonged mental activity. Front Behav Neurosci. 2015 Jul 13;9:176. doi: 10.3389/fnbeh.2015.00176. doi: 10.3389/fnbeh.2015.00176.
    1. Guo Z, Chen R, Zhang K, Pan Y, Wu J. The impairing effect of mental fatigue on visual sustained attention under monotonous multi-object visual attention task in long durations: an event-related potential based study. PLoS One. 2016 Sep 28;11(9):e0163360. doi: 10.1371/journal.pone.0163360.
    1. Fisk AD, Scerbo MW. Automatic and control processing approach to interpreting vigilance performance: a review and reevaluation. Hum Factors. 1987 Dec 23;29(6):653–60. doi: 10.1177/001872088702900605.
    1. See JE, Howe SR, Warm JS, Dember WN. Meta-analysis of the sensitivity decrement in vigilance. Psychol Bull. 1995;117(2):230–49. doi: 10.1037/0033-2909.117.2.230.
    1. Helton WS, Warm JS. Signal salience and the mindlessness theory of vigilance. Acta Psychol (Amst) 2008 Sep;129(1):18–25. doi: 10.1016/j.actpsy.2008.04.002.
    1. Grier RA, Warm JS, Dember WN, Matthews G, Galinsky TL, Parasuraman R. The vigilance decrement reflects limitations in effortful attention, not mindlessness. Hum Factors. 2003;45(3):349–59. doi: 10.1518/hfes.45.3.349.27253.
    1. Ross HA, Russell PN, Helton WS. Effects of breaks and goal switches on the vigilance decrement. Exp Brain Res. 2014 Jun 21;232(6):1729–37. doi: 10.1007/s00221-014-3865-5.
    1. Warm JS, Parasuraman R, Matthews G. Vigilance requires hard mental work and is stressful. Hum Factors. 2008 Jun 01;50(3):433–41. doi: 10.1518/001872008x312152.
    1. Hockey GR. A Motivational Control Theory of Cognitive Fatigue in Ackerman PL Cognitive Fatigue: Multidisciplinary Perspectives on Current Research and Future Applications. Washington, DC: American Psychological Association; 2011.
    1. Hopstaken J, van der Linden D, Bakker AB, Kompier MA, Leung YK. Shifts in attention during mental fatigue: evidence from subjective, behavioral, physiological, and eye-tracking data. J Exp Psychol Hum Percept Perform. 2016 Jun;42(6):878–89. doi: 10.1037/xhp0000189. doi: 10.1037/xhp0000189.
    1. Cook DB, O'Connor PJ, Lange G, Steffener J. Functional neuroimaging correlates of mental fatigue induced by cognition among chronic fatigue syndrome patients and controls. Neuroimage. 2007 May 15;36(1):108–22. doi: 10.1016/j.neuroimage.2007.02.033.
    1. Schwid SR, Tyler CM, Scheid EA, Weinstein A, Goodman AD, McDermott MP. Cognitive fatigue during a test requiring sustained attention: a pilot study. Mult Scler. 2003 Oct 02;9(5):503–8. doi: 10.1191/1352458503ms946oa.
    1. Walker L, Berard J, Berrigan L, Rees L, Freedman M. Detecting cognitive fatigue in multiple sclerosis: method matters. J Neurol Sci. 2012 May 15;316(1-2):86–92. doi: 10.1016/j.jns.2012.01.021.
    1. Samuel IB, Wang C, Burke SE, Kluger B, Ding M. Compensatory neural responses to cognitive fatigue in young and older adults. Front Neural Circuits. 2019 Feb 22;13:12. doi: 10.3389/fncir.2019.00012. doi: 10.3389/fncir.2019.00012.
    1. Wang C, Ding M, Kluger BM. Change in intraindividual variability over time as a key metric for defining performance-based cognitive fatigability. Brain Cogn. 2014 Mar;85:251–8. doi: 10.1016/j.bandc.2014.01.004.
    1. Wang C, Trongnetrpunya A, Samuel IB, Ding M, Kluger BM. Compensatory neural activity in response to cognitive fatigue. J Neurosci. 2016 Apr 06;36(14):3919–24. doi: 10.1523/jneurosci.3652-15.2016.
    1. Behrens M, Mau-Moeller A, Lischke A, Katlun F, Gube M, Zschorlich VF, Skripitz R, Weippert M. Mental fatigue increases gait variability during dual-task walking in old adults. J Gerontol A Biol Sci Med Sci. 2018 May 09;73(6):792–7. doi: 10.1093/gerona/glx210.
    1. Faber LG, Maurits NM, Lorist MM. Mental fatigue affects visual selective attention. PLoS One. 2012 Oct 31;7(10):e48073. doi: 10.1371/journal.pone.0048073.
    1. Holtzer R, Shuman M, Mahoney JR, Lipton R, Verghese J. Cognitive fatigue defined in the context of attention networks. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2011 Jan 24;18(1):108–28. doi: 10.1080/13825585.2010.517826.
    1. Busey T, Swofford HJ, Vanderkolk J, Emerick B. The impact of fatigue on latent print examinations as revealed by behavioral and eye gaze testing. Forensic Sci Int. 2015 Jun;251:202–8. doi: 10.1016/j.forsciint.2015.03.028.
    1. Hanna TN, Zygmont ME, Peterson R, Theriot D, Shekhani H, Johnson J, Krupinski EA. The effects of fatigue from overnight shifts on radiology search patterns and diagnostic performance. J Am Coll Radiol. 2018 Dec;15(12):1709–16. doi: 10.1016/j.jacr.2017.12.019.
    1. Park S, Kyung G, Choi D, Yi J, Lee S, Choi B, Lee S. Effects of display curvature and task duration on proofreading performance, visual discomfort, visual fatigue, mental workload, and user satisfaction. Appl Ergon. 2019 Jul;78:26–36. doi: 10.1016/j.apergo.2019.01.014.
    1. Truschzinski M, Betella A, Brunnett G, Verschure PF. Emotional and cognitive influences in air traffic controller tasks: an investigation using a virtual environment? Appl Ergon. 2018 May;69:1–9. doi: 10.1016/j.apergo.2017.12.019.
    1. Li J, Li H, Wang H, Umer W, Fu H, Xing X. Evaluating the impact of mental fatigue on construction equipment operators' ability to detect hazards using wearable eye-tracking technology. Auto Construct. 2019 Sep;105:102835. doi: 10.1016/j.autcon.2019.102835.
    1. Allan JL, Johnston DW, Powell DJ, Farquharson B, Jones MC, Leckie G, Johnston M. Clinical decisions and time since rest break: an analysis of decision fatigue in nurses. Health Psychol. 2019 Apr;38(4):318–24. doi: 10.1037/hea0000725.
    1. Castro ED, de Almondes KM. Sleep pattern and decision-making in physicians from mobile emergency care service with 12-h work schedules. Int J Neurosci. 2018 Jun 22;128(6):530–9. doi: 10.1080/00207454.2017.1400970.
    1. Gunzelmann G, M James S, Caldwell J. Basic and applied science interactions in fatigue understanding and risk mitigation. Prog Brain Res. 2019;246:177–204. doi: 10.1016/bs.pbr.2019.03.022.
    1. Weigl M, Müller A, Angerer P, Hoffmann F. Workflow interruptions and mental workload in hospital pediatricians: an observational study. BMC Health Serv Res. 2014 Sep 24;14(1):433. doi: 10.1186/1472-6963-14-433.
    1. Kottwitz MU, Meier LL, Jacobshagen N, Kälin W, Elfering A, Hennig J, Semmer NK. Illegitimate tasks associated with higher cortisol levels among male employees when subjective health is relatively low: an intra-individual analysis. Scand J Work Environ Health. 2013 May 01;39(3):310–8. doi: 10.5271/sjweh.3334.
    1. Rogers AP, Barber LK. Workplace intrusions and employee strain: the interactive effects of extraversion and emotional stability. Anxiety Stress Coping. 2019 May 24;32(3):312–28. doi: 10.1080/10615806.2019.1596671.
    1. Sørensen EE, Brahe L. Interruptions in clinical nursing practice. J Clin Nurs. 2013 Sep 05;23(9-10):1274–82. doi: 10.1111/jocn.12329.
    1. Thomas L, Donohue-Porter P, Fishbein JS. Impact of interruptions, distractions, and cognitive load on procedure failures and medication administration errors. J Nurs Care Qual. 2017;32(4):309–17. doi: 10.1097/NCQ.0000000000000256.
    1. Adamcyzk P, Bailey B. If not now, when?: The effects of interruption at different moments within task execution. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems; CHI04: CHI 2004 Conference on Human Factors in Computing Systems; April 24-29, 2004; Vienna Austria. 2004. pp. 271–8.
    1. Mark G, Gudith D, Klocke U. The cost of interrupted work. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems; CHI '08: CHI Conference on Human Factors in Computing Systems; April 8-10, 2008; Florence Italy. 2008. pp. 107–10.
    1. Lee B, Chung K, Kim S. Interruption cost evaluation by cognitive workload and task performance in interruption coordination modes for human–computer interaction tasks. Appl Sci. 2018 Sep 30;8(10):1780. doi: 10.3390/app8101780.
    1. Costenoble A, Knoop V, Vermeiren S, Vella RA, Debain A, Rossi G, Bautmans I, Verté D, Gorus E, De Vriendt P. A comprehensive overview of activities of daily living in existing frailty instruments: a systematic literature search. Gerontologist. 2021 Apr 03;61(3):12–22. doi: 10.1093/geront/gnz147.
    1. Desmond P, Matthews G. Implications of task-induced fatigue effects for in-vehicle countermeasures to driver fatigue. Accid Anal Prev. 1997 Jul;29(4):515–23. doi: 10.1016/s0001-4575(97)00031-6.
    1. Nilsson T, Nelson TM, Carlson D. Development of fatigue symptoms during simulated driving. Accid Anal Prev. 1997 Jul;29(4):479–88. doi: 10.1016/s0001-4575(97)00027-4.
    1. Xu L, Wang B, Xu G, Wang W, Liu Z, Li Z. Functional connectivity analysis using fNIRS in healthy subjects during prolonged simulated driving. Neurosci Lett. 2017 Feb 15;640:21–8. doi: 10.1016/j.neulet.2017.01.018.
    1. Ma J, Gu J, Jia H, Yao Z, Chang R. The relationship between drivers' cognitive fatigue and speed variability during monotonous daytime driving. Front Psychol. 2018 Apr 4;9:459. doi: 10.3389/fpsyg.2018.00459. doi: 10.3389/fpsyg.2018.00459.
    1. Rossi R, Gastaldi M, Gecchele G. Analysis of driver task-related fatigue using driving simulator experiments. Procedia Soc Behav Sci. 2011;20:666–75. doi: 10.1016/j.sbspro.2011.08.074.
    1. Burton R, O'Connell ME, Morgan D. Cognitive and neuropsychiatric correlates of functional impairment across the continuum of no cognitive impairment to dementia. Arch Clin Neuropsychol. 2018 Nov 01;33(7):795–807. doi: 10.1093/arclin/acx112.
    1. Makizako H, Shimada H, Doi T, Tsutsumimoto K, Lee S, Hotta R, Nakakubo S, Harada K, Lee S, Bae S, Harada K, Suzuki T. Cognitive functioning and walking speed in older adults as predictors of limitations in self-reported instrumental activity of daily living: prospective findings from the Obu Study of Health Promotion for the Elderly. Int J Environ Res Public Health. 2015 Mar 11;12(3):3002–13. doi: 10.3390/ijerph120303002.
    1. Ouellet E, Boller B, Corriveau-Lecavalier N, Cloutier S, Belleville S. The Virtual Shop: A new immersive virtual reality environment and scenario for the assessment of everyday memory. J Neurosci Methods. 2018 Jun 01;303:126–35. doi: 10.1016/j.jneumeth.2018.03.010.
    1. Parsons TD, Barnett M. Validity of a newly developed measure of memory: feasibility study of the virtual environment grocery store. J Alzheimers Dis. 2017 Aug 14;59(4):1227–35. doi: 10.3233/jad-170295.
    1. Parsons TD, McMahan T. An initial validation of the Virtual Environment Grocery Store. J Neurosci Methods. 2017 Nov 01;291:13–9. doi: 10.1016/j.jneumeth.2017.07.027.
    1. Rempfer MV, Hamera EK, Brown CE, Cromwell RL. The relations between cognition and the independent living skill of shopping in people with schizophrenia. Psychiatry Res. 2003 Feb;117(2):103–12. doi: 10.1016/s0165-1781(02)00318-9.
    1. Semkovska M, Bédard MA, Godbout L, Limoge F, Stip E. Assessment of executive dysfunction during activities of daily living in schizophrenia. Schizophr Res. 2004 Aug 01;69(2-3):289–300. doi: 10.1016/j.schres.2003.07.005.
    1. Glize B, Lunven M, Rossetti Y, Revol P, Jacquin-Courtois S, Klinger E, Joseph P, Rode G. Improvement of navigation and representation in virtual reality after prism adaptation in neglect patients. Front Psychol. 2017 Nov 20;8:2019. doi: 10.3389/fpsyg.2017.02019. doi: 10.3389/fpsyg.2017.02019.
    1. Greenwood KE, Morris R, Smith V, Jones A, Pearman D, Wykes T. Virtual shopping: A viable alternative to direct assessment of real life function? Schizophr Res. 2016 Apr;172(1-3):206–10. doi: 10.1016/j.schres.2016.02.029.
    1. Klinger E, Chemin I, Lebreton S, Marié RM. Virtual action planning in Parkinson's disease: a control study. Cyberpsychol Behav. 2006 Jun;9(3):342–7. doi: 10.1089/cpb.2006.9.342.
    1. Levy CE, Miller DM, Akande CA, Lok B, Marsiske M, Halan S. V-Mart, a Virtual Reality Grocery Store. Am J Phys Med Rehabil. 2019;98(3):191–8. doi: 10.1097/phm.0000000000001041.
    1. Grewe P, Lahr D, Kohsik A, Dyck E, Markowitsch H, Bien C, Botsch M, Piefke M. Real-life memory and spatial navigation in patients with focal epilepsy: ecological validity of a virtual reality supermarket task. Epilepsy Behav. 2014 Feb;31:57–66. doi: 10.1016/j.yebeh.2013.11.014.
    1. Iskander J, Hossny M, Nahavandi S. A review on ocular biomechanic models for assessing visual fatigue in virtual reality. IEEE Access. 2018;6:19345–61. doi: 10.1109/access.2018.2815663.
    1. Kourtesis P, Collina S, Doumas LA, MacPherson SE. Technological competence is a pre-condition for effective implementation of virtual reality head mounted displays in human neuroscience: a technological review and meta-analysis. Front Hum Neurosci. 2019 Oct 2;13:342. doi: 10.3389/fnhum.2019.00342. doi: 10.3389/fnhum.2019.00342.
    1. Sheppard AL, Wolffsohn JS. Digital eye strain: prevalence, measurement and amelioration. BMJ Open Ophthalmol. 2018 Apr 16;3(1):e000146. doi: 10.1136/bmjophth-2018-000146. doi: 10.1136/bmjophth-2018-000146.
    1. Campoe KR, Giuliano KK. Impact of frequent interruption on nurses' patient-controlled analgesia programming performance. Hum Factors. 2017 Dec 19;59(8):1204–13. doi: 10.1177/0018720817732605.
    1. Stussman B, Williams A, Snow J, Gavin A, Scott R, Nath A, Walitt B. Characterization of post-exertional malaise in patients with myalgic encephalomyelitis/chronic fatigue syndrome. Front Neurol. 2020 Sep 18;11:1025. doi: 10.3389/fneur.2020.01025. doi: 10.3389/fneur.2020.01025.
    1. McGrath RP, Clark BC, Erlandson KM, Herrmann SD, Vincent BM, Hall OT, Hackney KJ. Impairments in individual autonomous living tasks and time to self-care disability in middle-aged and older adults. J Am Med Dir Assoc. 2019 Jun;20(6):730–35. doi: 10.1016/j.jamda.2018.10.014.
    1. Peukert C, Pfeiffer J, Meißner M, Pfeiffer T, Weinhardt C. Shopping in virtual reality stores: the influence of immersion on system adoption. J Manag Info Sys. 2019 Aug 04;36(3):755–88. doi: 10.1080/07421222.2019.1628889.
    1. Ames SL, Wolffsohn JS, McBrien NA. The development of a symptom questionnaire for assessing virtual reality viewing using a head-mounted display. Optom Vis Sci. 2005 Mar;82(3):168–76. doi: 10.1097/01.opx.0000156307.95086.6.
    1. Regenbrecht H, Schubert T. Real and illusory interactions enhance presence in virtual environments. Pres Teleop Virt Environ. 2002 Aug;11(4):425–34. doi: 10.1162/105474602760204318.
    1. Babin BJ, Darden WR, Griffin M. Work and/or Fun: Measuring hedonic and utilitarian shopping value. J Consum Res. 1994 Mar;20(4):644. doi: 10.1086/209376.
    1. Glynn NW, Santanasto AJ, Simonsick EM, Boudreau RM, Beach SR, Schulz R, Newman AB. The Pittsburgh Fatigability Scale for older adults: development and validation. J Am Geriatr Soc. 2015 Jan 31;63(1):130–5. doi: 10.1111/jgs.13191.
    1. Cella D, Riley W, Stone A, Rothrock N, Reeve B, Yount S, Amtmann D, Bode R, Buysse D, Choi S, Cook K, Devellis R, DeWalt D, Fries JF, Gershon R, Hahn EA, Lai J, Pilkonis P, Revicki D, Rose M, Weinfurt K, Hays R. The Patient-Reported Outcomes Measurement Information System (PROMIS) developed and tested its first wave of adult self-reported health outcome item banks: 2005-2008. J Clin Epidemiol. 2010 Nov;63(11):1179–94. doi: 10.1016/j.jclinepi.2010.04.011.
    1. John O, Robins R, Pervin L. The Big-Five trait taxonomy: history, measurement, theoretical perspectives. In: Pervin LA, John OP, editors. Handbook of Personality: Theory and Research. New York: Guilford Press; 2010. pp. 102–38.
    1. American Psychological Association "The NIH Toolbox Cognition Battery: Results from a large normative developmental sample (PING)": correction to Akshoomoff et al. (2013) Neuropsychology. 2014 Mar;28(2):319. doi: 10.1037/neu0000061.
    1. Lee KA, Hicks G, Nino-Murcia G. Validity and reliability of a scale to assess fatigue. Psychiatry Res. 1991 Mar;36(3):291–8. doi: 10.1016/0165-1781(91)90027-m.
    1. Cehelyk EK, Harvey DY, Grubb ML, Jalel R, El-Sibai MS, Markowitz CE, Berger JR, Hamilton RH, Chahin S. Uncovering the association between fatigue and fatigability in multiple sclerosis using cognitive control. Mult Scler Relat Disord. 2019 Jan;27:269–75. doi: 10.1016/j.msard.2018.10.112.
    1. Ren P, Anderson AJ, McDermott K, Baran TM, Lin F. Cognitive fatigue and cortical-striatal network in old age. Aging (Albany NY) 2019 Apr 17;11(8):2312–26. doi: 10.18632/aging.101915.
    1. Grasha AF, Schell K. Psychosocial factors, workload, and human error in a simulated pharmacy dispensing task. Percept Mot Skills. 2001 Feb 31;92(1):53–71. doi: 10.2466/pms.2001.92.1.53.
    1. Guastello SJ. Catastrophe models for cognitive workload and fatigue. Proceedings of the Human Factors and Ergonomics Society Annual Meeting. 2014 Oct 17;58(1):904–8. doi: 10.1177/1541931214581190.
    1. Sutherland A, Ashcroft DM, Phipps DL. Exploring the human factors of prescribing errors in paediatric intensive care units. Arch Dis Child. 2019 Jun 08;104(6):588–95. doi: 10.1136/archdischild-2018-315981.
    1. Trujillo LT. Mental effort and information-processing costs are inversely related to global brain free energy during visual categorization. Front Neurosci. 2019 Dec 5;13:1292. doi: 10.3389/fnins.2019.01292. doi: 10.3389/fnins.2019.01292.
    1. Waite S, Scott J, Gale B, Fuchs T, Kolla S, Reede D. Interpretive error in radiology. Am J Roentgenol. 2017 Apr;208(4):739–49. doi: 10.2214/ajr.16.16963.
    1. Hart S, Staveland L. Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. Adv Psychol Hum Mental Workload. 1988;139:83. doi: 10.1016/S0166-4115(08)62386-9.
    1. Hart S. Nasa-Task Load Index (NASA-TLX); 20 years later. Proceedings of the Human Factors and Ergonomics Society Annual Meeting. 2016 Nov 05;50(9):904–8. doi: 10.1177/154193120605000909.
    1. Klaassen EB, Evers EA, de Groot RH, Backes WH, Veltman DJ, Jolles J. Working memory in middle-aged males: age-related brain activation changes and cognitive fatigue effects. Biol Psychol. 2014 Feb;96:134–43. doi: 10.1016/j.biopsycho.2013.11.008.
    1. Kluckow SW, Rehbein J, Schwab M, Witte OW, Bublak P. What you get from what you see: Parametric assessment of visual processing capacity in multiple sclerosis and its relation to cognitive fatigue. Cortex. 2016 Oct;83:167–80. doi: 10.1016/j.cortex.2016.07.018.
    1. Chen R, Wang X, Zhang L. Research on multi-dimensional N-back task induced EEG variations. Proceedings of the 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) Published Online First; Aug. 25-29, 2015; Milan, Italy. 2015.
    1. Haubert A, Walsh M, Boyd R, Morris M, Wiedbusch M, Krusmark M, Gunzelmann G. Relationship of event-related potentials to the vigilance decrement. Front Psychol. 2018 Mar 6;9:237. doi: 10.3389/fpsyg.2018.00237. doi: 10.3389/fpsyg.2018.00237.
    1. Gartenberg D, Gunzelmann G, Hassanzadeh-Behbaha S, Trafton JG. Examining the role of task requirements in the magnitude of the vigilance decrement. Front Psychol. 2018 Aug 20;9:1504. doi: 10.3389/fpsyg.2018.01504. doi: 10.3389/fpsyg.2018.01504.
    1. Lavine RA, Sibert JL, Gokturk M, Dickens B. Eye-tracking measures and human performance in a vigilance task. Aviat Space Environ Med. 2002 Apr;73(4):367–72.
    1. Marquart G, Cabrall C, de Winter J. Review of eye-related measures of drivers’ mental workload. Procedia Manuf. 2015;3:2854–61. doi: 10.1016/j.promfg.2015.07.783.
    1. Xu J, Min J, Hu J. Real-time eye tracking for the assessment of driver fatigue. Healthc Technol Lett. 2018 Apr 31;5(2):54–8. doi: 10.1049/htl.2017.0020. doi: 10.1049/htl.2017.0020.
    1. Shinar D. Looks Are (Almost) Everything: Where drivers look to get information. Hum Factors. 2008 Jun 01;50(3):380–4. doi: 10.1518/001872008x250647.
    1. Felnhofer A, Kothgassner O, Beutl L, Hlavacs H, Kryspin-Exner I. Is virtual reality made for men only? Exploring gender differences in the sense of presence. Proceedings of the International Society for Presence Research Annual Conference; International Society for Presence Research Annual Conference – ISPR 2012; October 24–26, 2012; Philadelphia, Pennsylvania, USA. 2012. pp. 103–12.
    1. Munafo J, Diedrick M, Stoffregen TA. The virtual reality head-mounted display Oculus Rift induces motion sickness and is sexist in its effects. Exp Brain Res. 2017 Dec;235(3):889–901. doi: 10.1007/s00221-016-4846-7.

Source: PubMed

3
Se inscrever