Anticholinergic Drug Exposure and the Risk of Dementia: A Nested Case-Control Study

Carol A C Coupland, Trevor Hill, Tom Dening, Richard Morriss, Michael Moore, Julia Hippisley-Cox, Carol A C Coupland, Trevor Hill, Tom Dening, Richard Morriss, Michael Moore, Julia Hippisley-Cox

Abstract

Importance: Anticholinergic medicines have short-term cognitive adverse effects, but it is uncertain whether long-term use of these drugs is associated with an increased risk of dementia.

Objective: To assess associations between anticholinergic drug treatments and risk of dementia in persons 55 years or older.

Design, setting, and participants: This nested case-control study took place in general practices in England that contributed to the QResearch primary care database. The study evaluated whether exposure to anticholinergic drugs was associated with dementia risk in 58 769 patients with a diagnosis of dementia and 225 574 controls 55 years or older matched by age, sex, general practice, and calendar time. Information on prescriptions for 56 drugs with strong anticholinergic properties was used to calculate measures of cumulative anticholinergic drug exposure. Data were analyzed from May 2016 to June 2018.

Exposures: The primary exposure was the total standardized daily doses (TSDDs) of anticholinergic drugs prescribed in the 1 to 11 years prior to the date of diagnosis of dementia or equivalent date in matched controls (index date).

Main outcomes and measures: Odds ratios (ORs) for dementia associated with cumulative exposure to anticholinergic drugs, adjusted for confounding variables.

Results: Of the entire study population (284 343 case patients and matched controls), 179 365 (63.1%) were women, and the mean (SD) age of the entire population was 82.2 (6.8) years. The adjusted OR for dementia increased from 1.06 (95% CI, 1.03-1.09) in the lowest overall anticholinergic exposure category (total exposure of 1-90 TSDDs) to 1.49 (95% CI, 1.44-1.54) in the highest category (>1095 TSDDs), compared with no anticholinergic drug prescriptions in the 1 to 11 years before the index date. There were significant increases in dementia risk for the anticholinergic antidepressants (adjusted OR [AOR], 1.29; 95% CI, 1.24-1.34), antiparkinson drugs (AOR, 1.52; 95% CI, 1.16-2.00), antipsychotics (AOR, 1.70; 95% CI, 1.53-1.90), bladder antimuscarinic drugs (AOR, 1.65; 95% CI, 1.56-1.75), and antiepileptic drugs (AOR, 1.39; 95% CI, 1.22-1.57) all for more than 1095 TSDDs. Results were similar when exposures were restricted to exposure windows of 3 to 13 years (AOR, 1.46; 95% CI, 1.41-1.52) and 5 to 20 years (AOR, 1.44; 95% CI, 1.32-1.57) before the index date for more than 1095 TSDDs. Associations were stronger in cases diagnosed before the age of 80 years. The population-attributable fraction associated with total anticholinergic drug exposure during the 1 to 11 years before diagnosis was 10.3%.

Conclusions and relevance: Exposure to several types of strong anticholinergic drugs is associated with an increased risk of dementia. These findings highlight the importance of reducing exposure to anticholinergic drugs in middle-aged and older people.

Conflict of interest statement

Conflict of Interest Disclosures: Dr Coupland reported personal fees from ClinRisk Ltd outside the submitted work. Julia Hippisley-Cox reported nonfinancial support from QResearch and personal fees from ClinRisk Ltd outside the submitted work. No other disclosures were reported.

References

    1. Livingston G, Sommerlad A, Orgeta V, et al. . Dementia prevention, intervention, and care. Lancet. 2017;390(10113):2673-2734. doi:10.1016/S0140-6736(17)31363-6
    1. Alzheimer’s Association 2018 Alzheimer’s disease facts and figures. Alzheimers Dement. 2018;14(3):367-429. doi:10.1016/j.jalz.2018.02.001
    1. Fox C, Richardson K, Maidment ID, et al. . Anticholinergic medication use and cognitive impairment in the older population: the medical research council cognitive function and ageing study. J Am Geriatr Soc. 2011;59(8):1477-1483. doi:10.1111/j.1532-5415.2011.03491.x
    1. Fox C, Smith T, Maidment I, et al. . Effect of medications with anti-cholinergic properties on cognitive function, delirium, physical function and mortality: a systematic review. Age Ageing. 2014;43(5):604-615. doi:10.1093/ageing/afu096
    1. National Institute for Health and Care Excellence Dementia: assessment, management and support for people living with dementia and their carers.. Published June 20, 2018. Accessed May 16, 2018.
    1. Gerretsen P, Pollock BG. Drugs with anticholinergic properties: a current perspective on use and safety. Expert Opin Drug Saf. 2011;10(5):751-765. doi:10.1517/14740338.2011.579899
    1. Cai X, Campbell N, Khan B, Callahan C, Boustani M. Long-term anticholinergic use and the aging brain. Alzheimers Dement. 2013;9(4):377-385. doi:10.1016/j.jalz.2012.02.005
    1. Ancelin ML, Artero S, Portet F, Dupuy A-M, Touchon J, Ritchie K. Non-degenerative mild cognitive impairment in elderly people and use of anticholinergic drugs: longitudinal cohort study. BMJ. 2006;332(7539):455-459. doi:10.1136/
    1. Carrière I, Fourrier-Reglat A, Dartigues JF, et al. . Drugs with anticholinergic properties, cognitive decline, and dementia in an elderly general population: the 3-city study. Arch Intern Med. 2009;169(14):1317-1324. doi:10.1001/archinternmed.2009.229
    1. Jessen F, Kaduszkiewicz H, Daerr M, et al. . Anticholinergic drug use and risk for dementia: target for dementia prevention. Eur Arch Psychiatry Clin Neurosci. 2010;260(2)(suppl 2):S111-S115. doi:10.1007/s00406-010-0156-4
    1. Gray SL, Anderson ML, Dublin S, et al. . Cumulative use of strong anticholinergics and incident dementia: a prospective cohort study. JAMA Intern Med. 2015;175(3):401-407. doi:10.1001/jamainternmed.2014.7663
    1. Richardson K, Fox C, Maidment I, et al. . Anticholinergic drugs and risk of dementia: case-control study. BMJ. 2018;361:k1315. doi:10.1136/bmj.k1315
    1. Vandenbroucke JP, Pearce N. Case-control studies: basic concepts. Int J Epidemiol. 2012;41(5):1480-1489. doi:10.1093/ije/dys147
    1. American Geriatrics Society 2012 Beers Criteria Update Expert Panel American Geriatrics Society updated Beers Criteria for potentially inappropriate medication use in older adults. J Am Geriatr Soc. 2012;60(4):616-631. doi:10.1111/j.1532-5415.2012.03923.x
    1. By the American Geriatrics Society 2015 Beers Criteria Update Expert Panel American Geriatrics Society 2015 updated Beers criteria for potentially inappropriate medication use in older adults. J Am Geriatr Soc. 2015;63(11):2227-2246. doi:10.1111/jgs.13702
    1. Boustani M, Campbell N, Munger S, Maidment I, Fox C. Impact of anticholinergics on the aging brain: a review and practical application. Aging Health. 2008;4(3):311-320. doi:10.2217/1745509X.4.3.311
    1. Durán CE, Azermai M, Vander Stichele RH. Systematic review of anticholinergic risk scales in older adults. Eur J Clin Pharmacol. 2013;69(7):1485-1496. doi:10.1007/s00228-013-1499-3
    1. Semla TP, Beizer JL, Higbee MD, eds. Geriatric Dosage Handbook: Including Clinical Recommendations and Monitoring Guidelines. 15th ed Hudson, OH: Lexi-Comp; 2010.
    1. Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E. Alzheimer’s disease. Lancet. 2011;377(9770):1019-1031. doi:10.1016/S0140-6736(10)61349-9
    1. Anstey KJ, Cherbuin N, Budge M, Young J. Body mass index in midlife and late-life as a risk factor for dementia: a meta-analysis of prospective studies. Obes Rev. 2011;12(5):e426-e437. doi:10.1111/j.1467-789X.2010.00825.x
    1. Walters K, Hardoon S, Petersen I, et al. . Predicting dementia risk in primary care: development and validation of the Dementia Risk Score using routinely collected data. BMC Med. 2016;14(1):6. doi:10.1186/s12916-016-0549-y
    1. Justin BN, Turek M, Hakim AM. Heart disease as a risk factor for dementia. Clin Epidemiol. 2013;5:135-145.
    1. Bendlin BB, Carlsson CM, Gleason CE, et al. . Midlife predictors of Alzheimer’s disease. Maturitas. 2010;65(2):131-137. doi:10.1016/j.maturitas.2009.12.014
    1. Diniz BS, Butters MA, Albert SM, Dew MA, Reynolds CF III. Late-life depression and risk of vascular dementia and Alzheimer’s disease: systematic review and meta-analysis of community-based cohort studies. Br J Psychiatry. 2013;202(5):329-335. doi:10.1192/bjp.bp.112.118307
    1. da Silva J, Gonçalves-Pereira M, Xavier M, Mukaetova-Ladinska EB. Affective disorders and risk of developing dementia: systematic review. Br J Psychiatry. 2013;202(3):177-186. doi:10.1192/bjp.bp.111.101931
    1. Anstey KJ, von Sanden C, Salim A, O’Kearney R. Smoking as a risk factor for dementia and cognitive decline: a meta-analysis of prospective studies. Am J Epidemiol. 2007;166(4):367-378. doi:10.1093/aje/kwm116
    1. Peters R, Peters J, Warner J, Beckett N, Bulpitt C. Alcohol, dementia and cognitive decline in the elderly: a systematic review. Age Ageing. 2008;37(5):505-512. doi:10.1093/ageing/afn095
    1. Mehta KM, Yeo GW. Systematic review of dementia prevalence and incidence in United States race/ethnic populations. Alzheimers Dement. 2017;13(1):72-83. doi:10.1016/j.jalz.2016.06.2360
    1. Rubin DB. Multiple Imputation for Nonresponse in Surveys. Hoboken, NJ: John Wiley & Sons; 1987. doi:10.1002/9780470316696
    1. Bruzzi P, Green SB, Byar DP, Brinton LA, Schairer C. Estimating the population attributable risk for multiple risk factors using case-control data. Am J Epidemiol. 1985;122(5):904-914. doi:10.1093/oxfordjournals.aje.a114174
    1. Mansournia MA, Altman DG. Population attributable fraction. BMJ. 2018;360:k757. doi:10.1136/bmj.k757
    1. Matthews FE, Stephan BCM, Robinson L, et al. ; Cognitive Function and Ageing Studies (CFAS) Collaboration . A two decade dementia incidence comparison from the Cognitive Function and Ageing Studies I and II. Nat Commun. 2016;7:11398. doi:10.1038/ncomms11398
    1. Guerriero F, Sgarlata C, Francis M, et al. . Neuroinflammation, immune system and Alzheimer disease: searching for the missing link. Aging Clin Exp Res. 2017;29(5):821-831. doi:10.1007/s40520-016-0637-z
    1. McGeer PL, Rogers J, McGeer EG. Inflammation, antiinflammatory agents, and Alzheimer’s disease: the last 22 years. J Alzheimers Dis. 2016;54(3):853-857. doi:10.3233/JAD-160488
    1. Campbell NL, Maidment I, Fox C, Khan B, Boustani M. The 2012 update to the anticholinergic cognitive burden scale. J Am Geriatr Soc. 2013;61(S1):S142-S143.
    1. Kontopantelis E, Stevens RJ, Helms PJ, Edwards D, Doran T, Ashcroft DM. Spatial distribution of clinical computer systems in primary care in England in 2016 and implications for primary care electronic medical record databases: a cross-sectional population study. BMJ Open. 2018;8(2):e020738. doi:10.1136/bmjopen-2017-020738
    1. Wilkinson D, Stave C, Keohane D, Vincenzino O. The role of general practitioners in the diagnosis and treatment of Alzheimer’s disease: a multinational survey. J Int Med Res. 2004;32(2):149-159. doi:10.1177/147323000403200207
    1. van Vliet D, de Vugt ME, Bakker C, et al. . Time to diagnosis in young-onset dementia as compared with late-onset dementia. Psychol Med. 2013;43(2):423-432. doi:10.1017/S0033291712001122
    1. Amieva H, Le Goff M, Millet X, et al. . Prodromal Alzheimer’s disease: successive emergence of the clinical symptoms. Ann Neurol. 2008;64(5):492-498. doi:10.1002/ana.21509
    1. Singh-Manoux A, Dugravot A, Fournier A, et al. . Trajectories of depressive symptoms before diagnosis of dementia: a 28-year follow-up study. JAMA Psychiatry. 2017;74(7):712-718. doi:10.1001/jamapsychiatry.2017.0660
    1. Livingston G, Sommerlad A, Schneider L, Mukadam N, Costafreda S. Prevention of dementia by targeting risk factors: authors’ reply. Lancet. 2018;391(10130):1575-1576. doi:10.1016/S0140-6736(18)30570-1
    1. Warren K, Burden H, Abrams P. Mirabegron in overactive bladder patients: efficacy review and update on drug safety. Ther Adv Drug Saf. 2016;7(5):204-216. doi:10.1177/2042098616659412
    1. Olivera CK, Meriwether K, El-Nashar S, et al. ; Systematic Review Group for the Society of Gynecological Surgeons . Nonantimuscarinic treatment for overactive bladder: a systematic review. Am J Obstet Gynecol. 2016;215(1):34-57. doi:10.1016/j.ajog.2016.01.156

Source: PubMed

3
Se inscrever