Infrared Low-Level Laser Therapy (Photobiomodulation Therapy) before Intense Progressive Running Test of High-Level Soccer Players: Effects on Functional, Muscle Damage, Inflammatory, and Oxidative Stress Markers-A Randomized Controlled Trial

Shaiane Silva Tomazoni, Caroline Dos Santos Monteiro Machado, Thiago De Marchi, Heliodora Leão Casalechi, Jan Magnus Bjordal, Paulo de Tarso Camillo de Carvalho, Ernesto Cesar Pinto Leal-Junior, Shaiane Silva Tomazoni, Caroline Dos Santos Monteiro Machado, Thiago De Marchi, Heliodora Leão Casalechi, Jan Magnus Bjordal, Paulo de Tarso Camillo de Carvalho, Ernesto Cesar Pinto Leal-Junior

Abstract

The effects of preexercise photobiomodulation therapy (PBMT) to enhance performance, accelerate recovery, and attenuate exercise-induced oxidative stress were still not fully investigated, especially in high-level athletes. The aim of this study was to evaluate the effects of PBMT (using infrared low-level laser therapy) applied before a progressive running test on functional aspects, muscle damage, and inflammatory and oxidative stress markers in high-level soccer players. A randomized, triple-blind, placebo-controlled crossover trial was performed. Twenty-two high-level male soccer players from the same team were recruited and treated with active PBMT and placebo. The order of interventions was randomized. Immediately after the application of active PBMT or placebo, the volunteers performed a standardized high-intensity progressive running test (ergospirometry test) until exhaustion. We analyzed rates of oxygen uptake (VO2 max), time until exhaustion, and aerobic and anaerobic threshold during the intense progressive running test. Creatine kinase (CK) and lactate dehydrogenase (LDH) activities, levels of interleukin-1β (IL-1-β), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α), levels of thiobarbituric acid (TBARS) and carbonylated proteins, and catalase (CAT) and superoxide dismutase (SOD) activities were measured before and five minutes after the end of the test. PBMT increased the VO2 max (both relative and absolute values-p < 0.0467 and p < 0.0013, respectively), time until exhaustion (p < 0.0043), time (p < 0.0007) and volume (p < 0.0355) in which anaerobic threshold happened, and volume in which aerobic threshold happened (p < 0.0068). Moreover, PBMT decreased CK (p < 0.0001) and LDH (p < 0.0001) activities. Regarding the cytokines, PBMT decreased only IL-6 (p < 0.0001). Finally, PBMT decreased TBARS (p < 0.0001) and carbonylated protein levels (p < 0.01) and increased SOD (p < 0.0001)and CAT (p < 0.0001) activities. The findings of this study demonstrate that preexercise PBMT acts on different functional aspects and biochemical markers. Moreover, preexercise PBMT seems to play an important antioxidant effect, decreasing exercise-induced oxidative stress and consequently enhancing athletic performance and improving postexercise recovery. This trial is registered with Clinicaltrials.gov NCT03803956.

Conflict of interest statement

Professor Ernesto Cesar Pinto Leal-Junior receives research support from Multi Radiance Medical (Solon, OH, USA), a laser device manufacturer. The remaining authors declare that they have no conflict of interests.

Copyright © 2019 Shaiane Silva Tomazoni et al.

Figures

Figure 1
Figure 1
PBMT irradiation sites in the anterior and posterior regions of lower limbs.
Figure 2
Figure 2
Flowchart of the study.
Figure 3
Figure 3
Oxygen uptake—VO2 max (relative and absolute)—and time until exhaustion.
Figure 4
Figure 4
Activity of CK and LDH. Data are expressed as mean and SEM. ∗∗∗∗p < 0.0001.
Figure 5
Figure 5
Levels of IL-1β, IL-6, and TNF-α. Data are expressed as mean and SEM. ∗∗∗∗p < 0.0001.
Figure 6
Figure 6
Levels of TBARS and carbonylated proteins and activity of SOD and CAT. Data are expressed as mean and SEM. ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗∗p < 0.0001.

References

    1. Andersson H., Raastad T., Nilsson J., Paulsen G., Garthe I., Kadi F. Neuromuscular fatigue and recovery in elite female soccer: effects of active recovery. Medicine and Science in Sports and Exercise. 2008;40(2):372–380. doi: 10.1249/mss.0b013e31815b8497.
    1. Ispirlidis I., Fatouros I. G., Jamurtas A. Z., et al. Time-course of changes in inflammatory and performance responses following a soccer game. Clinical Journal of Sport Medicine. 2008;18(5):423–431. doi: 10.1097/JSM.0b013e3181818e0b.
    1. Nédélec M., McCall A., Carling C., Legall F., Berthoin S., Dupont G. Recovery in soccer: part I—post-match fatigue and time course of recovery. Sports Medicine. 2012;42(12):997–1015. doi: 10.2165/11635270-000000000-00000.
    1. Reid M. B., Haack K. E., Franchek K. M., Valberg P. A., Kobzik L., West M. S. Reactive oxygen in skeletal muscle. I. Intracellular oxidant kinetics and fatigue in vitro. Journal of Applied Physiology. 1992;73(5):1797–1804. doi: 10.1152/jappl.1992.73.5.1797.
    1. Vollaard N. B., Shearman J. P., Cooper C. E. Exercise-induced oxidative stress: myths, realities and physiological relevance. Sports Medicine. 2005;35(12):1045–1062. doi: 10.2165/00007256-200535120-00004.
    1. Reid M. B. Redox interventions to increase exercise performance. The Journal of Physiology. 2016;594(18):5125–5133. doi: 10.1113/JP270653.
    1. Pinto H. D., Vanin A. A., Miranda E. F., et al. Photobiomodulation therapy improves performance and accelerates recovery of high-level rugby players in field test: a randomized, crossover, double-blind, placebo-controlled clinical study. Journal of Strength and Conditioning Research. 2016;30(12):3329–3338. doi: 10.1519/JSC.0000000000001439.
    1. Dupont G., Nedelec M., McCall A., McCormack D., Berthoin S., Wisløff U. Effect of 2 soccer matches in a week on physical performance and injury rate. The American Journal of Sports Medicine. 2010;38(9):1752–1758. doi: 10.1177/0363546510361236.
    1. Shirreffs S. M., Taylor A. J., Leiper J. B., Maughan R. J. Post-exercise rehydration in man: effects of volume consumed and drink sodium content. Medicine and Science in Sports and Exercise. 1996;28(10):1260–1271. doi: 10.1097/00005768-199610000-00009.
    1. Jentjens R., Jeukendrup A. Determinants of post-exercise glycogen synthesis during short-term recovery. Sports Medicine. 2003;33(2):117–144. doi: 10.2165/00007256-200333020-00004.
    1. Ivy J. L. Regulation of muscle glycogen repletion, muscle protein synthesis and repair following exercise. Journal of Sports Science and Medicine. 2004;3(3):131–138.
    1. Kerksick C. M., Wilborn C. D., Roberts M. D., et al. ISSN exercise & sports nutrition review update: research & recommendations. Journal of the International Society of Sports Nutrition. 2018;15(1):p. 38. doi: 10.1186/s12970-018-0242-y.
    1. Sairyo K., Iwanaga K., Yoshida N., et al. Effects of active recovery under a decreasing work load following intense muscular exercise on intramuscular energy metabolism. International Journal of Sports Medicine. 2003;24(3):179–182. doi: 10.1055/s-2003-39091.
    1. Koizumi K., Fujita Y., Muramatsu S., Manabe M., Ito M., Nomura J. Active recovery effects on local oxygenation level during intensive cycling bouts. Journal of Sports Sciences. 2011;29(9):919–926. doi: 10.1080/02640414.2011.572990.
    1. Rowsell G. J., Coutts A. J., Reaburn P., Hill-Haas S. Effect of post-match cold-water immersion on subsequent match running performance in junior soccer players during tournament play. Journal of Sports Sciences. 2011;29(1):1–6. doi: 10.1080/02640414.2010.512640.
    1. Ingram J., Dawson B., Goodman C., Wallman K., Beilby J. Effect of water immersion methods on post-exercise recovery from simulated team sport exercise. Journal of Science and Medicine in Sport. 2009;12(3):417–421. doi: 10.1016/j.jsams.2007.12.011.
    1. Brown F., Gissane C., Howatson G., van Someren K., Pedlar C., Hill J. Compression garments and recovery from exercise: a meta-analysis. Sports Medicine. 2017;47(11):2245–2267. doi: 10.1007/s40279-017-0728-9.
    1. Nédélec M., McCall A., Carling C., Legall F., Berthoin S., Dupont G. Recovery in soccer: part II—recovery strategies. Sports Medicine. 2013;43(1):9–22. doi: 10.1007/s40279-012-0002-0.
    1. Poppendieck W., Wegmann M., Ferrauti A., Kellmann M., Pfeiffer M., Meyer T. Massage and performance recovery: a meta-analytical review. Sports Medicine. 2016;46(2):183–204. doi: 10.1007/s40279-015-0420-x.
    1. Thein L. A., Thein J. M., Landry G. L. Ergogenic aids. Physical Therapy. 1995;75(5):426–439. doi: 10.1093/ptj/75.5.426.
    1. Liddle D. G., Connor D. J. Nutritional supplements and ergogenic AIDS. Primary Care. 2013;40(2):487–505. doi: 10.1016/j.pop.2013.02.009.
    1. Leal Junior E. C., Lopes-Martins R. A., Baroni B. M., et al. Effect of 830 nm low-level laser therapy applied before high-intensity exercises on skeletal muscle recovery in athletes. Lasers in Medical Science. 2009;24(6):857–863. doi: 10.1007/s10103-008-0633-4.
    1. Leal Junior E. C., Lopes-Martins R. A., Baroni B. M., et al. Comparison between single-diode low-level laser therapy (LLLT) and LED multi-diode (cluster) therapy (LEDT) applications before high-intensity exercise. Photomedicine and Laser Surgery. 2009;27(4):617–623. doi: 10.1089/pho.2008.2350.
    1. Leal Junior E. C., Lopes-Martins R. A., Rossi R. P., et al. Effect of cluster multi‐diode light emitting diode therapy (LEDT) on exercise‐induced skeletal muscle fatigue and skeletal muscle recovery in humans. Lasers in Surgery and Medicine. 2009;41(8):572–577. doi: 10.1002/lsm.20810.
    1. Leal Junior E. C., Lopes-Martins R. A., Frigo L., et al. Effects of low-level laser therapy (LLLT) in the development of exercise-induced skeletal muscle fatigue and changes in biochemical markers related to postexercise recovery. The Journal of Orthopaedic and Sports Physical Therapy. 2010;40(8):524–532. doi: 10.2519/jospt.2010.3294.
    1. Leal Junior E. C., de Godoi V., Mancalossi J. L., et al. Comparison between cold water immersion therapy (CWIT) and light emitting diode therapy (LEDT) in short-term skeletal muscle recovery after high-intensity exercise in athletes—preliminary results. Lasers in Medical Science. 2011;26(4):493–501. doi: 10.1007/s10103-010-0866-x.
    1. Baroni B. M., Leal Junior E. C., De Marchi T., Lopes A. L., Salvador M., Vaz M. A. Low level laser therapy before eccentric exercise reduces muscle damage markers in humans. European Journal of Applied Physiology. 2010;110(4):789–796. doi: 10.1007/s00421-010-1562-z.
    1. Baroni B. M., Leal Junior E. C., Geremia J. M., Diefenthaeler F., Vaz M. A. Effect of light-emitting diodes therapy (LEDT) on knee extensor muscle fatigue. Photomedicine and Laser Surgery. 2010;28(5):653–658. doi: 10.1089/pho.2009.2688.
    1. Toma R. L., Tucci H. T., Antunes H. K., et al. Effect of 808 nm low-level laser therapy in exercise-induced skeletal muscle fatigue in elderly women. Lasers in Medical Science. 2013;28(5):1375–1382. doi: 10.1007/s10103-012-1246-5.
    1. Leal-Junior E. C. P., Lopes-Martins R. Á. B., Bjordal J. M. Clinical and scientific recommendations for the use of photobiomodulation therapy in exercise performance enhancement and post-exercise recovery: current evidence and future directions. Brazilian Journal of Physical Therapy. 2019;23(1):71–75. doi: 10.1016/j.bjpt.2018.12.002.
    1. Vanin A. A., Verhagen E., Barboza S. D., Costa L. O. P., Leal-Junior E. C. P. Photobiomodulation therapy for the improvement of muscular performance and reduction of muscular fatigue associated with exercise in healthy people: a systematic review and meta-analysis. Lasers in Medical Science. 2018;33(1):181–214. doi: 10.1007/s10103-017-2368-6.
    1. Aver Vanin A., de Marchi T., Silva Tomazoni S., et al. Pre-exercise infrared low-level laser therapy (810 nm) in skeletal muscle performance and postexercise recovery in humans, what is the optimal dose? A randomized, double-blind, placebo-controlled clinical trial. Photomedicine and Laser Surgery. 2016;34(10):473–482. doi: 10.1089/pho.2015.3992.
    1. De Oliveira A. R., Vanin A. A., Tomazoni S. S., et al. Pre-exercise infrared photobiomodulation therapy (810 nm) in skeletal muscle performance and postexercise recovery in humans: what is the optimal power output? Photomedicine and Laser Surgery. 2017;35(11):595–603. doi: 10.1089/pho.2017.4343.
    1. De Marchi T., Leal Junior E. C., Bortoli C., Tomazoni S. S., Lopes-Martins R. A., Salvador M. Low-level laser therapy (LLLT) in human progressive-intensity running: effects on exercise performance, skeletal muscle status, and oxidative stress. Lasers in Medical Science. 2012;27(1):231–236. doi: 10.1007/s10103-011-0955-5.
    1. De Marchi T., Leal-Junior E. C. P., Lando K. C., et al. Photobiomodulation therapy before futsal matches improves the staying time of athletes in the court and accelerates post-exercise recovery. Lasers in Medical Science. 2019;34(1):139–148. doi: 10.1007/s10103-018-2643-1.
    1. Lanferdini F. J., Krüger R. L., Baroni B. M., et al. Low-level laser therapy improves the VO2 kinetics in competitive cyclists. Lasers in Medical Science. 2018;33(3):453–460. doi: 10.1007/s10103-017-2347-y.
    1. Lanferdini F. J., Bini R. R., Baroni B. M., Klein K. D., Carpes F. P., Vaz M. A. Improvement of performance and reduction of fatigue with low-level laser therapy in competitive cyclists. International Journal of Sports Physiology and Performance. 2018;13(1):14–22. doi: 10.1123/ijspp.2016-0187.
    1. Miranda E. F., Vanin A. A., Tomazoni S. S., et al. Using pre-exercise photobiomodulation therapy combining super-pulsed lasers and light-emitting diodes to improve performance in progressive cardiopulmonary exercise tests. Journal of Athletic Training. 2016;51(2):129–135. doi: 10.4085/1062-6050-51.3.10.
    1. Miranda E. F., Tomazoni S. S., de Paiva P. R. V., Pinto H. D., Smith D., Santos L. A. When is the best moment to apply photobiomodulation therapy (PBMT) when associated to a treadmill endurance-training program? A randomized, triple-blinded, placebo-controlled clinical trial. Lasers in Medical Science. 2018;33(4):719–727. doi: 10.1007/s10103-017-2396-2.
    1. Wills E. D. Mechanisms of lipid peroxide formation in animal tissues. Biochemical Journal. 1996;99(3):667–676. doi: 10.1042/bj0990667.
    1. Levine R. L., Garland D., Oliver C. N., et al. Determination of carbonyl content in oxidatively modified proteins. Methods in Enzymology. 1990;186:464–478. doi: 10.1016/0076-6879(90)86141-H.
    1. Aebi H. [13] Catalase _in vitro_. Methods in Enzymology. 1984;105:121–126. doi: 10.1016/s0076-6879(84)05016-3.
    1. Bannister J. V., Calabrese L. Assays for superoxide dismutase. Methods of Biochemical Analysis. 1987;32:279–312.
    1. Elkins M. R., Moseley A. M. Intention-to-treat analysis. Journal of Physiotherapy. 2015;61(3):165–167. doi: 10.1016/j.jphys.2015.05.013.
    1. Albuquerque-Pontes G. M., Vieira R. P., Tomazoni S. S., et al. Effect of pre-irradiation with different doses, wavelengths, and application intervals of low-level laser therapy on cytochrome c oxidase activity in intact skeletal muscle of rats. Lasers in Medical Science. 2015;30(1):59–66. doi: 10.1007/s10103-014-1616-2.
    1. Hayworth C. R., Rojas J. C., Padilla E., Holmes G. M., Sheridan E. C., Gonzalez-Lima F. In Vivo Low‐level Light Therapy Increases Cytochrome Oxidase in Skeletal Muscle. Photochemistry and Photobiology. 2010;86(3):673–680. doi: 10.1111/j.1751-1097.2010.00732.x.
    1. Dos Reis F. A., da Silva B. A., Laraia E. M., et al. Effects of pre- or post-exercise low-level laser therapy (830 nm) on skeletal muscle fatigue and biochemical markers of recovery in humans: double-blind placebo-controlled trial. Photomedicine and Laser Surgery. 2014;32(2):106–112. doi: 10.1089/pho.2013.3617.
    1. De Marchi T., Schmitt V. M., da Silva Fabro C. D., et al. Phototherapy for improvement of performance and exercise recovery: comparison of 3 commercially available devices. Journal of Athletic Training. 2017;52(5):429–438. doi: 10.4085/1062-6050-52.2.09.
    1. Kasapis C., Thompson P. D. The effects of physical activity on serum C-reactive protein and inflammatory markers: a systematic review. Journal of the American College of Cardiology. 2005;45(10):1563–1569. doi: 10.1016/j.jacc.2004.12.077.
    1. Ostrowski K., Rohde T., Asp S., Schjerling P., Pedersen B. K. Pro‐and anti‐inflammatory cytokine balance in strenuous exercise in humans. The Journal of Physiology. 1999;515(1):287–291. doi: 10.1111/j.1469-7793.1999.287ad.x.
    1. Petersen A. M., Pedersen B. K. The anti-inflammatory effect of exercise. Journal of Applied Physiology. 2005;98(4):1154–1162. doi: 10.1152/japplphysiol.00164.2004.
    1. Brancaccio P., Lippi G., Maffulli N. Biochemical markers of muscular damage. Clinical Chemistry and Laboratory Medicine. 2010;48(6):757–767. doi: 10.1515/CCLM.2010.179.

Source: PubMed

3
Se inscrever