Delamanid Coadministered with Antiretroviral Drugs or Antituberculosis Drugs Shows No Clinically Relevant Drug-Drug Interactions in Healthy Subjects

Suresh Mallikaarjun, Charles Wells, Carolyn Petersen, Anne Paccaly, Susan E Shoaf, Shiva Patil, Lawrence Geiter, Suresh Mallikaarjun, Charles Wells, Carolyn Petersen, Anne Paccaly, Susan E Shoaf, Shiva Patil, Lawrence Geiter

Abstract

Delamanid is a medicinal product approved for treatment of multidrug-resistant tuberculosis. Three studies were conducted to evaluate the potential drug-drug interactions between delamanid and antiretroviral drugs, including ritonavir, a strong inhibitor of CYP3A4, and selected anti-TB drugs, including rifampin, a strong inducer of cytochrome P450 (CYP) isozymes. Multiple-dose studies were conducted in parallel groups of healthy subjects. Plasma samples were analyzed for delamanid, delamanid metabolite, and coadministered drug concentrations, and pharmacokinetic (PK) parameters were determined. The magnitude of the interaction was assessed by the ratio of the geometric means and 90% confidence intervals. Coadministration of delamanid with tenofovir or efavirenz did not affect the PK characteristics of delamanid. Coadministration of Kaletra (lopinavir/ritonavir) with delamanid resulted in an approximately 25% higher delamanid area under the concentration-time curve from time 0 to the end of the dosing interval (AUCτ). Tenofovir, efavirenz, lopinavir, and ritonavir exposure were not affected by delamanid. Coadministration of delamanid with the TB drugs (ethambutol plus Rifater [rifampin, pyrazinamide, and isoniazid]) resulted in lower delamanid exposures (47 and 42% for the AUCτ and Cmax [maximum concentration of a drug in plasma] values, respectively), as well as decreased exposure of three primary metabolites (approximately 30 to 50% lower AUCτ values). Delamanid did not affect rifampin, pyrazinamide, and isoniazid exposure; the ethambutol AUCτ and Cmax values were about 25% higher with delamanid coadministration. The lack of clinically significant drug-drug interactions between delamanid and selected antiretroviral agents (including the strong CYP inhibitor ritonavir) and a combination of anti-TB drugs was demonstrated. Although there was a decrease in the delamanid concentrations when coadministered with ethambutol plus Rifater, this is likely related to decreased delamanid absorption and not to CYP induction.

Copyright © 2016 Mallikaarjun et al.

Figures

FIG 1
FIG 1
Delamanid plasma concentration-time profiles alone or with coadministered drugs. DLM, delamanid; EFV, efavirenz; EMB, ethambutol; KAL, Kaletra (lopinavir/ritonavir); TDF, tenofovir.
FIG 2
FIG 2
Individual subject steady-state isoniazid AUCτ grouped by acetylator genotype after the administration of ethambutol-Rifater alone or with delamanid. DLM, delamanid; EMB, ethambutol.
FIG 3
FIG 3
Mean AUCτ (day 15) of delamanid (OPC-67683) and metabolites with or without coadministration of ethambutol-Rifater. DLM, delamanid; DM, delamanid metabolite; EMB, ethambutol.

References

    1. World Health Organization. 2015. Global tuberculosis report 2015. Document WHO/HTM/TB/2015.22. World Health Organization, Geneva, Switzerland.
    1. U.S. Centers for Disease Control and Prevention. 2014. Reported tuberculosis in the United States, 2013. U.S. Centers for Disease Control and Prevention, Atlanta, GA.
    1. Stop TB Partnership and World Health Organization. 2006. Global plan to stop TB 2006-2015. Document WHO/HTM/STB/2006.35. World Health Organization, Geneva, Switzerland.
    1. Matsumoto M, Hashizume H, Tomishige T, Kawasaki M, Tsubouchi H, Sasaki H, Shimokawa Y, Komatsu M. 2006. OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS Med 3:e466. doi:10.1371/journal.pmed.0030466.
    1. Diacon AH, Dawson R, Hanekom M, Narunsky K, Venter A, Hittel N, Geiter LJ, Wells CD, Paccaly AJ, Donald PR. 2011. Early bactericidal activity of delamanid (OPC-67683) in smear-positive pulmonary tuberculosis patients. Int J Tuberc Lung Dis 15:949–954. doi:10.5588/ijtld.10.0616.
    1. Gler MT, Skripconoka V, Sanchez-Garavito E, Xiao H, Cabrera-Rivero JL, Vargas-Vasquez DE, Gao M, Awad M, Park SK, Shim TS, Suh GY, Danilovits M, Ogata H, Kurve A, Chang J, Suzuki K, Tupasi T, Koh WJ, Seaworth B, Geiter LJ, Wells CD. 2012. Delamanid for multidrug-resistant pulmonary tuberculosis. N Engl J Med 366:2151–2160. doi:10.1056/NEJMoa1112433.
    1. Skripconoka V, Danilovits M, Pehme L, Tomson T, Skenders G, Kummik T, Cirule A, Leimane V, Kurve A, Levina K, Geiter LJ, Manissero D, Wells CD. 2013. Delamanid improves outcomes and reduces mortality in multidrug-resistant tuberculosis. Eur Respir J 41:1393–1400. doi:10.1183/09031936.00125812.
    1. Gupta R, Geiter LJ, Wells CD, Gao M, Cirule A, Xiao H. 2015. Delamanid for extensively drug-resistant tuberculosis. N Engl J Med 373:291–292. doi:10.1056/NEJMc1415332.
    1. van Heeswijk RPG, Dannemann B, Hoetelmans RM. 2014. Bedaquiline: a review of human pharmacokinetics and drug-drug interactions. J Antimicrob Chemother 69:2310–2318. doi:10.1093/jac/dku171.
    1. Dooley KE, Luetkemeyer AF, Park JG, Allen R, Cramer Y, Murray S, Sutherland D, Aweeka F, Koletar SL, Marzan F, Bao J, Savic R, Haas DW, AIDS Clinical Trials Group A5306 Study Team. 2014. Phase I safety, pharmacokinetics, and pharmacogenetics study of the antituberculosis drug PA-824 with concomitant lopinavir-ritonavir, efavirenz, or rifampin. Antimicrob Agents Chemother 58:5245–5252. doi:10.1128/AAC.03332-14.
    1. Niemi M, Backman JT, Fromm MF, Neuvonen PJ, Kivistö KT. 2003. Pharmacokinetic interactions with rifampicin: clinical relevance. Clin Pharmacokinet 42:819–850. doi:10.2165/00003088-200342090-00003.
    1. Usach I, Melis V, Peris JE. 2013. Non-nucleoside reverse transcriptase inhibitors: a review on pharmacokinetics, pharmacodynamics, safety and tolerability. J Int AIDS 16:1–14. doi:10.7448/IAS.16.1.18567.
    1. Hsu A, Granneman GR, Bertz RJ. 1998. Ritonavir. Clinical pharmacokinetics and interactions with other anti-HIV agents. Clin Pharmacokinet 35:275–291. doi:10.2165/00003088-199835040-00002.
    1. Relling MV. 1989. Polymorphic drug metabolism. Clin Pharmacy 8:852–863.
    1. Shimokawa Y, Sasahara K, Koyama N, Kitano K, Shibata M, Yoda N, Umehara K. 2015. Metabolic mechanism of delamanid, a new anti-tuberculosis drug, in human plasma. Drug Metab Dispos 43:1277–1283. doi:10.1124/dmd.115.064550.
    1. U.S. Food and Drug Administration, HHS. 9 May 1997. International Conference on Harmonisation: Good clinical practice: consolidated guideline; notice of availability. Fed Regist 62:25692–25709. .
    1. Stat-Trade, Inc. 2007. Myambutol (ethambutol hydrochloride), United States, product insert. Stat-Trade, Inc, Northport, NY: .
    1. Sanofi-Aventis. 2013. Rifater (rifampin, isoniazid, pyrazinamide), United States, product insert. Sanofi-Aventis, Bridgewater, NJ: .
    1. Otsuka Novel Products GmbH. 2014. Deltyba (delamanid) annex I: summary of product characteristics. Otsuka Novel Products GmbH, Munich, Germany: .
    1. Bristol-Myers Squibb Company. 2015. Sustiva (efavirenz), United States, product Insert. Bristol-Myers Squibb Company, Princeton, NJ: .
    1. Meng M, Smith B, Johnston B, Carter S, Brisson J, Roth SE. 2015. Simultaneous quantitation of delamanid (OPC-67683) and its eight metabolites in human plasma using UHPLC-MS/MS. J Chromatogr B 1002:78–91. doi:10.1016/j.jchromb.2015.07.058.
    1. Jusko WJ. 1992. Guidelines for collection and analysis of pharmacokinetic data, p 1–43. In Evans WE, Schentag JJ, Jusko WJ (ed), Applied pharmacokinetics: principles of therapeutic drug monitoring, 3rd ed Applied Therapeutics, Vancouver, WA.
    1. Williams RL, Chen ML, Hauck WW. 2002. Equivalence approaches. Clin Pharmacol Ther 72:229–37. doi:10.1067/mcp.2002.126705.
    1. Sasahara K, Shimokawa Y, Hirao Y, Koyama N, Kitano K, Shibata M, Umehara K. 2015. Pharmacokinetics and metabolism of delamanid, a novel anti-tuberculosis drug, in animals and humans: importance of albumin metabolism in vivo. Drug Metab Dispos 43:1267–1276. doi:10.1124/dmd.115.064527.
    1. Wienker LC, Heath TG. 2005. Predicting in vivo drug interactions from in vitro drug discovery data. Nat Rev Drug Discov 4:825–833. doi:10.1038/nrd1851.
    1. Kearney BP, Flaherty JF, Shah J. 2004. Tenofovir disoproxil fumarate: clinical pharmacology and pharmacokinetics. Clin Pharmacokinet 43:595–612. doi:10.2165/00003088-200443090-00003.

Source: PubMed

3
Se inscrever