The Association Between Metabolic Disturbance and Cognitive Impairments in Early-Stage Schizophrenia

Xing-Jie Peng, Gang-Rui Hei, Ran-Ran Li, Ye Yang, Chen-Chen Liu, Jing-Mei Xiao, Yu-Jun Long, Ping Shao, Jing Huang, Jing-Ping Zhao, Ren-Rong Wu, Xing-Jie Peng, Gang-Rui Hei, Ran-Ran Li, Ye Yang, Chen-Chen Liu, Jing-Mei Xiao, Yu-Jun Long, Ping Shao, Jing Huang, Jing-Ping Zhao, Ren-Rong Wu

Abstract

Background: Cognitive impairment is one of the core symptoms of schizophrenia, which is considered to be significantly correlated to prognosis. In recent years, many studies have suggested that metabolic disorders could be related to a higher risk of cognitive defects in a general setting. However, there has been limited evidence on the association between metabolism and cognitive function in patients with early-stage schizophrenia. Methods: In this study, we recruited 172 patients with early-stage schizophrenia. Relevant metabolic parameters were examined and cognitive function was evaluated by using the MATRICS Consensus Cognitive Battery (MCCB) to investigate the relationship between metabolic disorder and cognitive impairment. Results: Generally, the prevalence of cognitive impairment among patients in our study was 84.7% (144/170), which was much higher than that in the general population. Compared with the general Chinese setting, the study population presented a higher proportion of metabolic disturbance. Patients who had metabolic disturbance showed no significant differences on cognitive function compared with the other patients. Correlation analysis showed that metabolic status was significantly correlated with cognitive function as assessed by the cognitive domain scores (p < 0.05), while such association was not found in further multiple regression analysis. Conclusions: Therefore, there may be no association between metabolic disorder and cognitive impairment in patients with early-stage schizophrenia. Trial Registration: Clinicaltrials.gov, NCT03451734. Registered March 2, 2018 (retrospectively registered).

Keywords: MCCB; cognitive impairment; correlation–regression analysis; early-stage schizophrenia; metabolic disturbance.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Peng, Hei, Li, Yang, Liu, Xiao, Long, Shao, Huang, Zhao and Wu.

Figures

Figure 1
Figure 1
MATRICS Consensus Cognitive Battery (MCCB) verbal learning and memory score was positively associated with body mass index (BMI) of the total number of study patients (p = 0.007).
Figure 2
Figure 2
MCCB visual learning and memory score was positively associated with triglyceride (TG) of the total number of study patients (p < 0.001).

References

    1. Assuncao N., Sudo F. K., Drummond C., de Felice F. G., Mattos P. (2018). Metabolic syndrome and cognitive decline in the elderly: a systematic review. PLoS One 13:e0194990. 10.1371/journal.pone.0194990
    1. Bora E., Akdede B. B., Alptekin K. (2018). The relationship between cognitive impairment in schizophrenia and metabolic syndrome: a systematic review and meta-analysis—CORRIGENDUM. Psychol. Med. 48:1224. 10.1017/S0033291717003932
    1. Boyer L., Richieri R., Dassa D., Boucekine M., Fernandez J., Vaillant F., et al. . (2013). Association of metabolic syndrome and inflammation with neurocognition in patients with schizophrenia. Psychiatry Res. 210, 381–386. 10.1016/j.psychres.2013.06.020
    1. Bozikas V. P., Kosmidis M. H., Kiosseoglou G., Karavatos A. (2006). Neuropsychological profile of cognitively impaired patients with schizophrenia. Compr. Psychiatry 47, 136–143. 10.1016/j.comppsych.2005.05.002
    1. Carey C. L., Woods S. P., Gonzalez R., Conover E., Marcotte T. D., Grant I., et al. . (2004). Predictive validity of global deficit scores in detecting neuropsychological impairment in HIV infection. J. Clin. Exp. Neuropsychol. 26, 307–319. 10.1080/13803390490510031
    1. Chadda R. K., Ramshankar P., Deb K. S., Sood M. (2013). Metabolic syndrome in schizophrenia: differences between antipsychotic-naive and treated patients. J. Pharmacol. Pharmacother. 4, 176–186. 10.4103/0976-500X.114596
    1. Chan J. S., Yan J. H., Payne V. G. (2013). The impact of obesity and exercise on cognitive aging. Front. Aging Neurosci. 5:97. 10.3389/fnagi.2013.00097
    1. de Nijs J., Pet M. A., Investigators G. (2016). Metabolic syndrome in schizophrenia patients associated with poor premorbid school performance in early adolescence. Acta Psychiatr. Scand. 133, 289–297. 10.1111/acps.12528
    1. Depp C. A., Strassnig M., Mausbach B. T., Bowie C. R., Wolyniec P., Thornquist M. H., et al. . (2014). Association of obesity and treated hypertension and diabetes with cognitive ability in bipolar disorder and schizophrenia. Bipolar Disord. 16, 422–431. 10.1111/bdi.12200
    1. Fox C. S., Golden S. H., Anderson C., Bray G. A., Burke L. E., de Boer I. H., et al. . (2015). Update on prevention of cardiovascular disease in adults with type 2 diabetes mellitus in light of recent evidence: a scientific statement from the american heart association and the american diabetes association. Diabetes Care 38, 1777–1803. 10.2337/dci15-0012
    1. Friedman J. I., Wallenstein S., Moshier E., Parrella M., White L., Bowler S., et al. . (2010). The effects of hypertension and body mass index on cognition in schizophrenia. Am. J. Psychiatry 167, 1232–1239. 10.1176/appi.ajp.2010.09091328
    1. Green M. F., Kern R. S., Braff D. L., Mintz J. (2000). Neurocognitive deficits and functional outcome in schizophrenia: are we measuring the “right stuff”? Schizophr. Bull. 26, 119–136. 10.1093/oxfordjournals.schbul.a033430
    1. Guo J. Y., Ragland J. D., Carter C. S. (2019). Memory and cognition in schizophrenia. Mol. Psychiatry 24, 633–642. 10.1038/s41380-018-0231-1
    1. Harvey P. D., Bowie C. R., Friedman J. I. (2001). Cognition in schizophrenia. Curr. Psychiatry Rep. 3, 423–428. 10.1007/s11920-996-0038-7
    1. Heinrichs R. W. (2007). Cognitive improvement in response to antipsychotic drugs: neurocognitive effects of antipsychotic medications in patients with chronic schizophrenia in the CATIE Trial. Arch. Gen. Psychiatry 64, 631–632. 10.1001/archpsyc.64.6.631
    1. Hou Q., Guan Y., Yu W., Liu X., Wu L., Xiao M., et al. . (2019). Associations between obesity and cognitive impairment in the Chinese elderly: an observational study. Clin. Interv. Aging 14, 367–373. 10.2147/CIA.S192050
    1. Huang J., Perlis R. H., Lee P. H., Rush A. J., Fava M., Sachs G. S., et al. . (2010). Cross-disorder genomewide analysis of schizophrenia, bipolar disorder, and depression. Am. J. Psychiatry 167, 1254–1263. 10.1176/appi.ajp.2010.09091335
    1. Kahn R. S., Keefe R. S. (2013). Schizophrenia is a cognitive illness: time for a change in focus. JAMA Psychiatry 70, 1107–1112. 10.1001/jamapsychiatry.2013.155
    1. Keefe R. S., Bilder R. M., Davis S. M., Harvey P. D., Palmer B. W., Gold J. M., et al. . (2007). Neurocognitive effects of antipsychotic medications in patients with chronic schizophrenia in the CATIE Trial. Arch. Gen. Psychiatry 64, 633–647. 10.1001/archpsyc.64.6.633
    1. Kim B., Feldman E. L. (2015). Insulin resistance as a key link for the increased risk of cognitive impairment in the metabolic syndrome. Exp. Mol. Med. 47:e149. 10.1038/emm.2015.3
    1. Klimová B., Vališ M. (2018). Nutritional interventions as beneficial strategies to delay cognitive decline in healthy older individuals. Nutrients 10:905. 10.3390/nu10070905
    1. Kothari V., Luo Y., Tornabene T., O’Neill A. M., Greene M. W., Geetha T., et al. . (2017). High fat diet induces brain insulin resistance and cognitive impairment in mice. Biochim. Biophys. Acta Mol. Basis Dis. 1863, 499–508. 10.1016/j.bbadis.2016.10.006
    1. Lesh T. A., Niendam T. A., Minzenberg M. J., Carter C. S. (2011). Cognitive control deficits in schizophrenia: mechanisms and meaning. Neuropsychopharmacology 36, 316–338. 10.1038/npp.2010.156
    1. Li C., Zhan G., Rao S., Zhang H. (2014). Metabolic syndrome and its factors affect cognitive function in chronic schizophrenia complicated by metabolic syndrome. J. Nerv. Ment. Dis. 202, 313–318. 10.1097/NMD.0000000000000124
    1. Lindenmayer J. P., Czobor P., Volavka J., Citrome L., Sheitman B., McEvoy J. P., et al. . (2003). Changes in glucose and cholesterol levels in patients with schizophrenia treated with typical or atypical antipsychotics. Am. J. Psychiatry 160, 290–296. 10.1177/0891988720988916
    1. Liu T., Lee J. E., Wang J., Ge S., Li C. (2020). Cognitive dysfunction in persons with type 2 diabetes mellitus: a concept analysis. Clin. Nurs. Res. 29, 339–351. 10.1177/1054773819862973
    1. Liu Y., Li Z., Zhang M., Deng Y., Yi Z., Shi T. (2013). Exploring the pathogenetic association between schizophrenia and type 2 diabetes mellitus diseases based on pathway analysis. BMC Med. Genomics 6:S17. 10.1186/1755-8794-6-S1-S17
    1. Manschot S. M., Biessels G. J., de Valk H., Algra A., Rutten G. E., van der Grond J., et al. . (2007). Metabolic and vascular determinants of impaired cognitive performance and abnormalities on brain magnetic resonance imaging in patients with type 2 diabetes. Diabetologia 50, 2388–2397. 10.1007/s00125-007-0792-z
    1. McEvoy J. P., Meyer J. M., Goff D. C., Nasrallah H. A., Davis S. M., Sullivan L., et al. . (2005). Prevalence of the metabolic syndrome in patients with schizophrenia: baseline results from the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) schizophrenia trial and comparison with national estimates from NHANES III. Schizophr. Res. 80, 19–32. 10.1016/j.schres.2005.07.014
    1. Mueser K. T., McGurk S. R. (2004). Schizophrenia. Lancet 363, 2063–2072. 10.1016/S0140-6736(04)16458-1
    1. Palta P., Schneider A. L., Biessels G. J., Touradji P., Hill-Briggs F. (2014). Magnitude of cognitive dysfunction in adults with type 2 diabetes: a meta-analysis of six cognitive domains and the most frequently reported neuropsychological tests within domains. J. Int. Neuropsychol. Soc. 20, 278–291. 10.1017/S1355617713001483
    1. Pérez-Garza R., Victoria-Figueroa G., Ulloa-Flores R. E. (2016). Sex differences in severity, social functioning, adherence to treatment, and cognition of adolescents with schizophrenia. Schizophr. Res. Treatment. 2016:1928747. 10.1155/2016/1928747
    1. Shi C., Kang L., Yao S., Ma Y., Li T., Liang Y., et al. . (2015). The matrics consensus cognitive battery (MCCB): co-norming and standardization in china. Schizophr. Res. 169, 109–115. 10.1016/j.schres.2015.09.003
    1. Shi C., Kang L., Yao S., Ma Y., Li T., Liang Y., et al. . (2019). What is the optimal neuropsychological test battery for schizophrenia in China? Schizophr. Res. 208, 317–323. 10.1016/j.schres.2019.01.034
    1. Silverstein S. M., Schenkel L. S., Valone C., Nuernberger S. W. (1998). Cognitive deficits and psychiatric rehabilitation outcomes in schizophrenia. Psychiatr. Q. 69, 169–191. 10.1023/a:1022197109569
    1. Taylor M. J., Heaton R. K. (2001). Sensitivity and specificity of WAIS-III/WMS-III demographically corrected factor scores in neuropsychological assessment. J. Int. Neuropsychol. Soc. 7, 867–874. 10.1017/s1355617701777107
    1. Tschoner A., Engl J., Rettenbacher M., Edlinger M., Kaser S., Tatarczyk T., et al. . (2009). Effects of six second generation antipsychotics on body weight and metabolism—risk assessment and results from a prospective study. Pharmacopsychiatry 42, 29–34. 10.1055/s-0028-1100425
    1. World Health Organization . (1999). International society of hypertension guidelines for the management of hypertension. Guidelines subcommittee. J. Hypertens. 17, 151–183. 10.1097/00004872-199917020-00001
    1. Zanelli J., Mollon J., Sandin S., Morgan C., Dazzan P., Pilecka I., et al. . (2019). Cognitive change in schizophrenia and other psychoses in the decade following the first episode. Am. J. Psychiatry 76, 811–819. 10.1176/appi.ajp.2019.18091088
    1. Zhang B., Han M., Tan S., De Yang F., Tan Y., Jiang S., et al. . (2017). Gender differences measured by the MATRICS consensus cognitive battery in chronic schizophrenia patients. Sci. Rep. 7:11821. 10.1038/s41598-017-12027-w
    1. Zhang H., Wang Y., Hu Y., Zhu Y., Zhang T., Wang J., et al. . (2019). Meta-analysis of cognitive function in Chinese first-episode schizophrenia: MATRICS Consensus Cognitive Battery (MCCB) profile of impairment. Gen. Psychiatr. 32:e100043. 10.1136/gpsych-2018-100043
    1. Zhang X., Yang M., Du X., Liao W., Chen D., Fan F., et al. . (2019). Glucose disturbances, cognitive deficits and white matter abnormalities in first-episode drug-naive schizophrenia. Mol. Psychiatry 25, 3220–3230. 10.1038/s41380-019-0478-1
    1. Zhou B. (2002). Predictive values of body mass index and waist circumference to risk factors of related diseases in Chinese adult population. Zhonghua Liu Xing Bing Xue Za Zhi 23, 5–10.
    1. Zilliox L. A., Chadrasekaran K., Kwan J. Y., Russell J. W. (2016). Diabetes and cognitive impairment. Curr. Diab. Rep. 16:87. 10.1007/s11892-016-0775-x

Source: PubMed

3
Se inscrever