Mid-regional pro-adrenomedullin as a prognostic marker in sepsis: an observational study

Mirjam Christ-Crain, Nils G Morgenthaler, Joachim Struck, Stephan Harbarth, Andreas Bergmann, Beat Müller, Mirjam Christ-Crain, Nils G Morgenthaler, Joachim Struck, Stephan Harbarth, Andreas Bergmann, Beat Müller

Abstract

Introduction: Measurement of biomarkers is a potential approach to early assessment and prediction of mortality in patients with sepsis. The aim of the present study was to evaluate the prognostic value of mid-regional pro-adrenomedullin (MR-proADM) levels in a cohort of medical intensive care patients and to compare it with other biomarkers and physiological scores.

Method: We evaluated blood samples from 101 consecutive critically ill patients admitted to the intensive care unit and from 160 age-matched healthy control individuals. The patients had initially been enrolled in a prospective observational study investigating the prognostic value of endocrine dysfunction in critically ill patients ("PEDCRIP" Study). The prognostic value of MR-proADM levels was compared with those of two physiological scores and of various biomarkers (for example C-reactive Protein, IL-6, procalcitonin). MR-proADM was measured in EDTA plasma from all patients using a new sandwich immunoassay.

Results: On admission, 53 patients had sepsis, severe sepsis, or septic shock, and 48 had systemic inflammatory response syndrome. Median MR-proADM levels on admission (nmol/l [range]) were 1.1 (0.3-3.7) in patients with systemic inflammatory response syndrome, 1.8 (0.4-5.8) in those with sepsis, 2.3 (1.0-17.6) in those with severe sepsis and 4.5 (0.9-21) in patients with septic shock. In healthy control individuals the median MR-proADM was 0.4 (0.21-0.97). On admission, circulating MR-proADM levels in patients with sepsis, severe sepsis, or septic shock were significantly higher in nonsurvivors (8.5 [0.8-21.0]; P < 0.001) than in survivors (1.7 [0.4-17.6]). In a receiver operating curve analysis of survival of patients with sepsis, the area under the curve (AUC) for MR-proADM was 0.81, which was similar to the AUCs for IL-6, Acute Physiology and Chronic Health Evaluation II score and Simplified Acute Physiology Score II. The prognostic value of MR-proADM was independent of the sepsis classification system used.

Conclusion: MR-proADM may be helpful in individual risk assessment in septic patients.

Figures

Figure 1
Figure 1
Admission levels of MR-proADM. (a) MR-proADM in patients with sepsis versus healthy control individuals. (b) MR-proADM in patients without infection (for example SIRS), and in patients with sepsis, severe sepsis and septic shock. (c) MR-proADM grouped according to PCT values. Lines denote median values, boxes represent 25–75th percentiles and whiskers indicate the range. The numbers of samples are indicated in parentheses. MR-proADM, mid-regional pro-adrenomedullin; PCT, procalcitonin; SIRS, systemic inflammatory response syndrome.
Figure 2
Figure 2
MR-proADM and PCT levels in surviving versus nonsurviving patients. Data from patients on admission are shown. Patients are grouped into (a) those with a clinical diagnosis of sepsis based on international guidelines and (b) those with circulating PCT levels above 1 ng/ml. Lines denote median values, boxes represent 25–75th percentiles and whiskers indicate the range. MR-proADM, mid-regional pro-adrenomedullin; PCT, procalcitonin.
Figure 3
Figure 3
Sensitivity and specificity of various biomarkers and scoring systems in predicting ICU mortality. Shown are ROC plot analyses of the abilities of various biomarkers to predict outcome (for example ICU mortality) in sepsis. Patients are grouped into (a) those with a clinical diagnosis of sepsis based on international guidelines and (b) those with circulating PCT levels above 1 ng/ml. Sensitivity was calculated with patients who died during their ICU stay and specificity was calculated with ICU survivors. The areas under the ROC curve are given with 95% confidence intervals. ICU, intensive care unit; PCT, procalcitonin; ROC, receiver operating characteristic.

References

    1. Angus DC, Linde-Zwirble WT, Lidicker J, Clermont G, Carcillo J, Pinsky MR. Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit Care Med. 2001;29:1303–1310. doi: 10.1097/00003246-200107000-00002.
    1. Martin GS, Mannino DM, Eaton S, Moss M. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med. 2003;348:1546–1554. doi: 10.1056/NEJMoa022139.
    1. Rangel-Frausto MS, Pittet D, Hwang T, Woolson RF, Wenzel RP. The dynamics of disease progression in sepsis: Markov modeling describing the natural history and the likely impact of effective antisepsis agents. Clin Infect Dis. 1998;27:185–190.
    1. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med. 2003;31:1250–1256. doi: 10.1097/01.CCM.0000050454.01978.3B.
    1. Linscheid P, Seboek D, Zulewski H, Keller U, Muller B. Autocrine/paracrine role of inflammation-mediated calcitonin gene-related peptide and adrenomedullin expression in human adipose tissue. Endocrinology. 2005;146:2699–2708. doi: 10.1210/en.2004-1424.
    1. Kitamura K, Sakata J, Kangawa K, Kojima M, Matsuo H, Eto T. Cloning and characterization of cDNA encoding a precursor for human adrenomedullin. Biochem Biophys Res Commun. 1993;194:720–725. doi: 10.1006/bbrc.1993.1881.
    1. Hinson JP, Kapas S, Smith DM. Adrenomedullin, a multifunctional regulatory peptide. Endocr Rev. 2000;21:138–167. doi: 10.1210/er.21.2.138.
    1. Eto T. A review of the biological properties and clinical implications of adrenomedullin and proadrenomedullin N-terminal 20 peptide (PAMP), hypotensive and vasodilating peptides. Peptides. 2001;22:1693–1711. doi: 10.1016/S0196-9781(01)00513-7.
    1. Pio R, Martinez A, Unsworth EJ, Kowalak JA, Bengoechea JA, Zipfel PF, Elsasser TH, Cuttitta F. Complement factor H is a serum-binding protein for adrenomedullin, and the resulting complex modulates the bioactivities of both partners. J Biol Chem. 2001;276:12292–12300. doi: 10.1074/jbc.M007822200.
    1. Marutsuka K, Nawa Y, Asada Y, Hara S, Kitamura K, Eto T, Sumiyoshi A. Adrenomedullin and proadrenomudullin N-terminal 20 peptide (PAMP) are present in human colonic epithelia and exert an antimicrobial effect. Exp Physiol. 2001;86:543–545. doi: 10.1113/eph8602250.
    1. Martinez A, Pio R, Zipfel PF, Cuttitta F. Mapping of the adrenomedullin-binding domains in human complement factor H. Hypertens Res. 2003;26 Suppl:S55–S59. doi: 10.1291/hypres.26.S55.
    1. Hirata Y, Mitaka C, Sato K, Nagura T, Tsunoda Y, Amaha K, Marumo F. Increased circulating adrenomedullin, a novel vasodilatory peptide, in sepsis. J Clin Endocrinol Metab. 1996;81:1449–1453. doi: 10.1210/jc.81.4.1449.
    1. Jougasaki M, Burnett JC., Jr Adrenomedullin: potential in physiology and pathophysiology. Life Sci. 2000;66:855–872. doi: 10.1016/S0024-3205(99)00358-6.
    1. Kato J, Tsuruda T, Kitamura K, Eto T. Adrenomedullin: a possible autocrine or paracrine hormone in the cardiac ventricles. Hypertens Res. 2003;26 Suppl:S113–S119. doi: 10.1291/hypres.26.S113.
    1. Struck J, Tao C, Morgenthaler NG, Bergmann A. Identification of an Adrenomedullin precursor fragment in plasma of sepsis patients. Peptides. 2004;25:1369–1372. doi: 10.1016/j.peptides.2004.06.019.
    1. Muller B, Becker KL, Schachinger H, Rickenbacher PR, Huber PR, Zimmerli W, Ritz R. Calcitonin precursors are reliable markers of sepsis in a medical intensive care unit. Crit Care Med. 2000;28:977–983. doi: 10.1097/00003246-200004000-00011.
    1. Muller B, Becker KL, Kranzlin M, Schachinger H, Huber PR, Nylen ES, Snider RH, White JC, Schmidt-Gayk H, Zimmerli W, Ritz R. Disordered calcium homeostasis of sepsis: association with calcitonin precursors. Eur J Clin Invest. 2000;30:823–831. doi: 10.1046/j.1365-2362.2000.00714.x.
    1. Muller B, Peri G, Doni A, Torri V, Landmann R, Bottazzi B, Mantovani A. Circulating levels of the long pentraxin PTX3 correlate with severity of infection in critically ill patients. Crit Care Med. 2001;29:1404–1407. doi: 10.1097/00003246-200107000-00017.
    1. Muller B, Peri G, Doni A, Perruchoud AP, Landmann R, Pasqualini F, Mantovani A. High circulating levels of the IL-1 type II decoy receptor in critically ill patients with sepsis: association of high decoy receptor levels with glucocorticoid administration. J Leukoc Biol. 2002;72:643–649.
    1. Morgenthaler NG, Struck J, Christ-Crain M, Bergmann A, Muller B. Pro-atrial natriuretic peptide is a prognostic marker in sepsis, similar to the APACHE II score: an observational study. Crit Care. 2005;9:R37–R45. doi: 10.1186/cc3015.
    1. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RM, Sibbald WJ. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest. 1992;101:1644–1655.
    1. American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med. 1992;20:864–874.
    1. Morgenthaler NG, Struck J, Alonso C, Bergmann A. Measurement of midregional proadrenomedullin in plasma with an immunoluminometric assay. Clin Chem. 2005;51:1823–1829. doi: 10.1373/clinchem.2005.051110.
    1. Becker KL, Nylen ES, White JC, Muller B, Snider RH., Jr Clinical review 167: procalcitonin and the calcitonin gene family of peptides in inflammation, infection, and sepsis: a journey from calcitonin back to its precursors. J Clin Endocrinol Metab. 2004;89:1512–1525. doi: 10.1210/jc.2002-021444.
    1. Muller B, White JC, Nylen ES, Snider RH, Becker KL, Habener JF. Ubiquitous expression of the calcitonin-i gene in multiple tissues in response to sepsis. J Clin Endocrinol Metab. 2001;86:396–404. doi: 10.1210/jc.86.1.396.
    1. Shoji H, Minamino N, Kangawa K, Matsuo H. Endotoxin markedly elevates plasma concentration and gene transcription of adrenomedullin in rat. Biochem Biophys Res Commun. 1995;215:531–537. doi: 10.1006/bbrc.1995.2497.
    1. Sato K, Hirata Y, Imai T, Iwashina M, Marumo F. Characterization of immunoreactive adrenomedullin in human plasma and urine. Life Sci. 1995;57:189–194. doi: 10.1016/0024-3205(95)00259-9.
    1. Nishikimi T, Kitamura K, Saito Y, Shimada K, Ishimitsu T, Takamiya M, Kangawa K, Matsuo H, Eto T, Omae T, et al. Clinical studies on the sites of production and clearance of circulating adrenomedullin in human subjects. Hypertension. 1994;24:600–604.
    1. So S, Hattori Y, Kasai K, Shimoda S, Gross SS. Up-regulation of rat adrenomedullin gene expression by endotoxin: relation to nitric oxide synthesis. Life Sci. 1996;58:PL309–PL315. doi: 10.1016/0024-3205(96)00146-4.
    1. Ueda S, Nishio K, Minamino N, Kubo A, Akai Y, Kangawa K, Matsuo H, Fujimura Y, Yoshioka A, Masui K, et al. Increased plasma levels of adrenomedullin in patients with systemic inflammatory response syndrome. Am J Respir Crit Care Med. 1999;160:132–136.
    1. Cohen J. The immunopathogenesis of sepsis. Nature. 2002;420:885–891. doi: 10.1038/nature01326.
    1. Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med. 2003;348:138–150. doi: 10.1056/NEJMra021333.
    1. Knaus WA, Zimmerman JE, Wagner DP, Draper EA, Lawrence DE. APACHE-acute physiology and chronic health evaluation: a physiologically based classification system. Crit Care Med. 1981;9:591–597.
    1. Eichacker PQ, Parent C, Kalil A, Esposito C, Cui X, Banks SM, Gerstenberger EP, Fitz Y, Danner RL, Natanson C. Risk and the efficacy of antiinflammatory agents: retrospective and confirmatory studies of sepsis. Am J Respir Crit Care Med. 2002;166:1197–1205. doi: 10.1164/rccm.200204-302OC.
    1. Calandra T, Gerain J, Heumann D, Baumgartner JD, Glauser MP. High circulating levels of interleukin-6 in patients with septic shock: evolution during sepsis, prognostic value, and interplay with other cytokines. The Swiss-Dutch J5 Immunoglobulin Study Group. Am J Med. 1991;91:23–29. doi: 10.1016/0002-9343(91)90069-A.
    1. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, Cohen J, Opal SM, Vincent JL, Ramsay G. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Intensive Care Med. 2003;29:530–538.
    1. Dellinger RP, Carlet JM, Masur H, Gerlach H, Calandra T, Cohen J, Gea-Banacloche J, Keh D, Marshall JC, Parker MM, et al. Surviving Sepsis Campaign guidelines for management of severe sepsis and septic shock. Crit Care Med. 2004;32:858–873. doi: 10.1097/01.CCM.0000117317.18092.E4.
    1. Christ-Crain M, Jaccard-Stolz D, Bingisser R, Gencay MM, Huber PR, Tamm M, Muller B. Effect of procalcitonin-guided treatment on antibiotic use and outcome in lower respiratory tract infections: cluster-randomised, single-blinded intervention trial. Lancet. 2004;363:600–607. doi: 10.1016/S0140-6736(04)15591-8.
    1. Simon L, Gauvin F, Amre K, Saint-Louis P, Lacroix J. Serum procalcitonin and C-reactive protein levels as markers of bacterial infection: a systematic review and meta-analysis. Clin Infect Dis. 2004;39:206–217. doi: 10.1086/421997.

Source: PubMed

3
Se inscrever