Deep Brain Stimulation in Huntington's Disease-Preliminary Evidence on Pathophysiology, Efficacy and Safety

Lars Wojtecki, Stefan Jun Groiss, Christian Johannes Hartmann, Saskia Elben, Sonja Omlor, Alfons Schnitzler, Jan Vesper, Lars Wojtecki, Stefan Jun Groiss, Christian Johannes Hartmann, Saskia Elben, Sonja Omlor, Alfons Schnitzler, Jan Vesper

Abstract

Huntington's disease (HD) is one of the most disabling degenerative movement disorders, as it not only affects the motor system but also leads to cognitive disabilities and psychiatric symptoms. Deep brain stimulation (DBS) of the pallidum is a promising symptomatic treatment targeting the core motor symptom: chorea. This article gives an overview of preliminary evidence on pathophysiology, safety and efficacy of DBS in HD.

Keywords: DBS; Huntington; chorea; deep brain stimulation; globus pallidus; recordings; safety pathophysiology.

Conflict of interest statement

Related to Huntington’s Disease and/or deep brain stimulation: L.W. received consultant honoraria and travel grants from Medtronic, St. Jude Medical, Inomed and Desitin. S.J.G. received coverage of travel expenses and honoraria from Medtronic and Boston Scientific. C.J.H., S.E. and S.O. declare no conflicts of interest. A.S. and J.V. received consultant honoraria and travel grants from Medtronic. The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed. No writing assistance was utilized in the production of this manuscript. Trial NCT02535884 is supported by Medtronic. Medtronic had no role in the design of the review, in the collection, analyses, or interpretation of data, in the writing of the manuscript, or in the decision to publish the results. Medtronic provided Figure 1 for this manuscript on request of the authors.

Figures

Figure 1
Figure 1
DBS components. Subcutaneous implanted impulse generator (IPG), lead extension and stereotactically implanted stimulation electrodes. Image provided by Medtronic.
Figure 2
Figure 2
Basal ganglia network and targets for DBS in HD. Red arrows indicate inhibitory, green arrows indicate excitatory connections.
Figure 3
Figure 3
Stimulated target. Example visualization on 3D coronary MRI-view of individual electrodes and volume of tissue activated (VTA, in red) in relation to the pallidum (in brown). Image source: authors’ own contribution.

References

    1. Hartmann C.J., Groiss S.J., Vesper J., Schnitzler A., Wojtecki L. Brain stimulation in Huntington’s disease. Neurodegener. Dis. Manag. 2016;6:223–236. doi: 10.2217/nmt-2016-0007.
    1. Walker F.O. Huntington’s disease. Semin. Neurol. 2007;27:143–150. doi: 10.1055/s-2007-971176.
    1. Mitchell I.J., Cooper A.J., Griffiths M.R. The selective vulnerability of striatopallidal neurons. Prog. Neurobiol. 1999;59:691–719. doi: 10.1016/S0301-0082(99)00019-2.
    1. Albin R.L., Reiner A., Anderson K.D., Penney J.B., Young A.B. Striatal and nigral neuron subpopulations in rigid huntington’s disease: Implications for the functional anatomy of chorea and rigidity-akinesia. Ann. Neurol. 1990;27:357–365. doi: 10.1002/ana.410270403.
    1. Wichmann T., DeLong M.R. Functional and pathophysiological models of the basal ganglia. Curr. Opin. Neurobiol. 1996;6:751–758. doi: 10.1016/S0959-4388(96)80024-9.
    1. Louis E.D., Anderson K.E., Moskowitz C., Thorne D.Z., Marder K. Dystonia-predominant adult-onset huntington disease: Association between motor phenotype and age of onset in adults. Arch. Neurol. 2000;57:1326–1330. doi: 10.1001/archneur.57.9.1326.
    1. Thompson P.D., Berardelli A., Rothwell J.C., Day B.L., Dick J.P., Benecke R., Marsden C.D. The coexistence of bradykinesia and chorea in huntington’s disease and its implications for theories of basal ganglia control of movement. Brain J. Neurol. 1988;111:223–244. doi: 10.1093/brain/111.2.223.
    1. Spiegel E.A., Wycis H.T., Marks M., Lee A.J. Stereotaxic apparatus for operations on the human brain. Science. 1947;106:349–350. doi: 10.1126/science.106.2754.349.
    1. Gildenberg P.L. History repeats itself. Stereotact. Funct. Neurosurg. 2003;80:61–75. doi: 10.1159/000075162.
    1. Benabid A.L., Pollak P., Louveau A., Henry S., de Rougemont J. Combined (thalamotomy and stimulation) stereotactic surgery of the VIM thalamic nucleus for bilateral parkinson disease. Appl. Neurophysiol. 1987;50:344–346. doi: 10.1159/000100803.
    1. Delgado J.M., Hamlin H., Chapman W.P. Technique of intracranial electrode implacement for recording and stimulation and its possible therapeutic value in psychotic patients. Confin. Neurol. 1952;12:315–319. doi: 10.1159/000105792.
    1. Delgado J.M., Mark V., Sweet W., Ervin F., Weiss G., Bach Y.R.G., Hagiwara R. Intracerebral radio stimulation and recording in completely free patients. J. Nerv. Ment. Dis. 1968;147:329–340. doi: 10.1097/00005053-196810000-00001.
    1. Sem-Jacobsen C.W. Depth-electrographic observations in psychotic patients: A system related to emotion and behavior. Acta Psychiatr. Scand. 1959;34:412–416. doi: 10.1111/j.1600-0447.1959.tb07829.x.
    1. Alberts W.W., Wright E.W., Jr., Levin G., Feinstein B., Mueller M. Threshold stimulation of the lateral thalamus and globus pallidus in the waking human. Electroencephalogr. Clin. Neurophysiol. 1961;13:68–74. doi: 10.1016/0013-4694(61)90076-1.
    1. Sem-Jacobsen C.W. Depth-electrographic observations related to Parkinson’s disease. Recording and electrical stimulation in the area around the third ventricle. J. Neurosurg. 1966;24:S388–S402.
    1. Mundinger F. New stereotactic treatment of spasmodic torticollis with a brain stimulation system (author’s transl.) Med. Klin. 1977;72:1982–1986.
    1. Miocinovic S., Somayajula S., Chitnis S., Vitek J.L. History, applications, and mechanisms of deep brain stimulation. JAMA Neurol. 2013;70:163–171. doi: 10.1001/2013.jamaneurol.45.
    1. Herrington T.M., Cheng J.J., Eskandar E.N. Mechanisms of deep brain stimulation. J. Neurophysiol. 2016;115:19–38. doi: 10.1152/jn.00281.2015.
    1. Benabid A.L., Pollak P., Gervason C., Hoffmann D., Gao D.M., Hommel M., Perret J.E., de Rougemont J. Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet. 1991;337:403–406. doi: 10.1016/0140-6736(91)91175-T.
    1. Grill W.M., Snyder A.N., Miocinovic S. Deep brain stimulation creates an informational lesion of the stimulated nucleus. Neuroreport. 2004;15:1137–1140. doi: 10.1097/00001756-200405190-00011.
    1. Krack P., Pollak P., Limousin P., Hoffmann D., Benazzouz A., Le Bas J.F., Koudsie A., Benabid A.L. Opposite motor effects of pallidal stimulation in Parkinson’s disease. Ann. Neurol. 1998;43:180–192. doi: 10.1002/ana.410430208.
    1. Kumar R., Lang A.E., Rodriguez-Oroz M.C., Lozano A.M., Limousin P., Pollak P., Benabid A.L., Guridi J., Ramos E., van der Linden C., et al. Deep brain stimulation of the globus pallidus pars interna in advanced Parkinson’s disease. Neurology. 2000;55:S34–S39.
    1. Volkmann J., Mueller J., Deuschl G., Kuhn A.A., Krauss J.K., Poewe W., Timmermann L., Falk D., Kupsch A., Kivi A., et al. Pallidal neurostimulation in patients with medication-refractory cervical dystonia: A randomised, sham-controlled trial. Lancet Neurol. 2014;13:875–884. doi: 10.1016/S1474-4422(14)70143-7.
    1. Vidailhet M., Jutras M.F., Grabli D., Roze E. Deep brain stimulation for dystonia. J. Neurol. Neurosurg. Psychiatry. 2013;84:1029–1042. doi: 10.1136/jnnp-2011-301714.
    1. Damier P., Thobois S., Witjas T., Cuny E., Derost P., Raoul S., Mertens P., Peragut J.C., Lemaire J.J., Burbaud P., et al. Bilateral deep brain stimulation of the globus pallidus to treat tardive dyskinesia. Arch. Gen. Psychiatry. 2007;64:170–176. doi: 10.1001/archpsyc.64.2.170.
    1. Trottenberg T., Paul G., Meissner W., Maier-Hauff K., Taschner C., Kupsch A. Pallidal and thalamic neurostimulation in severe tardive dystonia. J. Neurol. Neurosurg. Psychiatry. 2001;70:557–559. doi: 10.1136/jnnp.70.4.557.
    1. Timmermann L., Pauls K.A., Wieland K., Jech R., Kurlemann G., Sharma N., Gill S.S., Haenggeli C.A., Hayflick S.J., Hogarth P., et al. Dystonia in neurodegeneration with brain iron accumulation: Outcome of bilateral pallidal stimulation. Brain. 2010;133:701–712. doi: 10.1093/brain/awq022.
    1. Miquel M., Spampinato U., Latxague C., Aviles-Olmos I., Bader B., Bertram K., Bhatia K., Burbaud P., Burghaus L., Cho J.W., et al. Short and long term outcome of bilateral pallidal stimulation in chorea-acanthocytosis. PLoS ONE. 2013;8:38. doi: 10.1371/journal.pone.0079241.
    1. Guehl D., Cuny E., Tison F., Benazzouz A., Bardinet E., Sibon Y., Ghorayeb I., Yelnick J., Rougier A., Bioulac B., et al. Deep brain pallidal stimulation for movement disorders in neuroacanthocytosis. Neurology. 2007;68:160–161. doi: 10.1212/01.wnl.0000250536.81426.1a.
    1. Krauss J.K., Loher T.J., Weigel R., Capelle H.H., Weber S., Burgunder J.M. Chronic stimulation of the globus pallidus internus for treatment of non-dYT1 generalized dystonia and choreoathetosis: 2-year follow up. J. Neurosurg. 2003;98:785–792. doi: 10.3171/jns.2003.98.4.0785.
    1. Gill S., Curran A., Tripp J., Melarickas L., Hurran C., Stanley O. Hyperkinetic movement disorder in an 11-year-old child treated with bilateral pallidal stimulators. Dev. Med. Child Neurol. 2001;43:350–353. doi: 10.1017/S0012162201000640.
    1. Vidailhet M., Yelnik J., Lagrange C., Fraix V., Grabli D., Thobois S., Burbaud P., Welter M.L., Xie-Brustolin J., Braga M.C., et al. Bilateral pallidal deep brain stimulation for the treatment of patients with dystonia-choreoathetosis cerebral palsy: A prospective pilot study. Lancet Neurol. 2009;8:709–717. doi: 10.1016/S1474-4422(09)70151-6.
    1. Spiegel E.A., Wycis H.T. Thalamotomy and pallidotomy for treatment of choreic movements. Acta Neurochir. 1952;2:417–422. doi: 10.1007/BF01405833.
    1. Cubo E., Shannon K.M., Penn R.D., Kroin J.S. Internal globus pallidotomy in dystonia secondary to Huntington’s disease. Mov. Disord. 2000;15:1248–1251. doi: 10.1002/1531-8257(200011)15:6<1248::AID-MDS1029>;2-Q.
    1. Tobin A.J., Signer E.R. Huntington’s disease: The challenge for cell biologists. Trends Cell Biol. 2000;10:531–536. doi: 10.1016/S0962-8924(00)01853-5.
    1. Alexander G.E., DeLong M.R., Strick P.L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 1986;9:357–381. doi: 10.1146/annurev.ne.09.030186.002041.
    1. Alexander G.E., Crutcher M.D., DeLong M.R. Basal ganglia-thalamocortical circuits: Parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Prog. Brain Res. 1990;85:119–146.
    1. Smith Y., Bevan M.D., Shink E., Bolam J.P. Microcircuitry of the direct and indirect pathways of the basal ganglia. Neuroscience. 1998;86:353–387.
    1. Reiner A., Albin R.L., Anderson K.D., D’Amato C.J., Penney J.B., Young A.B. Differential loss of striatal projection neurons in huntington disease. Proc. Natl. Acad. Sci. USA. 1988;85:5733–5737. doi: 10.1073/pnas.85.15.5733.
    1. Albin R.L., Reiner A., Anderson K.D., Dure L.S., Handelin B., Balfour R., Whetsell W.O., Jr., Penney J.B., Young A.B. Preferential loss of striato-external pallidal projection neurons in presymptomatic huntington’s disease. Ann. Neurol. 1992;31:425–430. doi: 10.1002/ana.410310412.
    1. Albin R.L., Young A.B., Penney J.B. The functional anatomy of basal ganglia disorders. Trends Neurosci. 1989;12:366–375. doi: 10.1016/0166-2236(89)90074-X.
    1. Penney J.B., Jr., Young A.B. Striatal inhomogeneities and basal ganglia function. Mov. Disord. 1986;1:3–15. doi: 10.1002/mds.870010102.
    1. Georgiou N., Bradshaw J.L., Phillips J.G., Bradshaw J.A., Chiu E. The Simon effect and attention deficits in Gilles de la Tourette’s syndrome and Huntington’s disease. Brain J. Neurol. 1995;118:1305–1318. doi: 10.1093/brain/118.5.1305.
    1. Litvan I., Paulsen J.S., Mega M.S., Cummings J.L. Neuropsychiatric assessment of patients with hyperkinetic and hypokinetic movement disorders. Arch. Neurol. 1998;55:1313–1319. doi: 10.1001/archneur.55.10.1313.
    1. Raymond L.A., Andre V.M., Cepeda C., Gladding C.M., Milnerwood A.J., Levine M.S. Pathophysiology of Huntington’s disease: Time-dependent alterations in synaptic and receptor function. Neuroscience. 2011;198:252–273. doi: 10.1016/j.neuroscience.2011.08.052.
    1. Joel D. Open interconnected model of basal ganglia-thalamocortical circuitry and its relevance to the clinical syndrome of Huntington’s disease. Mov. Disord. 2001;16:407–423. doi: 10.1002/mds.1096.
    1. Gross R.E., Krack P., Rodriguez-Oroz M.C., Rezai A.R., Benabid A.L. Electrophysiological mapping for the implantation of deep brain stimulators for Parkinson’s disease and tremor. Mov. Disord. 2006;21:S259–S283. doi: 10.1002/mds.20960.
    1. Starr P.A., Rau G.M., Davis V., Marks W.J., Jr., Ostrem J.L., Simmons D., Lindsey N., Turner R.S. Spontaneous pallidal neuronal activity in human dystonia: Comparison with Parkinson’s disease and normal macaque. J. Neurophysiol. 2005;93:3165–3176. doi: 10.1152/jn.00971.2004.
    1. Tang J.K., Moro E., Lozano A.M., Lang A.E., Hutchison W.D., Mahant N., Dostrovsky J.O. Firing rates of pallidal neurons are similar in Huntington’s and Parkinson’s disease patients. Exp. Brain Res. 2005;166:230–236. doi: 10.1007/s00221-005-2359-x.
    1. Starr P.A., Kang G.A., Heath S., Shimamoto S., Turner R.S. Pallidal neuronal discharge in Huntington’s disease: Support for selective loss of striatal cells originating the indirect pathway. Exp. Neurol. 2008;211:227–233. doi: 10.1016/j.expneurol.2008.01.023.
    1. Delorme C., Rogers A., Lau B., Francisque H., Welter M.L., Fernandez Vidal S., Yelnik J., Durr A., Grabli D., Karachi C. Deep brain stimulation of the internal pallidum in Huntington’s disease patients: Clinical outcome and neuronal firing patterns. J. Neurol. 2016;263:290–298. doi: 10.1007/s00415-015-7968-0.
    1. Groiss S.J., Elben S., Reck C., Voges J., Wojtecki L., Schnitzler A. Local field potential oscillations of the globus pallidus in Huntington’s disease. Mov. Disord. 2011;26:2577–2578. doi: 10.1002/mds.23914.
    1. Wojtecki L., Groiss S.J., Ferrea S., Elben S., Hartmann C.J., Dunnett S.B., Rosser A., Saft C., Sudmeyer M., Ohmann C., et al. A prospective pilot trial for pallidal deep brain stimulation in Huntington’s disease. Front. Neurol. 2015;6:177. doi: 10.3389/fneur.2015.00177.
    1. Gonzalez V., Cif L., Biolsi B., Garcia-Ptacek S., Seychelles A., Sanrey E., Descours I., Coubes C., de Moura A.M., Corlobe A., et al. Deep brain stimulation for Huntington’s disease: Long-term results of a prospective open-label study. J. Neurosurg. 2014;121:114–122. doi: 10.3171/2014.2.JNS131722.
    1. Moro E., Lang A.E., Strafella A.P., Poon Y.Y., Arango P.M., Dagher A., Hutchison W.D., Lozano A.M. Bilateral globus pallidus stimulation for Huntington’s disease. Ann. Neurol. 2004;56:290–294. doi: 10.1002/ana.20183.
    1. Fawcett A.P., Moro E., Lang A.E., Lozano A.M., Hutchison W.D. Pallidal deep brain stimulation influences both reflexive and voluntary saccades in Huntington’s disease. Mov. Disord. 2005;20:371–377. doi: 10.1002/mds.20356.
    1. Hebb M.O., Garcia R., Gaudet P., Mendez I.M. Bilateral stimulation of the globus pallidus internus to treat choreathetosis in Huntington’s disease: Technical case report. Neurosurgery. 2006;58:E383. doi: 10.1227/01.NEU.0000195068.19801.18.
    1. Fasano A., Mazzone P., Piano C., Quaranta D., Soleti F., Bentivoglio A.R. GPi-DBS in Huntington’s disease: Results on motor function and cognition in a 72-year-old case. Mov. Disord. 2008;23:1289–1292. doi: 10.1002/mds.22116.
    1. Biolsi B., Cif L., Fertit H.E., Robles S.G., Coubes P. Long-term follow-up of Huntington disease treated by bilateral deep brain stimulation of the internal globus pallidus. J. Neurosurg. 2008;109:130–132. doi: 10.3171/JNS/2008/109/7/0130.
    1. Garcia-Ruiz P.J., Ayerbe J., del Val J., Herranz A. Deep brain stimulation in disabling involuntary vocalization associated with Huntington’s disease. Parkinsonism Relat. Disord. 2012;18:803–804. doi: 10.1016/j.parkreldis.2012.03.005.
    1. Spielberger S., Hotter A., Wolf E., Eisner W., Muller J., Poewe W., Seppi K. Deep brain stimulation in Huntington’s disease: A 4-year follow-up case report. Mov. Disord. 2012;27:806–807. doi: 10.1002/mds.24959.
    1. Huys D., Bartsch C., Poppe P., Lenartz D., Huff W., Prutting J., Timmermann L., Klosterkotter J., Maarouf M., Rommel T., et al. Management and outcome of pallidal deep brain stimulation in severe Huntington’s disease. Fortschr. Neurol. Psychiatr. 2013;81:202–205. doi: 10.1055/s-0033-1335097.
    1. Velez-Lago F.M., Thompson A., Oyama G., Hardwick A., Sporrer J.M., Zeilman P., Foote K.D., Bowers D., Ward H.E., Sanchez-Ramos J., et al. Differential and better response to deep brain stimulation of chorea compared to dystonia in Huntington’s disease. Stereotact. Funct. Neurosurg. 2013;91:129–133. doi: 10.1159/000341070.
    1. Cislaghi G., Capiluppi E., Saleh C., Romano L., Servello D., Mariani C., Porto M. Bilateral globus pallidus stimulation in westphal variant of Huntington disease. Neuromodul. J. Int. Neuromodul. Soc. 2014;17:502–505. doi: 10.1111/ner.12098.
    1. Gruber D., Kuhn A.A., Schoenecker T., Kopp U.A., Kivi A., Huebl J., Lobsien E., Mueller B., Schneider G.H., Kupsch A. Quadruple deep brain stimulation in Huntington’s disease, targeting pallidum and subthalamic nucleus: Case report and review of the literature. J. Neural. 2014;121:1303–1312. doi: 10.1007/s00702-014-1201-7.
    1. Loutfi G., Linder J., Hariz G.-M., Hariz M., Blomstedt P. Pallidal deep brain stimulation in the treatment of Huntington’s chorea. Brain Disord. Ther. 2014;3 doi: 10.4172/2168-975X.1000136.
    1. Kang G.A., Heath S., Rothlind J., Starr P.A. Long-term follow-up of pallidal deep brain stimulation in two cases of Huntington’s disease. J. Neurol. Neurosurg. Psychiatry. 2011;82:272–277. doi: 10.1136/jnnp.2009.202903.
    1. Zittel S., Moll C.K., Gulberti A., Tadic V., Rasche D., Baumer T., Fellbrich A., Bruggemann N., Engel A.K., Tronnier V., et al. Pallidal deep brain stimulation in Huntington’s disease. Parkinsonism Relat. Disord. 2015;21:1105–1108. doi: 10.1016/j.parkreldis.2015.06.018.
    1. Amtage F., Feuerstein T.J., Meier S., Prokop T., Piroth T., Pinsker M.O. Hypokinesia upon pallidal deep brain stimulation of dystonia: Support of a gabaergic mechanism. Front. Neurol. 2013;4:198. doi: 10.3389/fneur.2013.00198.
    1. Berman B.D., Starr P.A., Marks W.J., Jr., Ostrem J.L. Induction of bradykinesia with pallidal deep brain stimulation in patients with cranial-cervical dystonia. Stereotact. Funct. Neurosurg. 2009;87:37–44. doi: 10.1159/000195718.
    1. Schrader C., Capelle H.H., Kinfe T.M., Blahak C., Bazner H., Lutjens G., Dressler D., Krauss J.K. GPi-DBS may induce a hypokinetic gait disorder with freezing of gait in patients with dystonia. Neurology. 2011;77:483–488. doi: 10.1212/WNL.0b013e318227b19e.
    1. Lopez-Sendon Moreno J.L., Garcia-Caldentey J., Regidor I., del Alamo M., Garcia de Yebenes J. A 5-year follow-up of deep brain stimulation in Huntington’s disease. Parkinsonism Relat. Disord. 2014;20:260–261. doi: 10.1016/j.parkreldis.2013.11.007.
    1. Paulsen J.S. Cognitive impairment in huntington disease: Diagnosis and treatment. Curr. Neurol. Neurosci. Rep. 2011;5:474–483. doi: 10.1007/s11910-011-0215-x.
    1. Beglinger L.J., O’Rourke J.J., Wang C., Langbehn D.R., Duff K., Paulsen J.S. Earliest functional declines in Huntington disease. Psychiatry Res. 2010;178:414–418. doi: 10.1016/j.psychres.2010.04.030.
    1. Smith M.A., Brandt J., Shadmehr R. Motor disorder in Huntington’s disease begins as a dysfunction in error feedback control. Nature. 2000;403:544–549. doi: 10.1038/35000576.
    1. Beste C., Saft C., Andrich J., Gold R., Falkenstein M. Error processing in Huntington’s disease. PLoS ONE. 2006;1:38. doi: 10.1371/journal.pone.0000086.
    1. Ayalon L., Doron R., Weiner I., Joel D. Amelioration of behavioral deficits in a rat model of Huntington’s disease by an excitotoxic lesion to the globus pallidus. Exp. Neurol. 2004;186:46–58. doi: 10.1016/S0014-4886(03)00312-1.
    1. Temel Y., Cao C., Vlamings R., Blokland A., Ozen H., Steinbusch H.W., Michelsen K.A., von Horsten S., Schmitz C., Visser-Vandewalle V. Motor and cognitive improvement by deep brain stimulation in a transgenic rat model of Huntington’s disease. Neurosci. Lett. 2006;406:138–141. doi: 10.1016/j.neulet.2006.07.036.
    1. Ligot N., Krystkowiak P., Simonin C., Goldman S., Peigneux P., Van Naemen J., Monclus M., Lacroix S.F., Devos D., Dujardin K., et al. External globus pallidus stimulation modulates brain connectivity in Huntington’s disease. J. Cereb. Blood Flow Metab. 2011;31:41–46. doi: 10.1038/jcbfm.2010.186.
    1. Beste C., Muckschel M., Elben S., C J.H., McIntyre C.C., Saft C., Vesper J., Schnitzler A., Wojtecki L. Behavioral and neurophysiological evidence for the enhancement of cognitive control under dorsal pallidal deep brain stimulation in Huntington’s disease. Brain Struct. Funct. 2015;220:2441–2448. doi: 10.1007/s00429-014-0805-x.
    1. Reich M.M., Steigerwald F., Sawalhe A.D., Reese R., Gunalan K., Johannes S., Nickl R., Matthies C., McIntyre C.C., Volkmann J. Short pulse width widens the therapeutic window of subthalamic neurostimulation. Ann. Clin. Transl. Neurol. 2015;2:427–432. doi: 10.1002/acn3.168.
    1. Volkmann J., Stiegerwald S., Reich M. Deep brain stimulation at short pulse width results in superior therapeutic windows for treatment of Parkinson’s disease: A randomized, controlled, double-blind neurostimulation trial (CUSTOM-DBS); Proceedings of the 18th International Congress of Parkinson’s Disease and Movement Disorders; Stockholm, Sweden. 8–12 June 2014.
    1. Contarino M.F., Bour L.J., Verhagen R., Lourens M.A., de Bie R.M., van den Munckhof P., Schuurman P.R. Directional steering: A novel approach to deep brain stimulation. Neurology. 2014;83:1163–1169. doi: 10.1212/WNL.0000000000000823.
    1. Pollo C., Kaelin-Lang A., Oertel M.F., Stieglitz L., Taub E., Fuhr P., Lozano A.M., Raabe A., Schupbach M. Directional deep brain stimulation: An intraoperative double-blind pilot study. Brain J. Neurol. 2014;137:2015–2026. doi: 10.1093/brain/awu102.
    1. Quinn E.J., Blumenfeld Z., Velisar A., Koop M.M., Shreve L.A., Trager M.H., Hill B.C., Kilbane C., Henderson J.M., Bronte-Stewart H. Beta oscillations in freely moving Parkinson’s subjects are attenuated during deep brain stimulation. Mov. Disord. 2015;30:1750–1758. doi: 10.1002/mds.26376.
    1. Fenoy A.J., Simpson R.K., Jr. Risks of common complications in deep brain stimulation surgery: Management and avoidance. J. Neurosurg. 2014;120:132–139. doi: 10.3171/2013.10.JNS131225.

Source: PubMed

3
Se inscrever