Habituation and sensitization in primary headaches

Gianluca Coppola, Cherubino Di Lorenzo, Jean Schoenen, Francesco Pierelli, Gianluca Coppola, Cherubino Di Lorenzo, Jean Schoenen, Francesco Pierelli

Abstract

The phenomena of habituation and sensitization are considered most useful for studying the neuronal substrates of information processing in the CNS. Both were studied in primary headaches, that are functional disorders of the brain characterized by an abnormal responsivity to any kind of incoming innocuous or painful stimuli and it's cycling pattern over time (interictal, pre-ictal, ictal). The present review summarizes available data on stimulus responsivity in primary headaches obtained with clinical neurophysiology. In migraine, the majority of electrophysiological studies between attacks have shown that, for a number of different sensory modalities, the brain is characterised by a lack of habituation of evoked responses to repeated stimuli. This abnormal processing of the incoming information reaches its maximum a few days before the beginning of an attack, and normalizes during the attack, at a time when sensitization may also manifest itself. An abnormal rhythmic activity between thalamus and cortex, namely thalamocortical dysrhythmia, may be the pathophysiological mechanism subtending abnormal information processing in migraine. In tension-type headache (TTH), only few signs of deficient habituation were observed only in subgroups of patients. By contrast, using grand-average responses indirect evidence for sensitization has been found in chronic TTH with increased nociceptive specific reflexes and evoked potentials. Generalized increased sensitivity to pain (lower thresholds and increased pain rating) and a dysfunction in supraspinal descending pain control systems may contribute to the development and/or maintenance of central sensitization in chronic TTH. Cluster headache patients are characterized during the bout and on the headache side by a pronounced lack of habituation of the brainstem blink reflex and a general sensitization of pain processing. A better insight into the nature of these ictal/interictal electrophysiological dysfunctions in primary headaches paves the way for novel therapeutic targets and may allow a better understanding of the mode of action of available therapies.

Figures

Figure 1
Figure 1
Schematic representation of the changes in habituation and sensitization in an healthy subject and over the migraine cycle (interictal, ictal, and chronic migraine due to medication overuse [MOH]).

References

    1. Headache Classification Subcommittee of the International Headache Society. The International Classification of Headache Disorders: 2nd edition. Cephalalgia. 2004;14:9–160.
    1. Olesen J, Bousser MG, Diener HC, Dodick D, First M, Goadsby PJ. et al.New appendix criteria open for a broader concept of chronic migraine. Cephalalgia. 2006;14:742–746.
    1. Martelletti P, Birbeck G, Katsarava Z, Jensen R, Stovner L, Steiner T. et al.The Global Burden of Disease survey 2010, Lifting The Burden and thinking outside-the-box on headache disorders. J Headache Pain. 2013;14:13. doi: 10.1186/1129-2377-14-13.
    1. Harris J. Habituatory response decrement in the intact organism. Psychol Bull. 1943;14:385–422.
    1. Thompson RF, Spencer WA. Habituation: a model phenomenon for the study of neuronal substrates of behavior. Psychol Rev. 1966;14:16–43.
    1. Groves PM, Thompson RF. Habituation: a dual-process theory. Psychol Rev. 1970;14:419–450.
    1. Glanzman DL. Habituation in Aplysia: the Cheshire cat of neurobiology. Neurobiol Learn Mem. 2009;14:147–154. doi: 10.1016/j.nlm.2009.03.005.
    1. Thompson R. Habituation: a history. Neurobiol Learn Mem. 2009;14:127–134. doi: 10.1016/j.nlm.2008.07.011.
    1. Mesulam MM. Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann Neurol. 1990;14:597–613. doi: 10.1002/ana.410280502.
    1. Kandel ER, Tauc L. Heterosynaptic facilitation in neurones of the abdominal ganglion of Aplysia depilans. J Physiol. 1965;14:1–27.
    1. Thompson R, Glanzman D. In: Habituation. Tighe TJ, Leaton RN, editor. Hillsdale, New Jersey: Lawrence Erlbaum Associates; 1976. Neural and behavioral mechanisms of habituation and sensitization; pp. 49–93.
    1. Rankin CH, Abrams T, Barry RJ, Bhatnagar S, Clayton DF, Colombo J. et al.Habituation revisited: an updated and revised description of the behavioral characteristics of habituation. Neurobiol Learn Mem. 2009;14:135–138. doi: 10.1016/j.nlm.2008.09.012.
    1. Woolf C. Central sensitization: implications for the diagnosis and treatment of pain. Pain. 2011;14:S2–15. doi: 10.1016/j.pain.2010.09.030.
    1. Woolf CJ, Wall PD. Relative effectiveness of C primary afferent fibers of different origins in evoking a prolonged facilitation of the flexor reflex in the rat. J Neurosci. 1986;14:1433–1442.
    1. Schoenen J, Bottin D, Hardy F, Gerard P. Cephalic and extracephalic pressure pain thresholds in chronic tension-type headache. Pain. 1991;14:145–149. doi: 10.1016/0304-3959(91)90198-7.
    1. Burstein R, Cutrer MF, Yarnitsky D. The development of cutaneous allodynia during a migraine attack clinical evidence for the sequential recruitment of spinal and supraspinal nociceptive neurons in migraine. Brain. 2000;14(Pt 8):1703–1709.
    1. Bigal ME, Ashina S, Burstein R, Reed ML, Buse D, Serrano D. et al.Prevalence and characteristics of allodynia in headache sufferers: a population study. Neurology. 2008;14:1525–1533. doi: 10.1212/01.wnl.0000310645.31020.b1.
    1. Filatova E, Latysheva N, Kurenkov A. Evidence of persistent central sensitization in chronic headaches: a multi-method study. J Headache Pain. 2008;14:295–300. doi: 10.1007/s10194-008-0061-7.
    1. Lovati C, D'Amico D, Bertora P, Rosa S, Suardelli M, Mailland E. et al.Acute and interictal allodynia in patients with different headache forms: an Italian pilot study. Headache. 2008;14:272–277.
    1. Lambert G, Truong L, Zagami A. Effect of cortical spreading depression on basal and evoked traffic in the trigeminovascular sensory system. Cephalalgia. 2011;14:1439–1451. doi: 10.1177/0333102411422383.
    1. Goadsby P, Akerman S. The trigeminovascular system does not require a peripheral sensory input to be activated–migraine is a central disorder. Focus on 'Effect of cortical spreading depression on basal and evoked traffic in the trigeminovascular sensory system'. Cephalalgia. 2012;14:3–5. doi: 10.1177/0333102411430267.
    1. Schoenen J, Maertens A, Timsit-Berthier M, In: Migraine. Rose FC, editor. Basel: Karger: Clinical and Research Advances; 1985. Contingent negative variation (CNV) as a diagnostic and physiopathologic tool in headache patients; pp. 17–25.
    1. Maertens de Noordhout A, Timsit-Berthier M, Timsit M, Schoenen J. Contingent negative variation in headache. Ann Neurol. 1986;14:78–80. doi: 10.1002/ana.410190115.
    1. Kropp P, Gerber WD. Contingent negative variation–findings and perspectives in migraine. Cephalalgia. 1993;14:33–36. doi: 10.1046/j.1468-2982.1993.1301033.x.
    1. Schoenen J, Timsit-Berthier M. Contingent negative variation: methods and potential interest in headache. Cephalalgia. 1993;14:28–32. doi: 10.1046/j.1468-2982.1993.1301028.x.
    1. Kropp P, Gerber WD. Contingent negative variation during migraine attack and interval: evidence for normalization of slow cortical potentials during the attack. Cephalalgia. 1995;14:123–128. doi: 10.1046/j.1468-2982.1995.015002123.x.
    1. Kropp P, Gerber WD. Is increased amplitude of contingent negative variation in migraine due to cortical hyperactivity or to reduced habituation? Cephalalgia. 1993;14:37–41. doi: 10.1046/j.1468-2982.1993.1301037.x.
    1. Siniatchkin M, Gerber WD, Kropp P, Voznesenskaya T, Vein AM. Are the periodic changes of neurophysiological parameters during the pain-free interval in migraine related to abnormal orienting activity? Cephalalgia. 2000;14:20–29. doi: 10.1046/j.1468-2982.2000.00002.x.
    1. Siniatchkin M, Kropp P, Gerber WD. Contingent negative variation in subjects at risk for migraine without aura. Pain. 2001;14:159–167. doi: 10.1016/S0304-3959(01)00350-5.
    1. Siniatchkin M, Averkina N, Andrasik F, Stephani U, Gerber WD. Neurophysiological reactivity before a migraine attack. Neurosci Lett. 2006;14:121–124. doi: 10.1016/j.neulet.2006.02.019.
    1. Siniatchkin M, Averkina N, Gerber WD. Relationship between precipitating agents and neurophysiological abnormalities in migraine. Cephalalgia. 2006;14:457–465. doi: 10.1111/j.1468-2982.2006.01061.x.
    1. Siniatchkin M, Andrasik F, Kropp P, Niederberger U, Strenge H, Averkina N. et al.Central mechanisms of controlled-release metoprolol in migraine: a double-blind, placebo-controlled study. Cephalalgia. 2007;14:1024–1032. doi: 10.1111/j.1468-2982.2007.01377.x.
    1. Siniatchkin M, Gerber-von M, Darabaneanu S, Petermann F, Stephani U, Gerber W. et al.Behavioural treatment programme contributes to normalization of contingent negative variation in children with migraine. Cephalalgia. 2011;14:562–572. doi: 10.1177/0333102410388434.
    1. Evers S, Bauer B, Suhr B, Husstedt I, Grotemeyer K. Cognitive processing in primary headache: a study on event-related potentials. Neurology. 1997;14:108–113. doi: 10.1212/WNL.48.1.108.
    1. Evers S, Quibeldey F, Grotemeyer KH, Suhr B, Husstedt IW. Dynamic changes of cognitive habituation and serotonin metabolism during the migraine interval. Cephalalgia. 1999;14:485–491. doi: 10.1046/j.1468-2982.1999.019005485.x.
    1. Wang W, Schoenen J, Timsit-Berthier M. Cognitive functions in migraine without aura between attacks: a psychophysiological approach using the "oddball" paradigm. Neurophysiol Clin. 1995;14:3–11. doi: 10.1016/0987-7053(96)81029-X.
    1. Wang W, Schoenen J. Interictal potentiation of passive "oddball" auditory event-related potentials in migraine. Cephalalgia. 1998;14:261–265. doi: 10.1046/j.1468-2982.1998.1805261.x.
    1. Siniatchkin M, Kropp P, Gerber WD. What kind of habituation is impaired in migraine patients? Cephalalgia. 2003;14:511–518. doi: 10.1046/j.1468-2982.2003.00434.x.
    1. Schoenen J, Wang W, Albert A, Delwaide P. Potentiation instead of habituation characterizes visual evoked potentials in migraine patients between attacks. Eur J Neurol. 1995;14:115–122. doi: 10.1111/j.1468-1331.1995.tb00103.x.
    1. Afra J, Cecchini AP, De Pasqua V, Albert A, Schoenen J. Visual evoked potentials during long periods of pattern-reversal stimulation in migraine. Brain. 1998;14(Pt 2):233–241.
    1. Wang W, Wang GP, Ding XL, Wang YH. Personality and response to repeated visual stimulation in migraine and tension-type headaches. Cephalalgia. 1999;14:718–724. doi: 10.1046/j.1468-2982.1999.019008718.x.
    1. Bohotin V, Fumal A, Vandenheede M, Gérard P, Bohotin C, Maertens de Noordhout A. et al.Effects of repetitive transcranial magnetic stimulation on visual evoked potentials in migraine. Brain. 2002;14:912–922. doi: 10.1093/brain/awf081.
    1. Ozkul Y, Bozlar S. Effects of fluoxetine on habituation of pattern reversal visually evoked potentials in migraine prophylaxis. Headache. 2002;14:582–587. doi: 10.1046/j.1526-4610.2002.02144.x.
    1. Di Clemente L, Coppola G, Magis D, Fumal A, De Pasqua V, Schoenen J. et al.Nociceptive blink reflex and visual evoked potential habituations are correlated in migraine. Headache. 2005;14:1388–1393. doi: 10.1111/j.1526-4610.2005.00271.x.
    1. Fumal A, Coppola G, Bohotin V, Gérardy PY, Seidel L, Donneau AF. et al.Induction of long-lasting changes of visual cortex excitability by five daily sessions of repetitive transcranial magnetic stimulation (rTMS) in healthy volunteers and migraine patients. Cephalalgia. 2006;14:143–149. doi: 10.1111/j.1468-2982.2005.01013.x.
    1. Coppola G, Ambrosini A, Di Clemente L, Magis D, Fumal A, Gérard P. et al.Interictal abnormalities of gamma band activity in visual evoked responses in migraine: an indication of thalamocortical dysrhythmia? Cephalalgia. 2007;14:1360–1367. doi: 10.1111/j.1468-2982.2007.01466.x.
    1. Coppola G, Currà A, Serrao M, Di Lorenzo C, Gorini M, Porretta E. et al.Lack of cold pressor test-induced effect on visual-evoked potentials in migraine. J Headache Pain. 2010;14:115–121. doi: 10.1007/s10194-009-0177-4.
    1. Coppola G, Currà A, Sava SL, Alibardi A, Parisi V, Pierelli F. et al.Changes in visual-evoked potential habituation induced by hyperventilation in migraine. J Headache Pain. 2010;14:497–503. doi: 10.1007/s10194-010-0239-7.
    1. Coppola G, Crémers J, Gérard P, Pierelli F, Schoenen J. Effects of light deprivation on visual evoked potentials in migraine without aura. BMC Neurol. 2011;14:91. doi: 10.1186/1471-2377-11-91.
    1. Chen WT, Wang SJ, Fuh JL, Lin CP, Ko YC, Lin YY. et al.Peri-ictal normalization of visual cortex excitability in migraine: an MEG study. Cephalalgia. 2009;14:1202–1211. doi: 10.1111/j.1468-2982.2009.01857.x.
    1. Chen WT, Lin YY, Fuh JL, Hämäläinen MS, Ko YC, Wang SJ. et al.Sustained visual cortex hyperexcitability in migraine with persistent visual aura. Brain. 2011;14:2387–2395. doi: 10.1093/brain/awr157.
    1. Chen W, Wang S, Fuh J, Lin C, Ko Y, Lin Y. et al.Persistent ictal-like visual cortical excitability in chronic migraine. Pain. 2011;14:254–258. doi: 10.1016/j.pain.2010.08.047.
    1. Ozkul Y, Uckardes A. Median nerve somatosensory evoked potentials in migraine. Eur J Neurol. 2002;14:227–232. doi: 10.1046/j.1468-1331.2002.00387.x.
    1. Coppola G, Currà A, Di Lorenzo C, Parisi V, Gorini M, Sava SL. et al.Abnormal cortical responses to somatosensory stimulation in medication-overuse headache. BMC Neurol. 2010;14:126.
    1. Coppola G, De P, Pierelli F, Schoenen J. Effects of repetitive transcranial magnetic stimulation on somatosensory evoked potentials and high frequency oscillations in migraine. Cephalalgia. 2012;14:700–709. doi: 10.1177/0333102412446313.
    1. Wang W, Timsit-Berthier M, Schoenen J. Intensity dependence of auditory evoked potentials is pronounced in migraine: an indication of cortical potentiation and low serotonergic neurotransmission? Neurology. 1996;14:1404–1409. doi: 10.1212/WNL.46.5.1404.
    1. Ambrosini A, Rossi P, De Pasqua V, Pierelli F, Schoenen J. Lack of habituation causes high intensity dependence of auditory evoked cortical potentials in migraine. Brain. 2003;14:2009–2015. doi: 10.1093/brain/awg206.
    1. Sand T, Zhitniy N, White LR, Stovner LJ. Brainstem auditory-evoked potential habituation and intensity-dependence related to serotonin metabolism in migraine: a longitudinal study. Clin Neurophysiol. 2008;14:1190–1200. doi: 10.1016/j.clinph.2008.01.007.
    1. Brodsky J, Mejico L, Giraud A, Woods C. Impairment of habituation of the auditory brain stem response in migrainous vertigo. Ann Otol Rhinol Laryngol. 2013;14:308–315.
    1. Katsarava Z, Giffin N, Diener HC, Kaube H. Abnormal habituation of 'nociceptive' blink reflex in migraine–evidence for increased excitability of trigeminal nociception. Cephalalgia. 2003;14:814–819. doi: 10.1046/j.1468-2982.2003.00591.x.
    1. De Marinis M, Pujia A, Natale L, D'arcangelo E, Accornero N. Decreased habituation of the R2 component of the blink reflex in migraine patients. Clin Neurophysiol. 2003;14:889–893. doi: 10.1016/S1388-2457(03)00010-5.
    1. Di Clemente L, Coppola G, Magis D, Fumal A, De Pasqua V, Di Piero V. et al.Interictal habituation deficit of the nociceptive blink reflex: an endophenotypic marker for presymptomatic migraine? Brain. 2007;14:765–770. doi: 10.1093/brain/awl351.
    1. Allena M, Magis D, De Pasqua V, Schoenen J, Bisdorff AR. The vestibulo-collic reflex is abnormal in migraine. Cephalalgia. 2007;14:1150–1155. doi: 10.1111/j.1468-2982.2007.01414.x.
    1. Roceanu A, Allena M, De Pasqua V, Bisdorff A, Schoenen J. Abnormalities of the vestibulo-collic reflex are similar in migraineurs with and without vertigo. Cephalalgia. 2008;14:988–990. doi: 10.1111/j.1468-2982.2008.01641.x.
    1. de Tommaso M, Libro G, Guido M, Losito L, Lamberti P, Livrea P. et al.Habituation of single CO2 laser-evoked responses during interictal phase of migraine. J Headache Pain. 2005;14:195–198.
    1. Valeriani M, de Tommaso M, Restuccia D, Le Pera D, Guido M, Iannetti GD. et al.Reduced habituation to experimental pain in migraine patients: a CO(2) laser evoked potential study. Pain. 2003;14:57–64. doi: 10.1016/S0304-3959(03)00137-4.
    1. de Tommaso M, Lo Sito L, Di Fruscolo O, Sardaro M, Pia Prudenzano M, Lamberti P. et al.Lack of habituation of nociceptive evoked responses and pain sensitivity during migraine attack. Clin Neurophysiol. 2005;14:1254–1264. doi: 10.1016/j.clinph.2005.02.018.
    1. de Tommaso M, Valeriani M, Sardaro M, Serpino C, Fruscolo OD, Vecchio E. et al.Pain perception and laser evoked potentials during menstrual cycle in migraine. J Headache Pain. 2009;14:423–429. doi: 10.1007/s10194-009-0150-2.
    1. Di Clemente L, Puledda F, Biasiotta A, Viganò A, Vicenzini E, Truini A. et al.Topiramate modulates habituation in migraine: evidences from nociceptive responses elicited by laser evoked potentials. J Headache Pain. 2013;14:25. doi: 10.1186/1129-2377-14-25.
    1. Lev R, Granovsky Y, Yarnitsky D. Orbitofrontal disinhibition of pain in migraine with aura: an interictal EEG-mapping study. Cephalalgia. 2010;14:910–918.
    1. Lev R, Granovsky Y, Yarnitsky D. Enhanced Pain Expectation in Migraine: EEG-Based Evidence for Impaired Prefrontal Function. Headache. 2013;14:1054–1070. doi: 10.1111/j.1526-4610.2012.02297.x.
    1. Qu C, Huo F, Huang F, Li Y, Tang J, Jia H. et al.The role of 5-HT receptor subtypes in the ventrolateral orbital cortex of 5-HT-induced antinociception in the rat. Neuroscience. 2008;14:487–494. doi: 10.1016/j.neuroscience.2007.09.036.
    1. Ferrari MD, Saxena PR. On serotonin and migraine: a clinical and pharmacological review. Cephalalgia. 1993;14:151–165. doi: 10.1046/j.1468-2982.1993.1303151.x.
    1. Panconesi A. Serotonin and migraine: a reconsideration of the central theory. J Headache Pain. 2008;14:267–276. doi: 10.1007/s10194-008-0058-2.
    1. Sakai Y, Dobson C, Diksic M, Aubé M, Hamel E. Sumatriptan normalizes the migraine attack-related increase in brain serotonin synthesis. Neurology. 2008;14:431–439. doi: 10.1212/01.wnl.0000299095.65331.6f.
    1. Sándor PS, Afra J, Proietti-Cecchini A, Albert A, Schoenen J. Familial influences on cortical evoked potentials in migraine. Neuroreport. 1999;14:1235–1238. doi: 10.1097/00001756-199904260-00015.
    1. Sand T, Vingen JV. Visual, long-latency auditory and brainstem auditory evoked potentials in migraine: relation to pattern size, stimulus intensity, sound and light discomfort thresholds and pre-attack state. Cephalalgia. 2000;14:804–820. doi: 10.1046/j.1468-2982.2000.00098.x.
    1. Judit A, Sándor PS, Schoenen J. Habituation of visual and intensity dependence of auditory evoked cortical potentials tends to normalize just before and during the migraine attack. Cephalalgia. 2000;14:714–719.
    1. Kropp P, Gerber WD. Prediction of migraine attacks using a slow cortical potential, the contingent negative variation. Neurosci Lett. 1998;14:73–76. doi: 10.1016/S0304-3940(98)00811-8.
    1. Siniatchkin M, Kropp P, Gerber WD, Stephani U. Migraine in childhood–are periodically occurring migraine attacks related to dynamic changes of cortical information processing? Neurosci Lett. 2000;14:1–4. doi: 10.1016/S0304-3940(99)00924-6.
    1. Oelkers R, Grosser K, Lang E, Geisslinger G, Kobal G, Brune K. et al.Visual evoked potentials in migraine patients: alterations depend on pattern spatial frequency. Brain. 1999;14(Pt 6):1147–1155.
    1. Lang E, Kaltenhäuser M, Neundörfer B, Seidler S. Hyperexcitability of the primary somatosensory cortex in migraine–a magnetoencephalographic study. Brain. 2004;14:2459–2469. doi: 10.1093/brain/awh295.
    1. Oelkers-Ax R, Parzer P, Resch F, Weisbrod M. Maturation of early visual processing investigated by a pattern-reversal habituation paradigm is altered in migraine. Cephalalgia. 2005;14:280–289. doi: 10.1111/j.1468-2982.2004.00853.x.
    1. Sand T, Zhitniy N, White LR, Stovner LJ. Visual evoked potential latency, amplitude and habituation in migraine: a longitudinal study. Clin Neurophysiol. 2008;14:1020–1027. doi: 10.1016/j.clinph.2008.01.009.
    1. Sand T, White L, Hagen K, Stovner L. Visual evoked potential and spatial frequency in migraine: a longitudinal study. Acta Neurol Scand Suppl. 2009;14:33–37.
    1. Demarquay G, Caclin A, Brudon F, Fischer C, Morlet D. Exacerbated attention orienting to auditory stimulation in migraine patients. Clin Neurophysiol. 2011;14:1755–1763. doi: 10.1016/j.clinph.2011.02.013.
    1. Omland P, Nilsen K, Uglem M, Gravdahl G, Linde M, Hagen K. et al.Visual Evoked Potentials in Interictal Migraine: No Confirmation of Abnormal Habituation. Headache. 2013;14:1071–1086. doi: 10.1111/head.12006.
    1. Coppola G, Parisi V, Di Lorenzo C, Serrao M, Magis D, Schoenen J. et al.Lateral inhibition in visual cortex of migraine patients between attacks. J Headache Pain. 2013;14:20. doi: 10.1186/1129-2377-14-20.
    1. Lorenzo C, Coppola G, Currà A, Grieco G, Santorelli F, Lepre C. et al.Cortical response to somatosensory stimulation in medication overuse headache patients is influenced by angiotensin converting enzyme (ACE) I/D genetic polymorphism. Cephalalgia. 2012;14:1189–1197. doi: 10.1177/0333102412461890.
    1. Restuccia D, Vollono C, Del P, Martucci L, Zanini S. Somatosensory High Frequency Oscillations reflect clinical fluctuations in migraine. Clin Neurophysiol. 2012;14:2050–2056. doi: 10.1016/j.clinph.2012.03.009.
    1. Restuccia D, Vollono C, Del P, Martucci L, Zanini S. Different levels of cortical excitability reflect clinical fluctuations in migraine. Cephalalgia. 2013.
    1. Noseda R, Kainz V, Jakubowski M, Gooley J, Saper C, Digre K. et al.A neural mechanism for exacerbation of headache by light. Nat Neurosci. 2010;14:239–245. doi: 10.1038/nn.2475.
    1. Coppola G, Pierelli F, Schoenen J. Is the cerebral cortex hyperexcitable or hyperresponsive in migraine? Cephalalgia. 2007;14:1427–1439. doi: 10.1111/j.1468-2982.2007.01500.x.
    1. Aurora SK, Wilkinson F. The brain is hyperexcitable in migraine. Cephalalgia. 2007;14:1442–1453. doi: 10.1111/j.1468-2982.2007.01502.x.
    1. Brighina F, Palermo A, Fierro B. Cortical inhibition and habituation to evoked potentials: relevance for pathophysiology of migraine. J Headache Pain. 2009;14:77–84. doi: 10.1007/s10194-008-0095-x.
    1. Viganò A, D'Elia T, Sava S, Auvé M, De P, Colosimo A. et al.Transcranial Direct Current Stimulation (tDCS) of the visual cortex: a proof-of-concept study based on interictal electrophysiological abnormalities in migraine. J Headache Pain. 2013;14:23. doi: 10.1186/1129-2377-14-23.
    1. Coppola G, Vandenheede M, Di Clemente L, Ambrosini A, Fumal A, De Pasqua V. et al.Somatosensory evoked high-frequency oscillations reflecting thalamo-cortical activity are decreased in migraine patients between attacks. Brain. 2005;14:98–103.
    1. Sakuma K, Takeshima T, Ishizaki K, Nakashima K. Somatosensory evoked high-frequency oscillations in migraine patients. Clin Neurophysiol. 2004;14:1857–1862. doi: 10.1016/j.clinph.2004.03.011.
    1. Ratliff F, Zemon V. Some new methods for the analysis of lateral interactions that influence the visual evoked potential. Ann N Y Acad Sci. 1982;14:113–124. doi: 10.1111/j.1749-6632.1982.tb50787.x.
    1. Zemon V, Ratliff F. Visual evoked potentials: evidence for lateral interactions. Proc Natl Acad Sci U S A. 1982;14:5723–5726. doi: 10.1073/pnas.79.18.5723.
    1. Grose-Fifer J, Zemon V, Gordon J. Temporal tuning and the development of lateral interactions in the human visual system. Invest Ophthalmol Vis Sci. 1994;14:2999–3010.
    1. Baranyi A, Fehér O. Synaptic facilitation requires paired activation of convergent pathways in the neocortex. Nature. 1981;14:413–415. doi: 10.1038/290413a0.
    1. Baranyi A, Szente MB. Long-lasting potentiation of synaptic transmission requires postsynaptic modifications in the neocortex. Brain Res. 1987;14:378–384. doi: 10.1016/0006-8993(87)90867-5.
    1. Baranyi A, Szente MB, Woody CD. Properties of associative long-lasting potentiation induced by cellular conditioning in the motor cortex of conscious cats. Neuroscience. 1991;14:321–334. doi: 10.1016/0306-4522(91)90378-2.
    1. Pierelli F, Iacovelli E, Bracaglia M, Serrao M, Coppola G. Abnormal sensorimotor plasticity in migraine without aura patients. Pain. 2013.
    1. Kaube H, Katsarava Z, Przywara S, Drepper J, Ellrich J, Diener HC. et al.Acute migraine headache: possible sensitization of neurons in the spinal trigeminal nucleus? Neurology. 2002;14:1234–1238. doi: 10.1212/WNL.58.8.1234.
    1. de Tommaso M, Guido M, Libro G, Losito L, Sciruicchio V, Monetti C. et al.Abnormal brain processing of cutaneous pain in migraine patients during the attack. Neurosci Lett. 2002;14:29–32. doi: 10.1016/S0304-3940(02)00967-9.
    1. de Tommaso M, Guido M, Libro G, Losito L, Difruscolo O, Puca F. et al.Topographic and dipolar analysis of laser-evoked potentials during migraine attack. Headache. 2004;14:947–960. doi: 10.1111/j.1526-4610.2004.04188.x.
    1. de Tommaso M, Losito L, Libro G, Guido M, Di Fruscolo O, Sardaro M. et al.Effects of symptomatic treatments on cutaneous hyperalgesia and laser evoked potentials during migraine attack. Cephalalgia. 2005;14:359–368. doi: 10.1111/j.1468-2982.2004.00866.x.
    1. Sand T, Zhitniy N, Nilsen K, Helde G, Hagen K, Stovner L. et al.Thermal pain thresholds are decreased in the migraine preattack phase. Eur J Neurol. 2008;14:1199–1205. doi: 10.1111/j.1468-1331.2008.02276.x.
    1. Schwedt T, Krauss M, Frey K, Gereau R. Episodic and chronic migraineurs are hypersensitive to thermal stimuli between migraine attacks. Cephalalgia. 2011;14:6–12. doi: 10.1177/0333102410365108.
    1. Engstrøm M, Hagen K, Bjørk M, Stovner L, Gravdahl G, Stjern M. et al.Sleep quality, arousal and pain thresholds in migraineurs: a blinded controlled polysomnographic study. J Headache Pain. 2013;14:12. doi: 10.1186/1129-2377-14-12.
    1. Bishop K, Holm J, Borowiak D, Wilson B. Perceptions of pain in women with headache: a laboratory investigation of the influence of pain-related anxiety and fear. Headache. 2001;14:494–499. doi: 10.1046/j.1526-4610.2001.01087.x.
    1. Weissman-Fogel I, Sprecher E, Granovsky Y, Yarnitsky D. Repeated noxious stimulation of the skin enhances cutaneous pain perception of migraine patients in-between attacks: clinical evidence for continuous sub-threshold increase in membrane excitability of central trigeminovascular neurons. Pain. 2003;14:693–700. doi: 10.1016/S0304-3959(03)00159-3.
    1. Sandrini G, Rossi P, Milanov I, Serrao M, Cecchini AP, Nappi G. et al.Abnormal modulatory influence of diffuse noxious inhibitory controls in migraine and chronic tension-type headache patients. Cephalalgia. 2006;14:782–789. doi: 10.1111/j.1468-2982.2006.01130.x.
    1. de Tommaso M, Valeriani M, Guido M, Libro G, Specchio LM, Tonali P. et al.Abnormal brain processing of cutaneous pain in patients with chronic migraine. Pain. 2003;14:25–32. doi: 10.1016/S0304-3959(02)00299-3.
    1. de Tommaso M, Losito L, Difruscolo O, Libro G, Guido M, Livrea P. et al.Changes in cortical processing of pain in chronic migraine. Headache. 2005;14:1208–1218. doi: 10.1111/j.1526-4610.2005.00244.x.
    1. Ferraro D, Vollono C, Miliucci R, Virdis D, De A, Pazzaglia C. et al.Habituation to pain in "medication overuse headache": a CO2 laser-evoked potential study. Headache. 2012;14:792–807. doi: 10.1111/j.1526-4610.2012.02151.x.
    1. Ayzenberg I, Obermann M, Nyhuis P, Gastpar M, Limmroth V, Diener HC. et al.Central sensitization of the trigeminal and somatic nociceptive systems in medication overuse headache mainly involves cerebral supraspinal structures. Cephalalgia. 2006;14:1106–1114. doi: 10.1111/j.1468-2982.2006.01183.x.
    1. Perrotta A, Serrao M, Sandrini G, Burstein R, Sances G, Rossi P. et al.Sensitisation of spinal cord pain processing in medication overuse headache involves supraspinal pain control. Cephalalgia. 2010;14:272–284.
    1. Perrotta A, Arce-Leal N, Tassorelli C, Gasperi V, Sances G, Blandini F. et al.Acute reduction of anandamide-hydrolase (FAAH) activity is coupled with a reduction of nociceptive pathways facilitation in medication-overuse headache subjects after withdrawal treatment. Headache. 2012;14:1350–1361. doi: 10.1111/j.1526-4610.2012.02170.x.
    1. Demirci S, Savas S. The auditory event related potentials in episodic and chronic pain sufferers. Eur J Pain. 2002;14:239–244. doi: 10.1053/eujp.2001.0342.
    1. Valeriani M, Galli F, Tarantino S, Graceffa D, Pignata E, Miliucci R. et al.Correlation between abnormal brain excitability and emotional symptomatology in paediatric migraine. Cephalalgia. 2009;14:204–213. doi: 10.1111/j.1468-2982.2008.01708.x.
    1. Ozkul Y, Ay H. Habituation of sympathetic skin response in migraine and tension type headache. Auton Neurosci. 2007;14:81–84. doi: 10.1016/j.autneu.2007.02.006.
    1. Sand T, Zwart J. The blink reflex in chronic tension-type headache, migraine, and cervicogenic headache. Cephalalgia. 1994;14:447–450. doi: 10.1046/j.1468-2982.1994.1406447.x.
    1. Avramidis T, Podikoglou D, Anastasopoulos I, Koutroumanidis M, Papadimitriou A. Blink reflex in migraine and tension-type headache. Headache. 1998;14:691–696. doi: 10.1046/j.1526-4610.1998.3809691.x.
    1. Aktekin B, Yaltkaya K, Ozkaynak S, Oguz Y. Recovery cycle of the blink reflex and exteroceptive suppression of temporalis muscle activity in migraine and tension-type headache. Headache. 2001;14:142–149. doi: 10.1046/j.1526-4610.2001.111006142.x.
    1. Sand T, Møll-Nilsen B, Zwart J. Blink reflex R2 amplitudes in cervicogenic headache, chronic tension-type headache and migraine. Cephalalgia. 2006;14:1186–1191. doi: 10.1111/j.1468-2982.2006.01189.x.
    1. Nardone R, Tezzon F. Short latency trigemino-sternocleidomastoid response in patients with migraine. J Neurol. 2003;14:725–732. doi: 10.1007/s00415-003-1073-5.
    1. Nardone R, Tezzon F. The trigemino-cervical reflex in tension-type headache. Eur J Neurol. 2003;14:307–312. doi: 10.1046/j.1468-1331.2003.00531.x.
    1. Milanov I, Bogdanova D. Trigemino-cervical reflex in patients with headache. Cephalalgia. 2003;14:35–38. doi: 10.1046/j.1468-2982.2003.00454.x.
    1. Peddireddy A, Wang K, Svensson P, Arendt-Nielsen L. Blink reflexes in chronic tension-type headache patients and healthy controls. Clin Neurophysiol. 2009;14:1711–1716. doi: 10.1016/j.clinph.2009.06.024.
    1. Pielsticker A, Haag G, Zaudig M, Lautenbacher S. Impairment of pain inhibition in chronic tension-type headache. Pain. 2005;14:215–223. doi: 10.1016/j.pain.2005.08.019.
    1. Göbel H, Weigle L, Kropp P, Soyka D. Pain sensitivity and pain reactivity of pericranial muscles in migraine and tension-type headache. Cephalalgia. 1992;14:142–151. doi: 10.1046/j.1468-2982.1992.1203142.x.
    1. Jensen R, Rasmussen B, Pedersen B, Olesen J. Muscle tenderness and pressure pain thresholds in headache. A population study. Pain. 1993;14:193–199. doi: 10.1016/0304-3959(93)90131-8.
    1. Bendtsen L, Jensen R, Olesen J. Decreased pain detection and tolerance thresholds in chronic tension-type headache. Arch Neurol. 1996;14:373–376. doi: 10.1001/archneur.1996.00550040113021.
    1. Ashina S, Babenko L, Jensen R, Ashina M, Magerl W, Bendtsen L. et al.Increased muscular and cutaneous pain sensitivity in cephalic region in patients with chronic tension-type headache. Eur J Neurol. 2005;14:543–549. doi: 10.1111/j.1468-1331.2005.01023.x.
    1. Bovim G. Cervicogenic headache, migraine, and tension-type headache. Pressure-pain threshold measurements. Pain. 1992;14:169–173. doi: 10.1016/0304-3959(92)90258-D.
    1. Metsahonkala L, Anttila P, Laimi K, Aromaa M, Helenius H, Mikkelsson M. et al.Extracephalic tenderness and pressure pain threshold in children with headache. Eur J Pain. 2006;14:581–585. doi: 10.1016/j.ejpain.2005.08.005.
    1. Fernández-de-las-Peñas C, Madeleine P, Caminero A, Cuadrado M, Arendt-Nielsen L, Pareja J. et al.Generalized neck-shoulder hyperalgesia in chronic tension-type headache and unilateral migraine assessed by pressure pain sensitivity topographical maps of the trapezius muscle. Cephalalgia. 2010;14:77–86.
    1. Cathcart S, Winefield A, Lushington K, Rolan P. Noxious inhibition of temporal summation is impaired in chronic tension-type headache. Headache. 2010;14:403–412. doi: 10.1111/j.1526-4610.2009.01545.x.
    1. Ashina S, Bendtsen L, Ashina M, Magerl W, Jensen R. Generalized hyperalgesia in patients with chronic tension-type headache. Cephalalgia. 2006;14:940–948. doi: 10.1111/j.1468-2982.2006.01150.x.
    1. de Tommaso M, Libro G, Guido M, Sciruicchio V, Losito L, Puca F. et al.Heat pain thresholds and cerebral event-related potentials following painful CO2 laser stimulation in chronic tension-type headache. Pain. 2003;14:111–119. doi: 10.1016/S0304-3959(02)00485-2.
    1. Iacovelli E, Coppola G, Tinelli E, Pierelli F, Bianco F. Neuroimaging in cluster headache and other trigeminal autonomic cephalalgias. J Headache Pain. 2012;14:11–20. doi: 10.1007/s10194-011-0403-8.
    1. Evers S, Bauer B, Suhr B, Voss H, Frese A, Husstedt I. et al.Cognitive processing is involved in cluster headache but not in chronic paroxysmal hemicrania. Neurology. 1999;14:357–363. doi: 10.1212/WNL.53.2.357.
    1. Formisano R, Cerbo R, Ricci M, Agostino R, Cesarino F, Cruccu G. et al.Blink reflex in cluster headache. Cephalalgia. 1987;14:353–354.
    1. Perrotta A, Serrao M, Sandrini G, Bogdanova D, Tassorelli C, Bartolo M. et al.Reduced habituation of trigeminal reflexes in patients with episodic cluster headache during cluster period. Cephalalgia. 2008;14:950–959. doi: 10.1111/j.1468-2982.2008.01631.x.
    1. Coppola G, Di Lorenzo C, Bracaglia M, Porretta E, Pierelli F. Nociceptive blink reflex habituation in episodic cluster headache patients during cluster period. Cephalalgia. 2011;14:ScS2–ScS1.
    1. Holle D, Zillessen S, Gaul C, Naegel S, Kaube H, Diener H. et al.Habituation of the nociceptive blink reflex in episodic and chronic cluster headache. Cephalalgia. 2012;14:998–1004. doi: 10.1177/0333102412453955.
    1. Pavesi G, Granella F, Brambilla S, Medici D, Mancia D, Manzoni G. et al.Blink reflex in cluster headache:evidence of a trigeminal system disfunction. Cephalalgia. 1987;14:100–102.
    1. Raudino F. The blink reflex in cluster headache. Headache. 1990;14:584–585. doi: 10.1111/j.1526-4610.1990.3009584.x.
    1. Lozza A, Schoenen J, Delwaide PJ. Inhibition of the blink reflex R2 component after supraorbital and index finger stimulations is reduced in cluster headache: an indication for both segmental and suprasegmental dysfunction? Pain. 1997;14:81–88. doi: 10.1016/S0304-3959(97)03342-3.
    1. Sprenger T, Willoch F, Miederer M, Schindler F, Valet M, Berthele A. et al.Opioidergic changes in the pineal gland and hypothalamus in cluster headache: a ligand PET study. Neurology. 2006;14:1108–1110. doi: 10.1212/01.wnl.0000204225.15947.f8.
    1. Magis D, Bruno M, Fumal A, Gérardy P, Hustinx R, Laureys S. et al.Central modulation in cluster headache patients treated with occipital nerve stimulation: an FDG-PET study. BMC Neurol. 2011;14:25. doi: 10.1186/1471-2377-11-25.
    1. Sandrini G, Alfonsi E, Ruiz L, Pavesi G, Micieli G, Manzoni G. et al.Impairment of corneal pain perception in cluster headache. Pain. 1991;14:299–304. doi: 10.1016/0304-3959(91)90219-N.
    1. Bono G, Antonaci F, Sandrini G, Pucci E, Rossi F, Nappi G. et al.Pain pressure threshold in cluster headache patients. Cephalalgia. 1996;14:62–66. doi: 10.1046/j.1468-2982.1996.1601052.x.
    1. Sandrini G, Antonaci F, Lanfranchi S, Milanov I, Danilov A, Nappi G. et al.Asymmetrical reduction of the nociceptive flexion reflex threshold in cluster headache. Cephalalgia. 2000;14:647–652.
    1. Nappi G, Sandrini G, Alfonsi E, Cecchini A, Micieli G, Moglia A. et al.Impaired circadian rhythmicity of nociceptive reflex threshold in cluster headache. Headache. 2002;14:125–131. doi: 10.1046/j.1526-4610.2002.02028.x.
    1. Perrotta A, Serrao M, Ambrosini A, Bolla M, Coppola G, Sandrini G. et al.Facilitated temporal processing of pain and defective supraspinal control of pain in cluster headache. Pain. 2013;14:1325–1332. doi: 10.1016/j.pain.2013.04.012.
    1. Procacci P, Zoppi M, Maresca M, Zamponi A, Fanciullacci M, Sicuteri F. et al.Lateralisation of pain in cluster headache. Pain. 1989;14:275–278. doi: 10.1016/0304-3959(89)90213-3.
    1. Ladda J, Straube A, Förderreuther S, Krause P, Eggert T. Quantitative sensory testing in cluster headache: increased sensory thresholds. Cephalalgia. 2006;14:1043–1050. doi: 10.1111/j.1468-2982.2006.01134.x.
    1. Ellrich J, Ristic D, Yekta S. Impaired thermal perception in cluster headache. J Neurol. 2006;14:1292–1299. doi: 10.1007/s00415-006-0208-x.
    1. Antonaci F, Sandrini G, Danilov A, Sand T. Neurophysiological studies in chronic paroxysmal hemicrania and hemicrania continua. Headache. 1994;14:479–483. doi: 10.1111/j.1526-4610.1994.hed3408479.x.
    1. Palmieri A. Chronic cluster headache responsive to pramipexole. Cephalalgia. 2006;14:761–762. doi: 10.1111/j.1468-2982.2006.01103.x.
    1. Di Lorenzo C, Coppola G, Pierelli F. A case of cluster headache treated with rotigotine: Clinical and neurophysiological correlates. Cephalalgia. 2013.
    1. Malick A, Strassman R, Burstein R. Trigeminohypothalamic and reticulohypothalamic tract neurons in the upper cervical spinal cord and caudal medulla of the rat. J Neurophysiol. 2000;14:2078–2112.
    1. Schoenen J, Jensen R, Lantéri-Minet M, Láinez M, Gaul C, Goodman A. et al.Stimulation of the sphenopalatine ganglion (SPG) for cluster headache treatment. Pathway CH-1: A randomized, sham-controlled study. Cephalalgia. 2013;14:816–830. doi: 10.1177/0333102412473667.
    1. Schoenen J, Vandersmissen B, Jeangette S, Herroelen L, Vandenheede M, Gérard P. et al.Migraine prevention with a supraorbital transcutaneous stimulator: a randomized controlled trial. Neurology. 2013;14:697–704. doi: 10.1212/WNL.0b013e3182825055.

Source: PubMed

3
Se inscrever