Erythropoietin enhances osteogenic differentiation of human periodontal ligament stem cells via Wnt/β-catenin signaling pathway

De-Hua Zheng, Xu-Xia Wang, Dan Ma, Li-Na Zhang, Qing-Fang Qiao, Jun Zhang, De-Hua Zheng, Xu-Xia Wang, Dan Ma, Li-Na Zhang, Qing-Fang Qiao, Jun Zhang

Abstract

Objectives: The aim of this study is to examine the roles of erythropoietin (EPO) in regulating proliferation and osteogenic differentiation of periodontal ligament stem cells (PDLSCs) and analyze the underlying signaling of these processes.

Materials and methods: PDLSCs were isolated and characterized. The PDLSCs were transfected with β-catenin shRNA. qRT-PCR and Western blot analysis were used to examine the osteogenic effects of EPO on the expression of osteogenic-related genes and protein (Runx2, OCN and Osterix) in PDLSCs. Alizarin Red-S staining was used to detect mineralized nodule formation. In addition, the relationship between the Wnt/β-catenin pathway and the effect of EPO on the osteogenesis of PDLSCs was investigated.

Results: The results suggested that EPO exerts positive osteogenic effects on PDLSCs. The results showed that EPO decreased the growth of PDLSCs slightly and increased alkaline phosphatase activity and calcium deposition in a dose-dependent manner. The expression of Runx2, Osterix and OCN was increased after EPO administration. EPO increases β-catenin and Cyclin D1 in PDLSCs. After transfected with β-catenin shRNA, the osteogenic effect of EPO on PDLSCs was attenuated.

Conclusion: EPO promotes osteogenic differentiation of PDLSCs. The underlying mechanism may be activating Wnt/β-catenin signaling pathway.

Keywords: Wnt/β-catenin; erythropoietin; osteogenesis; periodontal ligament stem cell.

Conflict of interest statement

The authors report no conflicts of interest in this work.

Figures

Figure 1
Figure 1
Characterization of Peridontal ligament stem cells (PDLSCs) by flow cytometric analysis. Flow cytometric analysis of PDLSCs reve aled expression of CD34 (A, B), CD90 (C, D) and CD105 (E, F).
Figure 2
Figure 2
Morphological observation of Peridontal ligament stem cells (PDLSCs) and multilineage differentiation assay. (A) PDLSCs exhibited thin and long fibroblastic spindle morphology. (B) PDLSCs were under adipogenic differentiation induction and stained with Oil Red O. (C) PDLSCs were under osteogenic differentiation induction and stained with Alizarin Red. Scale bars: 200 μm.
Figure 3
Figure 3
Effect of Erythropoietin (EPO) on the proliferation of Periodontal ligament stem cells (PDLSCs). Note:*P<0.05.
Figure 4
Figure 4
The ALP activity of Peridontal ligament stem cells (PDLSCs) under different concentration of Erythropoietin (EPO) treatment. (*P<0.05, compared with 0 U/mL EPO group. #P<0.05, compared with 50 U/mL EPO group).
Figure 5
Figure 5
Effect of Erythropoietin (EPO) on osteogenic genes expression of Periodontal ligament stem cells (PDLSCs) under different conditions. (A) The mRNA expression of Osterix after 7 and 14 day(s). (B) The mRNA expression of Runx2 after 7 and 14 days. (C). The mRNA expression of OCN after 7 and 14 day(s). (*P<0.05, compared with control group. #P<0.05, compared with EPO+β-catenin shRNA+group).
Figure 6
Figure 6
Effect of Erythropoietin (EPO) on protein expression of Osterix, Runx2 and OCN in Periodontal ligament stem cells (PDLSCs) under different treatment (Osteogenic induction group, EPO group, EPO+NCshRNA group and EPO+β-catenin shRNA group).
Figure 7
Figure 7
(A) ARS staining of mineralized nodule formation. (B) Amount of calcium deposition on day 21, quantified by absorbance at 562nm. Periodontal ligament stem cells (PDLSCs) were treated with osteogenic induction (OI), Erythropoiethin (EPO)+OI, EPO+OI+NCshRNA and EPO+OI+β-catenin shRNA. Scale bars: 200 µm.
Figure 8
Figure 8
Effect of EPO on Wnt/β-catenin pathway. (A) ARS staining of mineralized nodule formation. Scale bars: 200 µm. (B) Amount of calcium deposition on day 21, quantified by absorbance at 562 nm. Note: *P<0.05. Abbreviation: OI, osteogenic induction group.
Figure 9
Figure 9
EPO can upregulate the expression of β-catenin and CyclinD1 in the process of osteogenesis in a concentration-dependent manner.
Figure 10
Figure 10
The protein level of β-catenin and CyclinD1 was assessed by Western blot analysis. (Osteogenic induction group, EPO group, EPO+NCshRNA group and EPO+β-catenin shRNA group).
Figure 11
Figure 11
β-catenin was detected by immunostaining. Nuclei were stained with DAPI (blue staining). (Osteogenic induction group, EPO group, EPO+NCshRNA group and EPO+β-catenin shRNA group). Scale bars: 200 µm.

References

    1. Chen FM, Sun HH, Lu H, Yu Q. Stem cell-delivery therapeutics for periodontal tissue regeneration. Biomaterials. 2012;33:6320–6644. doi:10.1016/j.biomaterials.2012.05.048
    1. Park JY, Jeon SH, Choung PH. Efficacy of periodontal stem cell transplantation in the treatment of advanced periodontitis. Cell Transplant. 2011;20:271–285. doi:10.3727/096368910X519292
    1. Schulze U, Turner R, Wang Y, et al. Relationship of bone metabolism biomarkers and periodontal disease: the osteoporotic fractures in men (MrOS) study. J Clin Endocrinol Metab. 2015;100(6):2425–2433. doi:10.1210/jc.2014-4180
    1. Darveau RP. Periodontitis: a polymicrobial disruption of host homeostasis. Nature Rev Microbiol. 2010;8(7):481. doi:10.1038/nrmicro2337
    1. Nanci A, Bosshardt DD. Structure of periodontal tissues in health and disease. Periodontol. 2006;40:11–28. doi:10.1111/j.1600-0757.2005.00141.x
    1. Chen FM, Zhang J, Zhang M, An Y, Chen F, Wu ZF. A review on endogenous regenerative technology in periodontal regenerative medicine. Biomaterials. 2010;31:7892–7927. doi:10.1016/j.biomaterials.2010.07.019
    1. Venezia E, Goldstein M, Boyan BD, et al. The use of enamel matrix derivative in the treatment of periodontal defects: a literature review and meta-analysis. Crit Rev Oral Biol Med Off Publ Am Assoc Oral Biologists. 2004;15(6):382–402. doi:10.1177/154411130401500605
    1. Kaigler D, Cirelli JA, Giannobile WV. Growth factor delivery for oral and periodontal tissue engineering. Expert Opin Drug Deliv. 2006;3(5):647–662. doi:10.1517/17425247.3.5.647
    1. Washio K, Iwata T, Mizutani M, et al. Assessment of cell sheets derived from human periodontal ligament cells: a pre-clinical study. Cell Tissue Res. 2010;341(3):397–404. doi:10.1007/s00441-010-1009-1
    1. Kato T, Hattori K, Deguchi T, et al. Osteogenic potential of rat stromal cells derived from periodontal ligament. J Tissue Eng Regener Med. 2011;5(10):798–805. doi:10.1002/term.379
    1. Gault P, Black A, Romette JL, et al. Tissue‐engineered ligament: implant constructs for tooth replacement. J Pharm Sci Res. 2010;37(9):750–758.
    1. Kertesz N, Wu J, Chen HP, et al. The role of erythropoietin in regulating angiogenesis. Dev Biol. 2004;276(1):101–110. doi:10.1016/j.ydbio.2004.08.025
    1. Cho GW, Koh SH, Kim MH, et al. The neuroprotective effect of erythropoietin-transduced human mesenchymal stromal cells in an animal model of ischemic stroke. Brain Res. 2010;1353(2):1–13.16. doi:10.1016/j.brainres.2010.06.013
    1. cKumral A, Tüzün F, Oner MG, et al. Erythropoietin in neonatal brain protection: the past, the present and the future. Brain Dev. 2011;33(8):632–643.
    1. Tsai PT, Ohab JJ, Kertesz N, et al. A critical role of erythropoietin receptor in neurogenesis and post-stroke recovery. J Neurosci. 2006;26(4):1269–1274. doi:10.1523/JNEUROSCI.4480-05.2006
    1. Arcasoy MO. The non‐haematopoietic biological effects of erythropoietin. Br J Haematol. 2010;141(1):14–31. doi:10.1111/j.1365-2141.2008.07014.x
    1. Zhi-kun SUN, Sheng-di CHEN. Erythropoietin and neuron apoptosis: signalpathway. Chin Pharmacol Bulletin. 2006;22(12):1429–1432.
    1. Chateauvieux S, Grigorakaki C, Morceau F, Dicato M, Diederich M. Erythropoietin, erythropoiesis and beyond. Biochem Pharmacol. 2011;82(10):1291–1303. doi:10.1016/j.bcp.2011.06.045
    1. Acheson A, Richards JB, De WH. Effects of sleep deprivation on impulsive behaviors in men and women. Physiol Behav. 2007;91(5):579–587. doi:10.1016/j.physbeh.2007.03.020
    1. Cianferotti L, Brandi ML. Muscle–bone interactions: basic and clinical aspects. Endocrine. 2014;45(2):165–177. doi:10.1007/s12020-013-0026-8
    1. Wright GL, Hanlon P, Amin K, et al. Erythropoietin receptor expression in adult rat cardiomyocytes is associated with an acute cardioprotective effect for recombinant erythropoietin during ischemia-reperfusion injury. Faseb J Off Publ Fed Am Soc Exp Biol. 2004;18(9):1031. doi:10.1096/fj.03-0678fje
    1. Bernaudin M, Marti HH, Roussel S, et al. A potential role for erythropoietin in focal permanent cerebral ischemia in mice. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 1999;19(6):643. doi:10.1097/00004647-199906000-00007
    1. Sugawa M, Sakurai Y, Ishikawaieda Y, et al. Effects of erythropoietin on glial cell development; oligodendrocyte maturation and astrocyte proliferation. Neurosci Res. 2002;44(4):391–403.
    1. Holstein JH, Orth M, Scheuer C, et al. Erythropoietin stimulates bone formation, cell proliferation, and angiogenesis in a femoral segmental defect model in mice. Bone. 2011;49(5):1037–1045. doi:10.1016/j.bone.2011.08.004
    1. Rölfing JH, Bendtsen M, Jensen J, et al. Erythropoietin augments bone formation in a rabbit posterolateral spinal fusion model. J Orthop Res. 2012;30(7):1083–1088. doi:10.1002/jor.22027
    1. Sun H, Jung Y, Shiozawa Y, et al. Erythropoietin modulates the structure of bone morphogenetic protein 2-engineered cranial bone. Tissue Eng Part A. 2012;18(19–20):2095–2105. doi:10.1089/ten.TEA.2011.0742
    1. Li C, Shi C, Kim J, et al. Erythropoietin promotes bone formation through EphrinB2/EphB4 signaling. J Dent Res. 2015;94(3):455–463. doi:10.1177/0022034514566431
    1. Shiozawa Y, Jung Y, Ziegler AM, et al. Erythropoietin couples hematopoiesis with bone formation. PLoS One. 2010;5(5):10853. doi:10.1371/journal.pone.0010853
    1. Balaian E, Wobus M, Weidner H, et al. Erythropoietin inhibits osteoblast function in myelodysplastic syndromes via the canonical Wnt pathway. Haematologica. 2017;103(1):61. doi:10.3324/haematol.2017.172726
    1. Wan L, Zhang F, He Q, et al. EPO promotes bone repair through enhanced cartilaginous callus formation and angiogenesis. PLoS One. 2014;9(7):102010. doi:10.1371/journal.pone.0102010
    1. Wang X, Wang Y, Dai X, et al. Effects of intermittent administration of parathyroid hormone (1-34) on bone differentiation in stromal precursor antigen-1 positive human periodontal ligament stem cells. Stem Cells Int. 2016;2016:1–9. doi:10.1155/2016/4058656
    1. Verma UN, Surabhi RM, Schmaltieg A, et al. Small interfering RNAs directed against b-catenin inhibit the in vitro and in vivo growth of coloncancer cells. Clinical Cancer Res. 2003;9:1291–1300.
    1. Vimalraj S, Arumugam B, Miranda PJ, et al. Runx2: structure, function, and phosphorylation in osteoblast differentiation. Int J Biol Macromol. 2015;78:202–208. doi:10.1016/j.ijbiomac.2015.04.008
    1. Chuang LS, Ito K, Ito Y. RUNX family: regulation and diversification of roles through interacting proteins. Int J Cancer. 2013;132(6):1260–1271. doi:10.1002/ijc.27964
    1. Sun H, Feng K, Hu J, et al. Osteogenic differentiation of human amniotic fluid–derived stem cells induced by bone morphogenetic protein-7 and enhanced by nanofibrous scaffolds. Biomaterials. 2010;31(6):1133. doi:10.1016/j.biomaterials.2010.01.042
    1. Beck GR, Zerler B, Moran E. Phosphate is a specific signal for induction of osteopontin gene expression. Proc Natl Acad Sci U S A. 2000;97(15):8352–8357. doi:10.1073/pnas.140021997
    1. Fu H, Doll B, Mcnelis T, et al. Osteoblast differentiation in vitro, and in vivo, promoted by Osterix. J Biomed Mater Res Part A. 2007;83(3):770–778. doi:10.1002/jbm.a.31356
    1. Kim YJ, Kim HN, Park EK, et al. The bone-related Zn finger transcription factor Osterix promotes proliferation of mesenchymal cells. Gene. 2005;366(1):145–151. doi:10.1016/j.gene.2005.08.021
    1. Hatta M, Yoshimura Y, Deyama Y, et al. Molecular characterization of the zinc finger transcription factor, Osterix. Int J Mol Med. 2006;17(3):425–430.
    1. Rossini M, Gatti D, Adami S. Involvement of WNT/β-catenin signaling in the treatment of osteoporosis. Calcif Tissue Int. 2013;93(2):121–132. doi:10.1007/s00223-013-9749-z
    1. Saidak Z, Le Henaff C, Azzi S, et al. Wnt/β-catenin signaling mediates osteoblast differentiation triggered by peptide-induced α5β1 integrin priming in mesenchymal skeletal cells. J Biol Chem. 2015;290(11):6903–6912. doi:10.1074/jbc.M114.621219
    1. Chen LJ, Hu BB, Shi XL, et al. Baicalein enhances the osteogenic differentiation of human periodontal ligament cells by activating the Wnt/β-catenin signaling pathway. Arch Oral Biol. 2017;78:100–108. doi:10.1016/j.archoralbio.2017.01.019

Source: PubMed

3
Se inscrever