Resistance Training Prevents Muscle Loss Induced by Caloric Restriction in Obese Elderly Individuals: A Systematic Review and Meta-Analysis

Amanda V Sardeli, Tiemy R Komatsu, Marcelo A Mori, Arthur F Gáspari, Mara Patrícia T Chacon-Mikahil, Amanda V Sardeli, Tiemy R Komatsu, Marcelo A Mori, Arthur F Gáspari, Mara Patrícia T Chacon-Mikahil

Abstract

It remains unclear as to what extent resistance training (RT) can attenuate muscle loss during caloric restriction (CR) interventions in humans. The objective here is to address if RT could attenuate muscle loss induced by CR in obese elderly individuals, through summarized effects of previous studies. Databases MEDLINE, Embase and Web of Science were used to perform a systematic search between July and August 2017. Were included in the review randomized clinical trials (RCT) comparing the effects of CR with (CRRT) or without RT on lean body mass (LBM), fat body mass (FBM), and total body mass (BM), measured by dual-energy X-ray absorptiometry, on obese elderly individuals. The six RCTs included in the review applied RT three times per week, for 12 to 24 weeks, and most CR interventions followed diets of 55% carbohydrate, 15% protein, and 30% fat. RT reduced 93.5% of CR-induced LBM loss (0.819 kg [0.364 to 1.273]), with similar reduction in FBM and BM, compared with CR. Furthermore, to address muscle quality, the change in strength/LBM ratio tended to be different (p = 0.07) following CRRT (20.9 ± 23.1%) and CR interventions (−7.5 ± 9.9%). Our conclusion is that CRRT is able to prevent almost 100% of CR-induced muscle loss, while resulting in FBM and BM reductions that do not significantly differ from CR.

Keywords: aging; caloric restriction; diet; exercise; muscle mass; sarcopenia; strength training; training.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flowchart of study selection. RCT: randomized control trials; RT: Resistance training; DXA: Dual X-ray Absorbance; CRRT: caloric restriction with resistance training group.
Figure 2
Figure 2
Forest plot for differences between caloric restriction plus resistance training (CRRT) and caloric restriction (CR) reductions of LBM (A); FBM (B); and BM (C). RMD: raw mean difference (kg); LL: lower limit of 95% CI; UP: upper limit of 95% CI; CI: confidence interval.
Figure 2
Figure 2
Forest plot for differences between caloric restriction plus resistance training (CRRT) and caloric restriction (CR) reductions of LBM (A); FBM (B); and BM (C). RMD: raw mean difference (kg); LL: lower limit of 95% CI; UP: upper limit of 95% CI; CI: confidence interval.
Figure 3
Figure 3
(A) Illustrative change in body mass after CRRT and CR; (B) percentage of muscle quality change after CRRT and CR. Data is presented in mean and standard deviation. P: p-value for difference between groups (Mann Whitney test).

References

    1. Fontana L., Partridge L. Promoting health and longevity through diet: From model organisms to humans. Cell. 2015;161:106–118. doi: 10.1016/j.cell.2015.02.020.
    1. Mitchell S.J., Madrigal-Matute J., Scheibye-Knudsen M., Fang E., Aon M., Gonzalez-Reyes J.A., Cortassa S., Kaushik S., Gonzalez-Freire M., Petel B., et al. Effects of Sex, Strain, and Energy Intake on Hallmarks of Aging in Mice. Cell Metab. 2016;23:1093–1112. doi: 10.1016/j.cmet.2016.05.027.
    1. Balasubramanian P., Howell P.R., Anderson R.M. Aging and Caloric Restriction Research: A Biological Perspective with Translational Potential. EBioMedicine. 2017;21:37–44. doi: 10.1016/j.ebiom.2017.06.015.
    1. Brestoff J.R., Artis D. Immune regulation of metabolic homeostasis in health and disease. Cell. 2015;161:146–160. doi: 10.1016/j.cell.2015.02.022.
    1. Thomou T., Mori M.A., Dreyfuss J.M., Konishi M., Sakaguchi M., Wolfrum C., Rao T.N., Winnay J.N., Garcia-Martin R., Grinspon S.K., et al. Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature. 2017;542:450–455. doi: 10.1038/nature21365.
    1. Reis F.C., Branquinho J.L., Brandao B.B., Guerra B.A., Silva I.D., Frontini A., Thomou T., Sartini L., Cinti S., Kahan C.R., et al. Fat-specific Dicer deficiency accelerates aging and mitigates several effects of dietary restriction in mice. Aging (Albany NY) 2016;8:1201–1222. doi: 10.18632/aging.100970.
    1. Amamou T., Normandin E., Pouliot J., Dionne I.J., Brochu M., Riesco E. Effect of a High-Protein Energy-Restricted Diet Combined with Resistance Training on Metabolic Profile in Older Individuals with Metabolic Impairments. J. Nutr. Health Aging. 2017;21:67–74. doi: 10.1007/s12603-016-0760-8.
    1. Giannopoulou I., Fernhall B., Carhart R., Weinstock R.S., Baynard T., Figueroa A., Kanaley J.A. Effects of diet and/or exercise on the adipocytokine and inflammatory cytokine levels of postmenopausal women with type 2 diabetes. Metabolism. 2005;54:866–875. doi: 10.1016/j.metabol.2005.01.033.
    1. Madsen E.L., Rissanen A., Bruun J.M., Skogstrand K., Tonstad S., Hougaard D.M., Richelsen B. Weight loss larger than 10% is needed for general improvement of levels of circulating adiponectin and markers of inflammation in obese subjects: A 3-year weight loss study. Eur. J. Endocrinol. 2008;158:179–187. doi: 10.1530/EJE-07-0721.
    1. Weinheimer E.M., Sands L.P., Campbell W.W. A systematic review of the separate and combined effects of energy restriction and exercise on fat-free mass in middle-aged and older adults: Implications for sarcopenic obesity. Nutr. Rev. 2010;68:375–388. doi: 10.1111/j.1753-4887.2010.00298.x.
    1. Fielding R.A., Vellas B., Evans W.J., Bhasin S., Morley J.E., Newman A.B., Abellan van Kan G., Andrieu S., Bauer J., Breuille D., et al. Sarcopenia: An undiagnosed condition in older adults. Current consensus definition: Prevalence, etiology, and consequences. International working group on sarcopenia. J. Am. Med. Dir. Assoc. 2011;12:249–256. doi: 10.1016/j.jamda.2011.01.003.
    1. Cermak N.M., Res P.T., de Groot L.C., Saris W.H., van Loon L.J. Protein supplementation augments the adaptive response of skeletal muscle to resistance-type exercise training: A meta-analysis. Am. J. Clin. Nutr. 2012;96:1454–1464. doi: 10.3945/ajcn.112.037556.
    1. Thomas D.K., Quinn M.A., Saunders D.H., Greig C.A. Protein Supplementation Does Not Significantly Augment the Effects of Resistance Exercise Training in Older Adults: A Systematic Review. J. Am. Med. Dir. Assoc. 2016;17:959.e1–959.e9. doi: 10.1016/j.jamda.2016.07.002.
    1. Nicklas B.J., Chmelo E., Delbono O., Carr J.J., Lyles M.F., Marsh A.P. Effects of resistance training with and without caloric restriction on physical function and mobility in overweight and obese older adults: A randomized controlled trial. Am. J. Clin. Nutr. 2015;101:991–999. doi: 10.3945/ajcn.114.105270.
    1. Senechal M., Bouchard D.R., Dionne I.J., Brochu M. The effects of lifestyle interventions in dynapenic-obese postmenopausal women. Menopause. 2012;19:1015–1021. doi: 10.1097/gme.0b013e318248f50f.
    1. Brochu M., Malita M.F., Messier V., Doucet E., Strychar I., Lavoie J.M., Prud’homme D., Rabasa-Lhoret R. Resistance training does not contribute to improving the metabolic profile after a 6-month weight loss program in overweight and obese postmenopausal women. J. Clin. Endocrinol. Metable. 2009;94:3226–3233. doi: 10.1210/jc.2008-2706.
    1. Chmelo E.A., Beavers D.P., Lyles M.F., Marsh A.P., Nicklas B.J., Beavers K.M. Legacy effects of short-term intentional weight loss on total body and thigh composition in overweight and obese older adults. Nutr. Diabetes. 2016;6:e203. doi: 10.1038/nutd.2016.8.
    1. Kim B., Tsujimoto T., So R., Tanaka K. Changes in lower extremity muscle mass and muscle strength after weight loss in obese men: A prospective study. Obes. Res. Clin. Pract. 2015;9:365–373. doi: 10.1016/j.orcp.2014.12.002.
    1. Bouchard D.R., Soucy L., Senechal M., Dionne I.J., Brochu M. Impact of resistance training with or without caloric restriction on physical capacity in obese older women. Menopause. 2009;16:66–72. doi: 10.1097/gme.0b013e31817dacf7.
    1. St-Onge M., Rabasa-Lhoret R., Strychar I., Faraj M., Doucet E., Lavoie J.M. Impact of energy restriction with or without resistance training on energy metabolism in overweight and obese postmenopausal women: A Montreal Ottawa New Emerging Team group study. Menopause. 2013;20:194–201. doi: 10.1097/gme.0b013e318261f22a.
    1. Ballor D.L., Katch V.L., Becque M.D., Marks C.R. Resistance weight training during caloric restriction enhances lean body weight maintenance. Am. J. Clin. Nutr. 1988;47:19–25. doi: 10.1093/ajcn/47.1.19.
    1. Kordi R., Dehghani S., Noormohammadpour P., Rostami M., Mansournia M.A. Effect of abdominal resistance exercise on abdominal subcutaneous fat of obese women: A randomized controlled trial using ultrasound imaging assessments. J. Manipul. Physiol. Therap. 2015;38:203–209. doi: 10.1016/j.jmpt.2014.12.004.
    1. Bouchard C., An P., Rice T., Skinner J.S., Wilmore J.H., Gagnon J., Leon A.S., Rao D.C. Familial aggregation of VO(2max) response to exercise training: Results from the HERITAGE Family Study. J. Appl. Physiol. 1999;87:1003–1008. doi: 10.1152/jappl.1999.87.3.1003.
    1. Dunstan D.W., Daly R.M., Owen N., Jolley D., Vulikh E., Shaw J., Zimmet P. Home-based resistance training is not sufficient to maintain improved glycemic control following supervised training in older individuals with type 2 diabetes. Diabetes Care. 2005;28:3–9. doi: 10.2337/diacare.28.1.3.
    1. Dunstan D.W., Daly R.M., Owen N., Jolley D., De Courten M., Shaw J., Zimmet P. High-intensity resistance training improves glycemic control in older patients with type 2 diabetes. Diabetes Care. 2002;25:1729–1736. doi: 10.2337/diacare.25.10.1729.
    1. Maher C.G., Sherrington C., Herbert R.D., Moseley A.M., Elkins M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys. Ther. 2003;83:713–721.
    1. Boreinstein M., Hedges L., Higgins J., Rothstein H.R. Introduction to Meta-Analysis. Wiley; Chichester, UK: 2009.
    1. Csapo R., Alegre L.M. Effects of resistance training with moderate vs heavy loads on muscle mass and strength in the elderly: A meta-analysis. Scand. J. Med. Sci. Sports. 2016;26:995–1006. doi: 10.1111/sms.12536.
    1. Hall K.S., Morey M.C., Dutta C., Manini T.M., Weltman A.L., Nelson M.E., Morgan A.L., Senior J.G., Seyffarth C., Buchner D.M. Activity-related energy expenditure in older adults: A call for more research. Med. Sci. Sports Exerc. 2014;46:2335–2340. doi: 10.1249/MSS.0000000000000356.
    1. Donnelly J.E., Blair S.N., Jakicic J.M., Manore M.M., Rankin J.W., Smith B.K. American College of Sports Medicine Position Stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med. Sci. Sports Exerc. 2009;41:459–471. doi: 10.1249/MSS.0b013e3181949333.
    1. Chodzko-Zajko W.J., Proctor D.N., Fiatarone Singh M.A., Minson C.T., Nigg C.R., Salem G.J., Skinner J.S. American College of Sports Medicine position stand. Exercise and physical activity for older adults. Med. Sci. Sports Exerc. 2009;41:1510–1530. doi: 10.1249/MSS.0b013e3181a0c95c.
    1. Lu Y., Bradley J.S., McCoski S.R., Gonzalez J.M., Ealy A.D., Johnson S.E. Reduced skeletal muscle fiber size following caloric restriction is associated with calpain-mediated proteolysis and attenuation of IGF-1 signaling. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017;312:R806–R815. doi: 10.1152/ajpregu.00400.2016.
    1. Murphy C.H., Churchward-Venne T.A., Mitchell C.J., Kolar N.M., Kassis A., Karagounis L.G., Burke L.M., Hawley J.A., Phillips S.M. Hypoenergetic diet-induced reductions in myofibrillar protein synthesis are restored with resistance training and balanced daily protein ingestion in older men. Am. J. Physiol. Endocrinol. Metable. 2015;308:E734–E743. doi: 10.1152/ajpendo.00550.2014.
    1. Longland T.M., Oikawa S.Y., Mitchell C.J., Devries M.C., Phillips S.M. Higher compared with lower dietary protein during an energy deficit combined with intense exercise promotes greater lean mass gain and fat mass loss: A randomized trial. Am. J. Clin. Nutr. 2016;103:738–746. doi: 10.3945/ajcn.115.119339.
    1. Levine M.E., Suarez J.A., Brandhorst S., Balasubramanian P., Cheng C.W., Madia F., Fontana L., Mirisola M.G., Guevara-Aguirre J., Wan J., et al. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab. 2014;19:407–417. doi: 10.1016/j.cmet.2014.02.006.
    1. Solon-Biet S.M., Mitchell S.J., Coogan S.C., Cogger V.C., Gokarn R., McMahon A.C., Raubenheimer D., de Cabo R., Simpson S.J., Le Couteur D.G. Dietary Protein to Carbohydrate Ratio and Caloric Restriction: Comparing Metabolic Outcomes in Mice. Cell Rep. 2015;11:1529–1534. doi: 10.1016/j.celrep.2015.05.007.
    1. Johnson S.C., Rabinovitch P.S., Kaeberlein M. mTOR is a key modulator of ageing and age-related disease. Nature. 2013;493:338–345. doi: 10.1038/nature11861.
    1. Barsalani R., Brochu M., Dionne I.J. Is there a skeletal muscle mass threshold associated with the deterioration of insulin sensitivity in sedentary lean to obese postmenopausal women? Diabetes Res. Clin. Pract. 2013;102:123–128. doi: 10.1016/j.diabres.2013.09.008.
    1. Shiroma E.J., Cook N.R., Manson J.E., Moorthy M.V., Buring J.E., Rimm E.B., Lee I.M. Strength Training and the Risk of Type 2 Diabetes and Cardiovascular Disease. Med. Sci. Sports Exerc. 2017;49:40–46. doi: 10.1249/MSS.0000000000001063.
    1. Sylow L., Kleinert M., Richter E.A., Jensen T.E. Exercise-stimulated glucose uptake-regulation and implications for glycaemic control. Nat. Rev. Endocrinol. 2017;13:133–148. doi: 10.1038/nrendo.2016.162.
    1. Pesta D.H., Goncalves R.L.S., Madiraju A.K., Strasser B., Sparks L.M. Resistance training to improve type 2 diabetes: Working toward a prescription for the future. Nutr. Metab. 2017;14 doi: 10.1186/s12986-017-0173-7.
    1. Delmonico M.J., Harris T.B., Visser M., Park S.W., Conroy M.B., Velasquez-Mieyer P., Boudreau R., Manini T.M., Nevitt M., Newman A.B., et al. Longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am. J. Clin. Nutr. 2009;90:1579–1585. doi: 10.3945/ajcn.2009.28047.
    1. Dam T.T., Peters K.W., Fragala M., Cawthon P.M., Harris T.B., McLean R., Shardell M., Alley D.E., Kenny A., Ferrucci L., et al. An evidence-based comparison of operational criteria for the presence of sarcopenia. J. Gerontol. A Biol. Sci. Med. Sci. 2014;69:584–590. doi: 10.1093/gerona/glu013.
    1. Gill S., Le H.D., Melkani G.C., Panda S. Time-restricted feeding attenuates age-related cardiac decline in Drosophila. Science. 2015;347:1265–1269. doi: 10.1126/science.1256682.
    1. Kastman E.K., Willette A.A., Coe C.L., Bendlin B.B., Kosmatka K.J., McLaren D.G., Xu G., Canu E., Field A.S., Alexander A.L. A calorie-restricted diet decreases brain iron accumulation and preserves motor performance in old rhesus monkeys. J. Neurosci. 2010;30:7940–7947. doi: 10.1523/JNEUROSCI.0835-10.2010.
    1. Colman R.J., Beasley T.M., Allison D.B., Weindruch R. Attenuation of sarcopenia by dietary restriction in rhesus monkeys. J. Gerontol. A Biol. Sci. Med. Sci. 2008;63:556–559. doi: 10.1093/gerona/63.6.556.
    1. Bodnar M., Skalicky M., Viidik A., Erben R.G. Interaction between exercise, dietary restriction and age-related bone loss in a rodent model of male senile osteoporosis. Gerontology. 2012;58:139–149. doi: 10.1159/000329113.
    1. Moreira L.D., Oliveira M.L., Lirani-Galvao A.P., Marin-Mio R.V., Santos R.N., Lazaretti-Castro M. Physical exercise and osteoporosis: Effects of different types of exercises on bone and physical function of postmenopausal women. Arq. Bras. Endocrinol. Metabol. 2014;58:514–522. doi: 10.1590/0004-2730000003374.

Source: PubMed

3
Se inscrever