Update on Surgical Management of Pediatric Urolithiasis

Sajid Sultan, Sadaf Aba Umer, Bashir Ahmed, Syed Ali Anwar Naqvi, Syed Adibul Hasan Rizvi, Sajid Sultan, Sadaf Aba Umer, Bashir Ahmed, Syed Ali Anwar Naqvi, Syed Adibul Hasan Rizvi

Abstract

Urolithiasis has always been a fascinating disease, even more so in children. There are many intriguing facets to this pathology. This article is a nonsystematic review to provide an update on the surgical management of pediatric urolithiasis. It highlights the pros and cons of various minimally invasive surgical options such as extracorporeal shockwave lithotripsy (ESWL), retrograde intrarenal surgery (RIRS), percutaneous nephrolithotomy (PCNL), laparoscopy, and robotics. This article also describes the various intracorporeal disintegration technologies available to fragment the stone, including the newer advancements in laser technology. It also emphasizes the cost considerations especially with reference to the emerging economies. Thus, this manuscript guides how to select the least-invasive option for an individual patient, considering age and gender; stone size, location, and composition; and facilities and expertise available.

Keywords: endoscopic intracorporeal lithotripsy; extracorporeal shockwave lithotripsy; minimally invasive surgery; pediatric urolithiasis; percutaneous nephrolithotomy; retrograde intrarenal surgery; robotics; urolithiasis.

Figures

Figure 1
Figure 1
Minimally invasive surgery for renal stone management algorithm.
Figure 2
Figure 2
Minimally invasive surgery for ureteric and vesical stone management algorithm.

References

    1. Rhodes C, Churchill D, Hulton SA. Antenatal diagnosis of fetal renal calculus. Ultrasound Obstet Gynecol. (2005) 25:517–8. 10.1002/uog.1850
    1. Rizvi SA, Sultan S, Zafar MN, Ahmed B, Umer SA, Naqvi SA. Paediatric urolithiasis in emerging economies. Int J Sur. (2016) 36:705–12. 10.1016/j.ijsu.2016.11.085
    1. Jobs K, Rakowska M, Paturej A. Urolithiasis in the pediatric population—current opinion on epidemiology, pathophysiology, diagnostic evaluation and treatment. Dev Period Med. (2018) 22:201–8.
    1. Bowen DK, Tasian GE. Pediatric stone disease. Urol Clin North Am. (2018) 45:539–50. 10.1016/j.ucl.2018.06.002
    1. Sultan S. Urolithiasis. In: Lima M, Manzoni G. editors. Pediatric Urology: Contemporary Strategies From Fetal Life to Adolescence. Milan: Springer; (2015). p. 365–78. 10.1007/978-88-470-5693-0_30
    1. Rizvi SA, Sultan S, Zafar MN, Ahmed B, Faiq SM, Hossain KZ, et al. . Evaluation of children with urolithiasis. Indian J Urol. (2007) 23:420–7. 10.4103/0970-1591.36717
    1. Penido MG, Tavares MS. Pediatric primary urolithiasis: symptoms, medical management and prevention strategies. World J Nephrol. (2015) 4:444–54. 10.5527/wjn.v4.i4.444
    1. Tasian GE, Kabarriti AE, Kalmus A, Furth SL. Kidney stone recurrence among children and adolescents. J Urol. (2017) 197:246–52. 10.1016/j.juro.2016.07.090
    1. El-Assmy A, El-Nahas AR, Harraz AM, El Demerdash Y, Elsaadany MM, El-Halwagy S, et al. . Clinically insignificant residual fragments: is it an appropriate term in children? Urology. (2015) 86:593–8. 10.1016/j.urology.2015.06.017
    1. Rizvi SA, Naqvi SA, Hussain Z, Hashmi A, Hussain M, Zafar MN, et al. . Pediatric urolithiasis: developing nation perspectives. J Urol. (2002) 168:1522–5. 10.1016/S0022-5347(05)64509-0
    1. Celiksoy MH, Yilmaz A, Aydogan G, Kiyak A, Topal E, Sander S. Metabolic disorders in Turkish children with urolithiasis. Urology. (2015) 85:909–13. 10.1016/j.urology.2014.12.032
    1. Imran K, Zafar MN, Fatima N, Ozair U, Sultan S, Rizvi SA. Chemical composition of stones in paediatric urolithiasis. J Ayub Med Coll Abbottabad. (2017) 29:630–4.
    1. Zafar MN, Ayub S, Tanwri H, Naqvi SA, Rizvi SA. Composition of urinary calculi in infants: a report from an endemic country. Urolithiasis. (2017) 46:445–52. 10.1007/s00240-017-1010-1
    1. Skolarikos A, Straub M, Knoll T, Sarica K, Seitz C, Petrík A, et al. . Metabolic evaluation and recurrence prevention for urinary stone patients: EAU guidelines. Eur Urol. (2015) 67:750–63. 10.1016/j.eururo.2014.10.029
    1. Rizvi SA, Sultan S, Ijaz H, Mirza ZN, Ahmed B, Saulat S, et al. . Open surgical management of pediatric urolithiasis: a developing country perspective. Indian J Urol. (2010) 26:573–6. 10.4103/0970-1591.74464
    1. Rizvi SA, Naqvi SA, Hussain Z, Hashmi A, Hussain M, Zafar MN, et al. . Management of pediatric urolithiasis in Pakistan: experience with 1,440 children. J Urol. (2003) 169:634–7. 10.1016/S0022-5347(05)63979-1
    1. Rizvi SA, Naqvi SA, Hussain Z, Shahjehan S. Renal stones in children in Pakistan. Br J Urol. (1985) 57:618–21. 10.1111/j.1464-410X.1985.tb07018.x
    1. Silay MS, Ellison JS, Tailly T, Caione P. Update on urinary stones in children: current and future concepts in surgical treatment and shockwave lithotripsy. Eur Urol Focus. (2017) 3:164–71. 10.1016/j.euf.2017.07.005
    1. Sarica K, Sahin C. Contemporary minimally invasive surgical management of urinary stones in children. Eur Urol Suppl. (2017) 16:2–7. 10.1016/j.eursup.2016.09.005
    1. Azili MN, Ozturk F, Inozu M, Çayci FS, Acar B, Ozmert S, et al. . Management of stone disease in infants. Urolithiasis. (2015) 43:513–9. 10.1007/s00240-015-0788-y
    1. Pelit ES, Kati B, Çanakci C, Sagir S, Çiftçi H. Outcomes of miniaturized percutaneous nephrolitotomy in infants: single centre experience. Int Braz J Urol. (2017) 43:932–8. 10.1590/s1677-5538.ibju.2016.0629
    1. Taguchi K, Hamamoto S, Okada A, Mizuno K, Tozawa K, Hayashi Y, et al. First case report of staghorn calculi successfully removed by miniendoscopic combined intrarenal surgery in a 2year old boy. Int J Urol. (2015) 22:978–80. 10.1111/iju.12860
    1. Mokhless IA, Abdeldaeim HM, Saad A, Zahran AR. Retrograde intrarenal surgery monotherapy versus shock wave lithotripsy for stones 10 to 20 mm in preschool children: a prospective, randomized study. J Urol. (2014) 191:1496–500. 10.1016/j.juro.2013.08.079
    1. Unsal A, Resorlu B. Retrograde intrarenal surgery in infants and preschool-age children. J Pediatr Surg. (2011) 46:2195–9. 10.1016/j.jpedsurg.2011.07.013
    1. Guven S, Frattini A, Onal B, Desai M, Montanari E, Kums J, et al. CROES PCNL Study Group. Percutaneous nephrolithotomy in children in different age groups: data from the Clinical Research Office of the Endourological Society (CROES) Percutaneous Nephrolithotomy Global Study. BJU Int. (2013) 111:148–56. 10.1111/j.1464-410X.2012.11239.x
    1. Li J, Xiao J, Han T, Tian Y, Wang W, Du Y. Flexible ureteroscopic lithotripsy for the treatment of upper urinary tract calculi in infants. Exp Biol Med. (2017) 242:153–9. 10.1177/1535370216669836
    1. Tolga-Gulpinar M, Resorlu B, Atis G, Tepeler A, Ozyuvali E, Oztuna D, et al. . Safety and efficacy of retrograde intrarenal surgery in patients of different age groups. Actas Urol Esp. (2015) 39:354–9. 10.1016/j.acuroe.2015.05.005
    1. Erkurt B, Caskurlu T, Atis G, Gurbuz C, Arikan O, Pelit ES, et al. . Treatment of renal stones with flexible ureteroscopy in preschool age children. Urolithiasis. (2014) 42:241–5. 10.1007/s00240-013-0636-x
    1. Gridley CM, Knudsen BE. Digital ureteroscopes: technology update. Res Rep Urol. (2017) 9:19. 10.2147/RRU.S104229
    1. Kronenberg P, Somani B. Advances in lasers for the treatment of stones—a systematic review. Curr Urol Rep. (2018) 19:45. 10.1007/s11934-018-0807-y
    1. Aldoukhi AH, Roberts WW, Hall TL, Ghani KR. Holmium laser lithotripsy in the new stone age: dust or bust? Front Surg. (2017) 4:57 10.3389/fsurg.2017.00057
    1. Santiago JE, Hollander AB, Soni SD, Link RE, Mayer WA. To dust or not to dust: a systematic review of ureteroscopic laser lithotripsy techniques. Curr Urol Rep. (2017) 18:32. 10.1007/s11934-017-0677-8
    1. Rassweiler J, Rassweiler MC, Klein J. New technology in ureteroscopy and percutaneous nephrolithotomy. Curr Opin Urol. (2016) 26:95–106. 10.1097/MOU.0000000000000240
    1. Newman DM, Coury T, Lingeman JE, Mertz JH, Mosbaugh PG, Steele RE, et al. . Extracorporeal shock wave lithotripsy experience in children. J Urol. (1986) 136:238–40. 10.1016/S0022-5347(17)44826-9
    1. Chaussy CG, Tiselius HG. How can and should we optimize extracorporeal shockwave lithotripsy? Urolithiasis. (2018) 46:3–17. 10.1007/s00240-017-1020-z
    1. Morrison JC, Kawal T, Van Batavia JP, Srinivasan AK. Use of ultrasound in pediatric renal stone diagnosis and surgery. Curr Urol Rep. (2017) 18:22–8. 10.1007/s11934-017-0669-8
    1. Elmansy HE, Lingeman JE. Recent advances in lithotripsy technology and treatment strategies: a systematic review update. Int J Surg. (2016) 36:676–80. 10.1016/j.ijsu.2016.11.097
    1. Jagtap J, Mishra S, Bhattu A, Ganpule A, Sabnis R, Desai M. Evolution of shockwave lithotripsy (SWL) technique: a 25 year single centre experience of >5000 patients. BJUI. (2014) 114:748–53. 10.1111/bju.12808
    1. Lu P, Wang Z, Song R, Wang X, Qi K, Dai Q, et al. . The clinical efficacy of extracorporeal shock wave lithotripsy in pediatric urolithiasis: a systematic review and meta-analysis. Urolithiasis. (2015) 43:199–206. 10.1007/s00240-015-0757-5
    1. Aksoy Y, Ozbey I, Atmaca AF, Polat O. Extracorporeal shock wave lithotripsy in children: experience using a MPL-9000 lithotriptor. World J Urol. (2004) 22:115–9. 10.1007/s00345-003-0385-5
    1. Slavkovic A, Radovanovic M, Vlajkovic M, Novakovic D, Djordjevic N, Stefanovic V. Extracorporeal shock wave lithotripsy in the management of pediatric urolithiasis. Urol Res. (2006) 34:315–20. 10.1007/s00240-006-0062-4
    1. Loske AM. The role of energy density and acoustic cavitation in shock wave lithotripsy. Ultrasonics. (2010) 50:300–5. 10.1016/j.ultras.2009.09.012
    1. Rassweiler JJ, Knoll T, Köhrmann KU, McAteer JA, Lingeman JE, Cleveland RO, et al. . Shock wave technology and application: an update. Eur Urol. (2011) 59:784–96. 10.1016/j.eururo.2011.02.033
    1. Loske AM. Shock Wave Physics for Urologists. Mexico City: Universidad Nacional Autónoma de México; (ISBHN: 978–970-32- 4377-8) (2007). p. 55–115.
    1. Habib EI, Morsi HA, ElSheemy MS, Aboulela W, Eissa MA. Effect of size and site on the outcome of extracorporeal shock wave lithotripsy of proximal urinary stones in children. J Pediatr Urol. (2013) 9:323–7. 10.1016/j.jpurol.2012.04.003
    1. Landau EH, Shenfeld OZ, Pode D, Shapiro A, Meretyk S, Katz G, et al. Extracorporeal shock wave lithotripsy in prepubertal children: 22-year experience at a single institution with a single lithotripter. J Urol. (2009) 182:1835–40. 10.1016/j.juro.2009.04.084
    1. Badawy AA, Saleem MD, Abolyosr A, Aldahshoury M, Elbadry MS, Abdalla MA, et al. . Extracorporeal shock wave lithotripsy as first line treatment for urinary tract stones in children: outcome of 500 cases. Int Urol Nephrol. (2012) 44:661–6. 10.1007/s11255-012-0133-0
    1. Hammad FT, Kaya M, Kazim E. Pediatric extracorporeal shockwave lithotripsy: its efficiency at various locations in the upper tract. J Endourol. (2009) 23:229–36. 10.1089/end.2008.0133
    1. Radmayr C, Bogaert G, Dogan HS, Kocvara R, Nijman JM, et al. EAU Guidelines on Paediatric Urology 2018. Available online at (accessed May 22, 2019)
    1. Dogan HS, Altan M, Citamak B, Bozaci AC, Karabulut E, Tekgul S. A new nomogram for prediction of outcome of pediatric shock-wave lithotripsy. J Pediatr Urol. (2015) 11:84e1–6. 10.1016/j.jpurol.2015.01.004
    1. Onal B, Tansu N, Demirkesen O, Yalcin V, Huang L, Nguyen HT, et al. . Nomogram and scoring system for predicting stone free status after extracorporeal shock wave lithotripsy in children with urolithiasis. BJU. (2013) 111:344–52. 10.1111/j.1464-410X.2012.11281.x
    1. ElSheemy MS, Daw K, Habib E, Aboulela W, Fathy H, Shouman AM, et al. . Lower calyceal and renal pelvic stones in preschool children: a comparative study of minipercutaneous nephrolithotomy versus extracorporeal shockwave lithotripsy. Int J Urol. (2016) 23:564–70. 10.1111/iju.13093
    1. Khan M, Lal M, Kash DP, Hussain M, Rizvi S. Anatomical factors predicting lower calyceal stone clearance after extracorporeal shockwave lithotripsy. Afr J Urol. (2016) 22:96–100. 10.1016/j.afju.2015.09.006
    1. Tan MÖ, Karaoglan Ü, Sen I, Deniz N, Bozkirli I. The impact of radiological anatomy in clearance of lower calyceal stones after shock wave lithotripsy in paediatric patients. Eur Urol. (2003) 43:188–93. 10.1016/S0302-2838(02)00492-X
    1. Hounsfield GN. Computed medical imaging. Med Phys. (1980) 7:283–90. 10.1118/1.594709
    1. Segura JW, Preminger GM, Assimos DG, Dretler SP, Kahn RI, Lingeman JE, et al. . Nephrolithiasis clinical guidelines panel summary report on the management of staghorn calculi. J Urol. (1994) 151:1648–51. 10.1016/S0022-5347(17)35330-2
    1. McAdams S, Kim N, Dajusta D, Monga M, Ravish IR, Nerli R, et al. . Preoperative stone attenuation value predicts success after shock wave lithotripsy in children. J Urol. (2010) 184:1804–9. 10.1016/j.juro.2010.03.112
    1. Maltaga BR, Krambeck AE, Lingeman JE. Surgical management of upper urinary tract calculi. In: Wein AJ, Kavoussi LR, Partin AW, Peters CA. editors. Campbell–Walsh Urology, 11th Edition. Philadelphia, PA: Elsevier; (2015). p. 1260–90.
    1. Alken P. Intracorporeal lithotripsy. Urolithiasis. (2018) 46:19–29. 10.1007/s00240-017-1017-7
    1. Saad KS, Youssif ME, Hamdy SA, Fahmy A, Hanno AG, El-Nahas AR. Percutaneous nephrolithotomy vs retrograde intrarenal surgery for large renal stones in pediatric patients: a randomized controlled trial. J Urol. (2015) 194:1716–20. 10.1016/j.juro.2015.06.101
    1. Pelit ES, Atis G, Kati B, Akin Y, Çiftçi H, Culpan M, et al. . Comparison of mini-percutaneous nephrolithotomy and retrograde intrarenal surgery in preschool-aged children. Urology. (2017) 101:21–5. 10.1016/j.urology.2016.10.039
    1. Mullerad M, Aguinaga JR, Aro T, Kastin A, Goldin O, Kravtsov A, et al. . Initial clinical experience with a modulated holmium laser pulse—Moses technology: does it enhance laser lithotripsy efficacy? Rambam Maimonides Med J. (2017) 8:e0038. 10.5041/RMMJ.10315
    1. Kronenberg P, Traxer O. MP22-13 Burst laser lithotripsy—a novel lithotripsy mode. J Urol. (2016) 195:e258 10.1016/j.juro.2016.02.701
    1. Lange B, Jocham D, Brinkmann R, Cordes J. Stone/tissue differentiation for holmium laser lithotripsy using autofluorescence: clinical proof of concept study. Lasers Surg Med. (2017) 49:361–5. 10.1002/lsm.22611
    1. Miernik A, Eilers Y, Nuese C, Bolwien C, Lambrecht A, Hesse A, et al. . Is in vivo analysis of urinary stone composition feasible? Evaluation of an experimental setup of a Raman system coupled to commercial lithotripsy laser fibers. World J Urol. (2015) 33:1593–9. 10.1007/s00345-014-1477-0
    1. Dymov A, Glybochko P, Alyaev Y, Vinarov A, Altshuler G, Zamyatina V, et al. V11-11 thulium lithotripsy: from experiment to clinical practice. J Urol. (2017) 197:e1285 10.1016/j.juro.2017.02.3000
    1. Gamal WM, Hussein MM, El Nisr Rashed AD, Mmdouh A, Fawzy F. Pediatric retrograde intra-renal surgery for renal stones <2 cm in solitary kidney. Indian J Urol. (2016) 32:296–300. 10.4103/0970-1591.189723
    1. Xiao J, Wang X, Li J, Wang M, Han T, Zhang C, et al. . Treatment of upper urinary tract stones with flexible ureteroscopy in children. Can Urol Assoc J. (2018) 13:E78–82. 10.5489/cuaj.5283
    1. Kim SS, Kolon TF, Canter D, White M, Casale P. Pediatric flexible ureteroscopic lithotripsy: the children's hospital of Philadelphia experience. J Urol. (2008) 180:2616–9. 10.1016/j.juro.2008.08.051
    1. Santos JM. Ureteroscopy from the recent past to the near future. Urolithiasis. (2018) 46:31–7. 10.1007/s00240-017-1016-8
    1. Baş O, Dede O, Aydogmus Y, Utangaç M, Yikilmaz TN, Damar E, et al. . Comparison of retrograde intrarenal surgery and micro-percutaneous nephrolithotomy in moderately sized pediatric kidney stones. J Endourol. (2016) 30:765–70. 10.1089/end.2016.0043
    1. Sen H, Seckiner I, Bayrak O, Dogan K, Erturhan S. A comparison of micro-PERC and retrograde intrarenal surgery results in pediatric patients with renal stones. J Pediatr Urol. (2017) 13:619 e1–5. 10.1016/j.jpurol.2017.04.022
    1. Lu P, Song R, Yu Y, Yang J, Qi K, Tao R, et al. . Clinical efficacy of percutaneous nephrolithotomy versus retrograde intrarenal surgery for pediatric kidney urolithiasis: a PRISMA-compliant article. Medicine. (2017) 96:e8346–52. 10.1097/MD.0000000000008346
    1. Chen Y, Deng T, Duan X, Zhu W, Zeng G. Percutaneous nephrolithotomy versus retrograde intrarenal surgery for pediatric patients with upper urinary stones: a systematic review and meta analysis. Urolithiasis. (2019) 47:189–99. 10.1007/s00240-018-1039-9
    1. Ishii H, Griffin S, Somani BK. Ureteroscopy for stone disease in the paediatric population: a systematic review. BJU Int. (2015) 115:867–73. 10.1111/bju.12927
    1. Komori M, Izaki H, Daizumoto K, Tsuda M, Kusuhara Y, Mori H, et al. . Complications of flexible ureteroscopic treatment for renal and ureteral calculi during the learning curve. Urol Int. (2015) 95:26–32. 10.1159/000368617
    1. Corcoran AT, Smaldone MC, Mally D, Ost MC, Bellinger MF, Schneck FX, et al. . When is prior ureteral stent placement necessary to access the upper urinary tract in prepubertal children? J Urol. (2008) 180:1861–4. 10.1016/j.juro.2008.03.106
    1. Dogan HS, Onal B, Satar N, Aygun C, Piskin M, Tanriverdi O, et al. . Factors affecting complication rates of ureteroscopic lithotripsy in children: results of multi-institutional retrospective analysis by Pediatric Stone Disease Study Group of Turkish Pediatric Urology Society. J Urol. (2011) 186:1035–40. 10.1016/j.juro.2011.04.097
    1. Çitamak B, Mammadov E, Kahraman O, Ceylan T, Dogan HS, Tekgül S. Semi-rigid ureteroscopy should not be the first option for proximal ureteral stones in children. J Endourol. (2018) 32:1028–32. 10.1089/end.2017.0925
    1. Legemate JD, Kamphuis GM, Freund JE, Baard J, Zanetti SP, Catellani M, et al. Durability of flexible ureteroscopes: a prospective evaluation of longevity, the factors that affect it, and damage mechanisms. Eur Urol Focus. (2018) 31:1–7. 10.1016/j.euf.2018.03.001
    1. Kramolowsky E, McDowell Z, Moore B, Booth B, Wood N. Cost analysis of flexible ureteroscope repairs: evaluation of 655 procedures in a community-based practice. J Endourol. (2016) 30:254–6. 10.1089/end.2015.0642
    1. Zyczkowski M, Bogacki R, Nowakowski K, Muskała B, Rajwa P, Bryniarski P, et al. . Application of pneumatic lithotripter and holmium laser in the treatment of ureteral stones and kidney stones in children. Biomed Res Int. (2017), 1–6. 10.1155/2017/2505034
    1. Jurkiewicz B, Zabkowski T, Samotyjek J. Ureterolithotripsy in a paediatric population: a single institution's experience. Urolithiasis. (2014) 42:171–6. 10.1007/s00240-013-0634-z
    1. Rob S, Jones P, Pietropaolo A, Griffin S, Somani BK. Ureteroscopy for stone disease in paediatric population is safe and effective in medium-volume and high-volume centres: evidence from a systematic review. Curr Urol Rep. (2017) 18:92–9. 10.1007/s11934-017-0742-3
    1. Karaolides T, Moraitis K, Bach C, Masood J, Buchholz N. Positions for percutaneous nephrolithotomy: thirty-five years of evolution. Arab J Urol. (2012) 10:307–16. 10.1016/j.aju.2012.06.005
    1. De la Rosette JJ, Tsakiris P, Ferrandino MN, Elsakka AM, Rioja J, Preminger GM. Beyond prone position in percutaneous nephrolithotomy: a comprehensive review. Eur Urol. (2008) 54:1262–9. 10.1016/j.eururo.2008.08.012
    1. Cox RG, Ewen A, Bart BB. The prone position is associated with a decrease in respiratory system compliance in healthy anaesthetized infants. Pediatr Anesth. (2001) 11:291–6. 10.1046/j.1460-9592.2001.00646.x
    1. Valdivia Uria JG. Percutaneous nephrolithectomy: simplified technic (preliminary report). Arch Esp Urol. (1987) 40:177–80.
    1. Gamal W, Moursy E, Hussein M, Mmdouh A, Hammady A, Aldahshoury M. Supine pediatric percutaneous nephrolithotomy (PCNL). J Pediatr Urol. (2015) 11:78.e1–5. 10.1016/j.jpurol.2014.10.012
    1. Scoffone CM, Cracco CM. Patient positioning, the supine position, and the rationale of ECIRS. In: Smith AD, Preminger GM, Kavoussi LR, Badlani GH, Rastinehad AR. editors. Smith's Textbook of Endourology. Hoboken, NJ: Willey Blackwell; (2019). p.173–84. 10.1002/9781119245193.ch11
    1. Gan JJ, Gan JJ, Gan JJ, Lee KT. Lateral percutaneous nephrolithotomy: a safe and effective surgical approach. Indian J Urol. (2018) 34:45–50. 10.4103/iju.IJU_219_17
    1. Önal B, Dogan HS, Satar N, Bilen CY, Güneş A, Özden E, et al. . Factors affecting complication rates of percutaneous nephrolithotomy in children: results of a multi-institutional retrospective analysis by the Turkish pediatric urology society. J Urol. (2014) 191:777–82. 10.1016/j.juro.2013.09.061
    1. Unsal A, Resorlu B, Kara C, Bozkurt OF, Ozyuvali E. Safety and efficacy of percutaneous nephrolithotomy in infants, preschool age, and older children with different sizes of instruments. Urology. (2010) 76:247–52. 10.1016/j.urology.2009.08.087
    1. Celik H, Camtosun A, Dede O, Dagguli M, Altintas R, Tasdemir C. Comparison of the results of pediatric percutaneous nephrolithotomy with different sized instruments. Urolithiasis. (2017) 45:203–8. 10.1007/s00240-016-0887-4
    1. Jackman SV, Hedican SP, Peters CA, Docimo SG. Percutaneous nephrolithotomy in infants and preschool age children: experience with a new technique. Urology. (1998) 52:697–701. 10.1016/S0090-4295(98)00315-X
    1. Zeng G, Zhu W, Lam W. Miniaturised percutaneous nephrolithotomy: its role in the treatment of urolithiasis and our experience. Asian J Urol. (2018) 5:295–302. 10.1016/j.ajur.2018.05.001
    1. Jones P, Bennett G, Aboumarzouk OM, Griffin S, Somani BK. Role of minimally invasive percutaneous nephrolithotomy techniques—micro and ultra-mini PCNL (<15F) in the pediatric population: a systematic review. J Endourol. (2017) 31:816–24. 10.1089/end.2017.0136
    1. Wright A, Rukin N, Smith D, De la Rosette J, Somani BK. ‘Mini, ultra, micro'–nomenclature and cost of these new minimally invasive percutaneous nephrolithotomy (PCNL) techniques. Ther Adv Urol. (2016) 8:142–6. 10.1177/1756287215617674
    1. Desai J, Zeng G, Zhao Z, Zhong W, Chen W, Wu W. A novel technique of ultra-mini-percutaneous nephrolithotomy: introduction and an initial experience for treatment of upper urinary calculi less than 2 cm. Biomed Res Int. (2013) 2013:490793. 10.1155/2013/490793
    1. Sabnis RB, Ganesamoni R, Ganpule AP, Mishra S, Vyas J, Jagtap J, et al. . Current role of microperc in the management of small renal calculi. Indian J Urol. (2013) 29:214–18. 10.4103/0970-1591.117282
    1. Bader MJ, Gratzke C, Seitz M, Sharma R, Stief CG, Desai M. The “all-seeing needle”: initial results of an optical puncture system confirming access in percutaneous nephrolithotomy. Eur Urol. (2011) 59:1054–9. 10.1016/j.eururo.2011.03.026
    1. Tepeler A, Akman T, Silay MS, Akcay M, Ersoz C, Kalkan S, et al. . Comparison of intrarenal pelvic pressure during micro-percutaneous nephrolithotomy and conventional percutaneous nephrolithotomy. Urolithiasis. (2014) 42:275–9. 10.1007/s00240-014-0646-3
    1. Ng FC, Yam WL, Lim TY, Teo JK, Ng KK, Lim SK. Ultrasound-guided percutaneous nephrolithotomy: advantages and limitations. Investig Clin Urol. (2017) 58:346–52. 10.4111/icu.2017.58.5.346
    1. Li J, Wang W, Du Y, Tian Y. Combined use of flexible ureteroscopic lithotripsy with micro-percutaneous nephrolithotomy in pediatric multiple kidney stones. J Pediatr Urol. (2018) 14:281.e1–6. 10.1016/j.jpurol.2018.03.005
    1. Howe A, Kozel Z, Palmer L. Robotic surgery in pediatric urology. Asian J Urol. (2017) 1054:55–67. 10.1016/j.ajur.2016.06.002
    1. Mizuno K, Kojima Y, Nishio H, Hoshi S, Sato Y, Hayashi Y. Robotic surgery in pediatric urology: current status. Asian J Endosc Surg. (2018) 11:308–17. 10.1111/ases.12653
    1. Swearingen R, Sood A, Madi R, Klaassen Z, Badani K, Elder JS, et al. . Zero-fragment nephrolithotomy: a multi-center evaluation of robotic pyelolithotomy and nephrolithotomy for treating renal stones. Eur Urol. (2017) 72:1014–21. 10.1016/j.eururo.2016.10.021
    1. Ghani KR, Trinh QD, Jeong W, Friedman A, Lakshmanan Y, Menon M, et al. . Robotic nephrolithotomy and pyelolithotomy with utilization of the robotic ultrasound probe. Int Braz J Urol. (2014) 40:125–6. 10.1590/S1677-5538.IBJU.2014.01.19
    1. King SA, Klaassen Z, Madi R. Robot-assisted anatrophic nephrolithotomy: description of technique and early results. J Endourol. (2014) 28:325–9. 10.1089/end.2013.0597
    1. Badani KK, Hemal AK, Fumo M, Kaul S, Shrivastava A, Rajendram AK, et al. . Robotic extended pyelolithotomy for treatment of renal calculi: a feasibility study. World J Urol. (2006) 24:198–201. 10.1007/s00345-006-0099-6
    1. Wang X, Li S, Liu T, Guo Y, Yang Z. Laparoscopic pyelolithotomy compared to percutaneous nephrolithotomy as surgical management for large renal pelvic calculi: a meta-analysis. J Urol. (2013) 190:888–93. 10.1016/j.juro.2013.02.092
    1. Borofsky MS, Lingeman JE. The role of open and laparoscopic stone surgery in the modern era of endourology. Nat Rev Urol. (2015) 12:392–400. 10.1038/nrurol.2015.141
    1. Wolf JS, Jr. Caliceal diverticulum and hydrocalyx: laparoscopic management. Urol Clin North Am. (2000) 27:655–60. 10.1016/S0094-0143(05)70115-4
    1. Soliman NA, Rizvi SA. Endemic bladder calculi in children. Pediatr Nephrol. (2017) 32:1489–99. 10.1007/s00467-016-3492-4
    1. Khosa AS, Hussain M, Hussain M. Safety and efficacy of transurethral pneumatic lithotripsy for bladder calculi in children. J Pak Med Assoc. (2012) 62:1297–300.
    1. Salah MA, Holman E, Khan AM, Toth C. Percutaneous cystolithotomy for pediatric endemic bladder stone: experience with 155 cases from 2 developing countries. J Pediatr Surg. (2005) 40:1628–31. 10.1016/j.jpedsurg.2005.06.039

Source: PubMed

3
Se inscrever