Serum microRNA profiles in children with autism

Mahesh Mundalil Vasu, Ayyappan Anitha, Ismail Thanseem, Katsuaki Suzuki, Kohei Yamada, Taro Takahashi, Tomoyasu Wakuda, Keiko Iwata, Masatsugu Tsujii, Toshirou Sugiyama, Norio Mori, Mahesh Mundalil Vasu, Ayyappan Anitha, Ismail Thanseem, Katsuaki Suzuki, Kohei Yamada, Taro Takahashi, Tomoyasu Wakuda, Keiko Iwata, Masatsugu Tsujii, Toshirou Sugiyama, Norio Mori

Abstract

Background: As regulators of gene expression, microRNAs (miRNAs) play a key role in the transcriptional networks of the developing human brain. Circulating miRNAs in the serum and plasma are remarkably stable and are suggested to have promise as noninvasive biomarkers for neurological and neurodevelopmental disorders. We examined the serum expression profiles of neurologically relevant miRNAs in autism spectrum disorder (ASD), a complex neurodevelopmental disorder characterized by multiple deficits in communication, social interaction and behavior.

Methods: Total RNA, including miRNA, was extracted from the serum samples of 55 individuals with ASD and 55 age- and sex-matched control subjects, and the mature miRNAs were selectively converted into cDNA. Initially, the expression of 125 mature miRNAs was compared between pooled control and ASD samples. The differential expression of 14 miRNAs was further validated by SYBR Green quantitative PCR of individual samples. Receiver-operating characteristic (ROC) analysis was used to evaluate the sensitivity and specificity of miRNAs. The target genes and pathways of miRNAs were predicted using DIANA mirPath software.

Results: Thirteen miRNAs were differentially expressed in ASD individuals compared to the controls. MiR-151a-3p, miR-181b-5p, miR-320a, miR-328, miR-433, miR-489, miR-572, and miR-663a were downregulated, while miR-101-3p, miR-106b-5p, miR-130a-3p, miR-195-5p, and miR-19b-3p were upregulated. Five miRNAs showed good predictive power for distinguishing individuals with ASD. The target genes of these miRNAs were enriched in several crucial neurological pathways.

Conclusions: This is the first study of serum miRNAs in ASD individuals. The results suggest that a set of serum miRNAs might serve as a possible noninvasive biomarker for ASD.

Keywords: Autism spectrum disorder; complementary DNA; microRNA; microarray; quantitative PCR.

Figures

Figure 1
Figure 1
Results from preliminary screening experiments. The Ct values obtained were normalized and calculated by three different strategies. miR-151a-3p, miR-181b-5p, miR-320a, miR-328, miR-433, miR-489, miR-572 and miR-663a were downregulated while miR-101-3p, miR-106b-5p, miR-19b-3p, miR-195-5p, miR-130a-3p and miR-27a-3p were upregulated. Bars represent the fold change in subjects with autism as compared to controls.
Figure 2
Figure 2
Scatter plot showing the differential expression of 13 microRNAs in autistic subjects.
Figure 3
Figure 3
Receiver operating characteristic (ROC) curve of 13 microRNAs. AUC, area under the ROC curve; SEN, sensitivity; SPE, specificity.
Figure 4
Figure 4
Neurologically relevant pathways (predicted by DIANA mirPath) of the target genes of differentially expressed microRNAs.

References

    1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders DSM-IV-TR. 4. Washington DC, USA: American Psychiatric Association Publishing Inc; 2000.
    1. Autism and Developmental Disabilities Monitoring (ADDM) Network. Funded by the Centers for Disease Control and Prevention (CDC) USA: U.S. Department of Health and Human Services; 2012.
    1. Persico AM, Napolioni V. Autism genetics. Behav Brain Res. 2013;251:95–112.
    1. Cristino AS, Williams SM, Hawi Z, An JY, Bellgrove MA, Schwartz CE, Costa Lda F, Claudianos C. Neurodevelopmental and neuropsychiatric disorders represent an interconnected molecular system. Mol Psychiatry. 2014;19:294–301.
    1. Meek SE, Lemery-Chalfant K, Jahromi LB, Valiente C. A review of gene-environment correlations and their implications for autism: a conceptual model. Psychol Rev. 2013;120:497–521.
    1. Miyake K, Hirasawa T, Koide T, Kubota T. Epigenetics in autism and other neurodevelopmental diseases, neurodegenerative diseases. Adv Exp Med Biol. 2012;724:91–98.
    1. Delcuve GP, Rastegar M, Davie JR. Epigenetic control. J Cell Physiol. 2009;219:243–250.
    1. Beveridge NJ, Cairns MJ. MicroRNA dysregulation in schizophrenia. Neurobiol Dis. 2012;46:263–271.
    1. Wu S, Huang S, Ding J, Zhao Y, Liang L, Liu T, Zhan R, He X. Multiple microRNAs modulate p21Cip1/Waf1 expression by directly targeting its 3′ untranslated region. Oncogene. 2010;29:2302–2308.
    1. Ambros V. The functions of animal microRNAs. Nature. 2004;431:350–355.
    1. Wang K, Yuan Y, Cho JH, McClarty S, Baxter D, Galas DJ. Comparing the MicroRNA spectrum between serum and plasma. PLoS One. 2012;7:e41561.
    1. Kosik KS. The neuronal microRNA system. Nat Rev Neurosci. 2006;7:911–920.
    1. Abu-Elneel K, Liu T, Gazzaniga FS, Nishimura Y, Wall DP, Geschwind DH, Lao K, Kosik KS. Heterogeneous dysregulation of microRNAs across the autism spectrum. Neurogenetics. 2008;9:153–161.
    1. Talebizadeh Z, Butler MG, Theodoro MF. Feasibility and relevance of examining lymphoblastoid cell lines to study role of microRNAs in autism. Autism Res. 2008;1:240–250.
    1. Sarachana T, Zhou R, Chen G, Manji HK, Hu VW. Investigation of post-transcriptional gene regulatory networks associated with autism spectrum disorders by microRNA expression profiling of lymphoblastoid cell lines. Genome Med. 2010;2:23.
    1. Ghahramani Seno MM, Hu P, Gwadry FG, Pinto D, Marshall CR, Casallo G, Scherer SW. Gene and miRNA expression profiles in autism spectrum disorders. Brain Res. 2011;1380:85–97.
    1. Cortez MA, Calin GA. MicroRNA identification in plasma and serum: a new tool to diagnose and monitor diseases. Exp Opin Biol Ther. 2009;9:703–711.
    1. Hanke M, Hoefig K, Merz H, Feller AC, Kausch I, Jocham D, Warnecke JM, Sczakiel G. A robust methodology to study urine microRNA as tumor marker: microRNA-126 and microRNA-182 are related to urinary bladder cancer. Urol Oncol. 2010;28:655–661.
    1. Zubakov D, Boersma AW, Choi Y, van Kuijk PF, Wiemer EA, Kayser M. MicroRNA markers for forensic body fluid identification obtained from microarray screening and quantitative RT-PCR confirmation. Int J Leg Med. 2010;124:217–226.
    1. Park NJ, Zhou H, Elashoff D, Henson BS, Kastratovic DA, Abemayor E, Wong DT. Salivary microRNA: discovery, characterization, and clinical utility for oral cancer detection. Clin Cancer Res. 2009;15:5473–5477.
    1. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X, Li Q, Li X, Wang W, Zhang Y, Wang J, Jiang X, Xiang Y, Xu C, Zheng P, Zhang J, Li R, Zhang H, Shang X, Gong T, Ning G, Wang J, Zen K, Zhang J, Zhang CY. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18:997–1006.
    1. Lord C, Rutter M, Le Couteur A. Autism diagnostic interview - revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J Autism Dev Disord. 1994;24:659–685.
    1. American Psychiatric Association. User’s Guide for the Structured Clinical Interview for DSM-IV axis I Disorders SCID-1: Clinician Version. Washington DC: American Psychiatric Press; 1997.
    1. Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet. 2011;12:99–110.
    1. Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem. 2010;79:351–379.
    1. Okada K, Hashimoto K, Iwata Y, Nakamura K, Tsujii M, Tsuchiya KJ, Sekine Y, Suda S, Suzuki K, Sugihara G, Matsuzaki H, Sugiyama T, Kawai M, Minabe Y, Takei N, Mori N. Decreased serum levels of transforming growth factor-beta1 in patients with autism. Prog Neuropsychopharmacol Biol Psychiatry. 2007;31:187–190.
    1. Suda S, Iwata K, Shimmura C, Kameno Y, Anitha A, Thanseem I, Nakamura K, Matsuzaki H, Tsuchiya KJ, Sugihara G, Iwata Y, Suzuki K, Koizumi K, Higashida H, Takei N, Mori N. Decreased expression of axon-guidance receptors in the anterior cingulate cortex in autism. Mol Autism. 2011;2:14.
    1. Anitha A, Nakamura K, Thanseem I, Matsuzaki H, Miyachi T, Tsujii M, Iwata Y, Suzuki K, Sugiyama T, Mori N. Downregulation of the expression of mitochondrial electron transport complex genes in autism brains. Brain Pathol. 2013;23:294–302.
    1. Hu VW, Nguyen A, Kim KS, Steinberg ME, Sarachana T, Scully MA, Soldin SJ, Luu T, Lee NH. Gene expression profiling of lymphoblasts from autistic and nonaffected sib pairs: altered pathways in neuronal development and steroid biosynthesis. PLoS One. 2009;4:e5775.
    1. Ziats MN, Rennert OM. Identification of differentially expressed microRNAs across the developing human brain. Mol Psychiatry. 2013;19:848–852.
    1. Beveridge NJ, Gardiner E, Carroll AP, Tooney PA, Cairns MJ. Schizophrenia is associated with an increase in cortical microRNA biogenesis. Mol Psychiatry. 2010;15:1176–1189.
    1. Santarelli DM, Beveridge NJ, Tooney PA, Cairns MJ. Upregulation of dicer and microRNA expression in the dorsolateral prefrontal cortex Brodmann area 46 in schizophrenia. Biol Psychiatry. 2011;69:180–187.
    1. Lai CY, Yu SL, Hsieh MH, Chen CH, Chen HY, Wen CC, Huang YH, Hsiao PC, Hsiao CK, Liu CM, Yang PC, Hwu HG, Chen WJ. MicroRNA expression aberration as potential peripheral blood biomarkers for schizophrenia. PLoS One. 2011;6:e21635.
    1. Moreau MP, Bruse SE, David-Rus R, Buyske S, Brzustowicz LM. Altered microRNA expression profiles in postmortem brain samples from individuals with schizophrenia and bipolar disorder. Biol Psychiatry. 2011;69:188–193.
    1. Shi W, Du J, Qi Y, Liang G, Wang T, Li S, Xie S, Zeshan B, Xiao Z. Aberrant expression of serum miRNAs in schizophrenia. J Psychiatr Res. 2012;46:198–204.
    1. Rapoport J, Chavez A, Greenstein D, Addington A, Gogtay N. Autism spectrum disorders and childhood-onset schizophrenia: clinical and biological contributions to a relation revisited. J Am Acad Child Adolesc Psychiatry. 2009;48:10–18.

Source: PubMed

3
Se inscrever