Impact of Spirulina maxima Intake and Exercise (SIE) on Metabolic and Fitness Parameters in Sedentary Older Adults with Excessive Body Mass: Study Protocol of a Randomized Controlled Trial

Marco Antonio Hernández-Lepe, José de Jesús Manríquez-Torres, Omar Ramos-Lopez, Aracely Serrano-Medina, Melinna Ortiz-Ortiz, Jorge Alberto Aburto-Corona, María Del Pilar Pozos-Parra, Luis Eduardo Villalobos-Gallegos, Genaro Rodríguez-Uribe, Luis Mario Gómez-Miranda, Marco Antonio Hernández-Lepe, José de Jesús Manríquez-Torres, Omar Ramos-Lopez, Aracely Serrano-Medina, Melinna Ortiz-Ortiz, Jorge Alberto Aburto-Corona, María Del Pilar Pozos-Parra, Luis Eduardo Villalobos-Gallegos, Genaro Rodríguez-Uribe, Luis Mario Gómez-Miranda

Abstract

Life expectancy has increased unprecedentedly in recent decades, benefiting the longevity of the world's population. The most frequent pathological conditions presented in this age group include excessive body fat, frailty, and hypercholesterolemia. These pathological characteristics condition general health and autonomy in adults to carry out their usual activities. In this sense, the search for a healthy lifestyle is necessary, consisting in a healthy diet that includes supplementation with nutraceuticals and the daily practice of physical activity. This study protocol aims to evaluate the independent and synergistic effect of 12 weeks of Spirulina maxima intake (5 g/day), with or without an exercise program on metabolic and fitness parameters of 52 sedentary older adults with excessive body mass in a double-blind, randomized, crossover, controlled trial design. The main findings from this trial will provide novel evidence for future interventions designed for the elderly population and the result will be disseminated through peer-reviewed journals and international meetings. ClinicalTrials.gov identification number: NCT04658875 (Effect of Spirulina maxima and Exercise on General Fitness and Blood Lipids in Older Adults).

Keywords: Arthrospira maxima; dyslipidemia; elderly; obesity; physical exercise; randomized trial.

Conflict of interest statement

All authors declare that they have no conflicts of interest concerning this investigation, who have completed the International Committee of Medical Journal Editors (ICMJE) Format for Disclosure of Potential Conflicts of Interest, available at http://www.icmje.org/conflicts-of-interest/. The funders had no role in the study’s design; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Flow diagram of the experimental design for the impact of Spirulina maxima intake and exercise (SIE) trial. Same color indicates the same group of participants.

References

    1. World Health Organization 10 Facts on Ageing and Health. [(accessed on 10 December 2020)];2017 Available online:
    1. Rodgers J.L., Jones J., Bolleddu S.I., Vanthenapalli S., Rodgers L.E., Shah K., Karia K., Panguluri S.K. Cardiovascular risks associated with gender and aging. J. Cardiovasc. Dev. Dis. 2019;6:19. doi: 10.3390/jcdd6020019.
    1. Zamboni M., Mazzali G., Fantin F., Rossi A., Di Francesco V. Sarcopenic obesity: A new category of obesity in the elderly. Nutr. Metab. Cardiovasc. Dis. 2008;18:388–395. doi: 10.1016/j.numecd.2007.10.002.
    1. Potes Y., de Luxán-Delgado B., Rodriguez-González S., Guimarães M.R.M., Solano J.J., Fernández-Fernández M., Bermúdez M., Boga J.A., Vega-Naredo I., Coto-Montes A. Overweight in elderly people induces impaired autophagy in skeletal muscle. Free Radical Bio. Med. 2017;110:31–41. doi: 10.1016/j.freeradbiomed.2017.05.018.
    1. Atkins J.L., Wannamathee S.G. Sarcopenic obesity in ageing: Cardiovascular outcomes and mortality. Br. J. Nutr. 2020;124:1102–1113. doi: 10.1017/S0007114520002172.
    1. Villareal D.T., Chode S., Parimi N., Sinacore D.R., Hilton T., Armamento-Villareal R., Napoli N., Qualls C., Shah K. Weight loss, exercise, or both and physical function in obese older adults. N. Engl. J. Med. 2011;364:1218–1229. doi: 10.1056/NEJMoa1008234.
    1. Petretto D.R., Pili R., Gaviano L., Matos López C., Zuddas C. Active ageing and success: A brief history of conceptual models. Span. J. Geriatr. Gerontol. 2016;51:229–241.
    1. Hoseini S.M., Khosravi-Darani K., Mozafari M.R. Nutritional and medical applications of spirulina microalgae. Mini Rev. Med. Chem. 2013;13:1231–1237. doi: 10.2174/1389557511313080009.
    1. Moura L.P., Puga G.M., Beck W.R., Teixeira I.P., Ghezzi A.C., Silva G.A., Mello M.A.R. Exercise and spirulina control non-alcoholic hepatic steatosis and lipid profile in diabetic Wistar rats. Lipids Health Dis. 2011;10:77. doi: 10.1186/1476-511X-10-77.
    1. Hernández-Lepe M.A., Olivas-Aguirre F.J., Gómez-Miranda L.M., Hernández-Torres R.P., Manríquez-Torres J.d.J., Ramos-Jiménez A. Systematic Physical Exercise and Spirulina maxima Supplementation Improve Body Composition, Cardiorespiratory Fitness, and Blood Lipid Profile: Correlations of a Randomized Double-Blind Controlled Trial. Antioxidants. 2019;8:507. doi: 10.3390/antiox8110507.
    1. Fujimoto M., Tsuneyama K., Fujimoto T., Selmi C., Gershwin M.E., Shimada Y. Spirulina improves non-alcoholic steatohepatitis, visceral fat macrophage aggregation, and serum leptin in a mouse model of metabolic syndrome. Digest. Liver Dis. 2012;44:767–774. doi: 10.1016/j.dld.2012.02.002.
    1. Kata F.S., Athbi A.M., Manwar E.Q., Al-Ashoor A., Abdel-Daim M.M., Aleya L. Therapeutic effect of the alkaloid extract of the cyanobacterium Spirulina platensis on the lipid profile of hypercholesterolemic male rabbits. Environ. Sci. Pollut. Res. 2018;25:19635–19642. doi: 10.1007/s11356-018-2170-4.
    1. Estruch R., Ros E., Salas-Salvadó J., Covas M.I., Corella D., Arós F., Lamuela-Raventos R.M. Primary prevention of cardiovascular disease with a Mediterranean diet. N. Engl. J. Med. 2013;368:1279–1290. doi: 10.1056/NEJMoa1200303.
    1. Gomez-Cabrera M.C., Domenech E., Viña J. Moderate exercise is an antioxidant: Upregulation of antioxidant genes by training. Free Radical Biol. Med. 2008;44:126–131. doi: 10.1016/j.freeradbiomed.2007.02.001.
    1. Boardley D., Fahlman M., Topp R., Morgan A.L., McNevin N. The impact of exercise training on blood lipids in older adults. Am. J. Geriatr. Cardiol. 2007;16:30–35. doi: 10.1111/j.1076-7460.2007.05353.x.
    1. Tsekoura M., Billis E., Tsepis E., Dimitriadis Z., Matzaroglou C., Tyllianakis M., Panagiotopoulos E., Gliatis J. The effects of group and home-based exercise programs in elderly with sarcopenia: A randomized controlled trial. J. Clin. Med. 2018;7:480. doi: 10.3390/jcm7120480.
    1. Jang I.Y., Jung H.W., Park H., Lee C.K., Yu S.S., Lee Y.S., Lee E., Glynn R.J., Kim D.H. A multicomponent frailty intervention for socioeconomically vulnerable older adults: A designed-delay study. Clin. Interv. Aging. 2018;13:1799. doi: 10.2147/CIA.S177018.
    1. Morishita S., Tsubaki A., Nakamura M., Nashimoto S., Fu J.B., Onishi H. Rating of perceived exertion on resistance training in elderly subjects. Expert Rev. Cardiovasc. Ther. 2019;17:135–142. doi: 10.1080/14779072.2019.1561278.
    1. Foster C., Porcari J.P., Anderson J., Paulson M., Smaczny D., Webber H., Doberstein S.T., Udermann B. The talk test as a marker of exercise training intensity. J. Cardiopulm. Rehabil. Prev. 2008;28:24–30. doi: 10.1097/01.HCR.0000311504.41775.78.
    1. Medina C., Barquera S., Janssen I. Validity and reliability of the International Physical Activity Questionnaire among adults in Mexico. Revista Panamericana de Salud Pública. 2013;34:21–28.
    1. Schwartz J., Mas-Alòs S., Takito M.Y., Martinez J., Cueto M.E.Á., Mibelli M.S.R., Nagtegaal J., Lubert J., Rodrigues-Bezerra D., Bredin S.S., et al. Cross-cultural translation, adaptation, and reliability of the Spanish version of the Physical Activity Readiness Questionnaire for Everyone (PAR-Q+) Health Fit. J. Can. 2019;12:3–14.
    1. Hernández-Lepe M.A., Wall-Medrano A., Juárez-Oropeza M.A., Ramos-Jiménez A., Hernández-Torres R.P. Spirulina and its hypolipidemic and antioxidant effects in humans: A systematic review. Nutr. Hosp. 2015;32:494–500.
    1. American College of Sports Medicine . ACSM’s Guidelines for Exercise Testing and Prescription. 10th ed. Lippincott Williams & Wilkins; Philadelphia, PA, USA: 2016. pp. 111–142.
    1. World Health Organization Obesity and Overweight. [(accessed on 10 December 2020)];2017 Available online: .
    1. Ross W.D., Marfell-Jones M.J. Physiological Testing of Elite Athlete. Human Kinetics Publishers Inc.; London, UK: 1991. Kinanthropometry.
    1. Nelson M. The validation of dietary assessment. In: Margetts B.M., Nelson M., editors. Design Concepts in Nutritional Epidemiology. 2nd ed. Oxford University Press; Oxford, UK: 1997. pp. 266–295.
    1. Schaubert K.L., Bohannon R.W. Reliability and validity of three strength measures obtained from community-dwelling elderly persons. J. Strength Cond. Res. 2005;19:717.
    1. Rikli R.E., Jones C.J. Development and validation of a functional fitness test for community-residing older adults. J. Aging Phys. Act. 1999;7:129–161. doi: 10.1123/japa.7.2.129.
    1. Liew T.M., Feng L., Gao Q., Ng T.P., Yap P. Diagnostic utility of montreal cognitive assessment in the fifth edition of diagnostic and statistical manual of mental disorders: Major and mild neurocognitive disorders. J. Am. Med. Dir. Assoc. 2015;16:144–148. doi: 10.1016/j.jamda.2014.07.021.
    1. Spitzer R.L., Kroenke K., Williams J.B.W., Löwe B. A brief measure for assessing generalized anxiety disorder: The GAD-7. Arch. Intern. Med. 2006;166:1092–1097. doi: 10.1001/archinte.166.10.1092.
    1. Kroenke K., Spitzer R.L., Williams J.B.W. The PHQ-9: Validity of a brief depression severity measure. J. Gen. Intern. Med. 2001;16:606–613. doi: 10.1046/j.1525-1497.2001.016009606.x.
    1. Lichstein K.L., Stone K.C., Donaldson J., Nau S.D., Soeffing J.P., Murray D., Lester K.W., Aguillard R.N. Actigraphy validation with insomnia. Sleep. 2006;29:232–239.
    1. Spira A.P., Beaudreau S.A., Stone K.L., Kezirian E.J., Lui L.Y., Redline S., Ancoli-Israel S., Ensrud K., Stewart A. Reliability and validity of the Pittsburgh Sleep Quality Index and the Epworth Sleepiness Scale in older men. J. Gerontol. A Biol. Sci. Med. Sci. 2012;67:433–439. doi: 10.1093/gerona/glr172.
    1. Uschner D., Schindler D., Hilgers R., Heussen N. randomizeR: An R Package for the Assessment and Implementation of Randomization in Clinical Trials. J. Stat. Softw. 2018;85:1–22. doi: 10.18637/jss.v085.i08.
    1. Faul F., Erdfelder E., Lang A.G., Buchner A. G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods. 2007;39:175–191. doi: 10.3758/BF03193146.
    1. Hellmann F., Verdi M., Schlemper B.R., Jr., Caponi S. 50th anniversary of the Declaration of Helsinki: The double standard was introduced. Arch. Med. Res. 2014;45:600–601. doi: 10.1016/j.arcmed.2014.10.005.
    1. Ugwuja E.I., Ogbonna N.C., Nwibo A.N., Onimawo I.A. Overweight and obesity, lipid profile and atherogenic indices among civil servants in Abakaliki, South Eastern Nigeria. Ann. Med. Health Sci. Res. 2013;3:13–18. doi: 10.4103/2141-9248.109462.
    1. Fenster C.P., Weinsier R.L., Darley-Usmar V.M., Patel R.P. Obesity, aerobic exercise, and vascular disease: The role of oxidant stress. Obes. Res. 2002;10:964–968. doi: 10.1038/oby.2002.131.
    1. Serban M.C., Sahebkar A., Dragan S., Stoichescu-Hogea G., Ursoniu S., Andrica F., Banach M. A systematic review and meta-analysis of the impact of Spirulina supplementation on plasma lipid concentrations. Clin. Nutr. 2016;35:842–851. doi: 10.1016/j.clnu.2015.09.007.
    1. Kruger C., McNeely M.L., Bailey R.J., Yavari M., Abraldes J.G., Carbonneau M., Newnham K., DenHeyer V., Ma M., Thompson R., et al. Home exercise training improves exercise capacity in cirrhosis patients: Role of exercise adherence. Sci. Rep. 2018;8:1–10. doi: 10.1038/s41598-017-18320-y.
    1. Finnegan S., Bruce J., Lamb S.E., Griffiths F. Predictors of attendance to group exercise: A cohort study of older adults in long-term care facilities. BMC Geriatr. 2015;15:1–12. doi: 10.1186/s12877-015-0043-y.
    1. Ramos-Lopez O., Cuervo M., Goni L., Milagro F.I., Riezu-Boj J.I., Martinez J.A. Modeling of an integrative prototype based on genetic, phenotypic, and environmental information for personalized prescription of energy-restricted diets in overweight/obese subjects. Am. J. Clin. Nutr. 2020;111:459–470. doi: 10.1093/ajcn/nqz286.
    1. Kalafati M., Jamurtas A.Z., Nikolaidis M.G., Paschalis V., Theodorou A.A., Sakellariou G.K., Kouretas D. Ergogenic and Antioxidant Effects of Spirulina Supplementation in Humans. Med. Sci. Sports Exerc. 2010;42:142–151. doi: 10.1249/MSS.0b013e3181ac7a45.
    1. Mazokopakis E.E., Starakis I.K., Papadomanolaki M.G., Mavroeidi N.G., Ganotakis E.S. The hypolipidaemic effects of Spirulina (Arthrospira platensis) supplementation in a Cretan population: A prospective study. J. Sci. Food Agric. 2014;94:432–437. doi: 10.1002/jsfa.6261.

Source: PubMed

3
Se inscrever