A New Augmentation Method for Improved Screw Fixation in Fragile Bone

Deepak Bushan Raina, Vetra Markevičiūtė, Mindaugas Stravinskas, Joeri Kok, Ida Jacobson, Yang Liu, Erdem Aras Sezgin, Hanna Isaksson, Stefan Zwingenberger, Magnus Tägil, Šarūnas Tarasevičius, Lars Lidgren, Deepak Bushan Raina, Vetra Markevičiūtė, Mindaugas Stravinskas, Joeri Kok, Ida Jacobson, Yang Liu, Erdem Aras Sezgin, Hanna Isaksson, Stefan Zwingenberger, Magnus Tägil, Šarūnas Tarasevičius, Lars Lidgren

Abstract

Pertrochanteric fractures (TF) due to osteoporosis constitute nearly half of all proximal femur fractures. TFs are treated with a surgical approach and fracture fixation is achieved using metallic fixation devices. Poor quality cancellous bone in osteoporotic patients makes anchorage of a fixation device challenging, which can lead to failure of the fracture fixation. Methods to reinforce the bone-implant interface using bone cement (PMMA) and other calcium phosphate cements in TFs have been described earlier but a clear evidence on the advantage of using such biomaterials for augmentation is weak. Furthermore, there is no standardized technique for delivering these biomaterials at the bone-implant interface. In this study, we firstly describe a method to deliver a calcium sulphate/hydroxyapatite (CaS/HA) based biomaterial for the augmentation of a lag-screw commonly used for TF fixation. We then used an osteoporotic Sawbones model to study the consequence of CaS/HA augmentation on the immediate mechanical anchorage of the lag-screw to osteoporotic bone. Finally, as a proof-of-concept, the method of delivering the CaS/HA biomaterial at the bone-implant interface as well as spreading of the CaS/HA material at this interface was tested in patients undergoing treatment for TF as well as in donated femoral heads. The mechanical testing results indicated that the CaS/HA based biomaterial increased the peak extraction force of the lag-screw by 4 times compared with un-augmented lag-screws and the results were at par with PMMA. The X-ray images from the patient series showed that it was possible to inject the CaS/HA material at the bone-implant interface without applying additional pressure and the CaS/HA material spreading was observed at the interface of the lag-screw threads and the bone. Finally, the spreading of the CaS/HA material was also verified on donated femoral heads and micro-CT imaging indicated that the entire length of the lag-screw threads was covered with the CaS/HA biomaterial. In conclusion, we present a novel method for augmenting a lag-screw in TFs, which could potentially reduce the risk of fracture fixation failure and reoperation in fragile osteoporotic patients.

Keywords: biomaterial; hip fracture; implant augmentation; implant integration; osteoporosis.

Conflict of interest statement

LL is a board member and founder of Bonesupport, AB, Sweden and board member of OrthoCell Ltd. Australia. LL, MT, and DBR hold shares in Moroxite AB, Sweden. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Raina, Markevičiūtė, Stravinskas, Kok, Jacobson, Liu, Sezgin, Isaksson, Zwingenberger, Tägil, Tarasevičius and Lidgren.

Figures

FIGURE 1
FIGURE 1
CaS/HA biomaterial-based augmentation of a lag-screw in an osteoporotic Sawbones model. An overview of experimental steps is provided in the radiological time-lapse images starting from (i) the partial placement of the lag-screw followed by (ii) insertion of the injection device through the lag-screw (ii). (iii) CaS/HA biomaterial filled in the pre-drilled canal and (iv) the final position of the lag-screw surrounded by the CaS/HA material. Dashed black lines in (i) and (ii) indicate the approximate position of the pre-drilled region. Scale bar = approximately 1.3 cm.
FIGURE 2
FIGURE 2
A schematic indicating the current praxis used for the surgical management of pertrochanteric fractures (top) and the proposed solution of augmenting the lag-screw with a CaS/HA biomaterial to reduce fracture fixation device failure (bottom).
FIGURE 3
FIGURE 3
A surgical method of delivering a CaS/HA biomaterial through a cannulated lag-screw in a patient undergoing treatment for pertrochanteric fracture. (i) X-ray showing a pertrochanteric fracture. (ii) A photograph of the injection cannula being connected to a regular injection syringe containing the CaS/HA biomaterial. (iii) Placement of the titanium cannula at the most distal end of the pre-drilled canal via the cannulated lag-screw visualized radiographically. (iv) Radiographic image of the CaS/HA biomaterial being injected into the pre-drilled canal in-front of the lag-screw. (v) Radiograph of the final position of the lag-screw with the biomaterial around. Scale bar in panels iii-v is ∼1.3 cm.
FIGURE 4
FIGURE 4
Mechanical effects of CaS/HA augmentation on lag-screw anchorage in Sawbones (Top) Shows photographs of the Sawbones block and the lag-screw after the pull-out test. Notice the spreading of the CaS/HA material in the pre-drilled hole and the presence of both CaS/HA and PMMA biomaterial-Sawbones composite on the lag-screws after pull-out testing (Bottom) Scatter plots showing mean peak force to pull-out the screw, the stiffness and work required until the failure of the screws in the Sawbones model. * Indicates p < 0.05, ** indicates p < 0.01 and **** indicates p < 0.0001. ns indicates not significant. Scale bar indicates 1.3 cm.
FIGURE 5
FIGURE 5
CaS/HA spreading around the lag-screw and bone interface in cadaver femoral head as observed by micro-CT and a digital photograph taken after removal of the lag screw. Scale bar indicates ∼0.5 cm.
FIGURE 6
FIGURE 6
CaS/HA spreading around the lag-screw in patients undergoing pertrochanteric fracture fixation using a sliding lag-screw and a femoral plate. Arrows indicate the radio dense CaS/HA material around the lag-screw-bone interface. Scale bar indicates ∼1.3 cm.

References

    1. Abramo A., Geijer M., Kopylov P., Tãgil M. (2010). Osteotomy of Distal Radius Fracture Malunion Using a Fast Remodeling Bone Substitute Consisting of Calcium Sulphate and Calcium Phosphate. J. Biomed. Mater. Res. 92B, 281–286. 10.1002/jbm.b.31524
    1. Aneja A., Teasdall R. J., Graves M. L. (2021). Biomechanics of Osteoporotic Fracture Care: Advances in Locking Plate and Intramedullary Nail Technology. J. Orthopaedic Trauma 35, S1–S5. 10.1097/bot.0000000000002228
    1. Aprato A., Bechis M., Buzzone M., Bistolfi A., Daghino W., Massè A. (2020). No Rest for Elderly Femur Fracture Patients: Early Surgery and Early Ambulation Decrease Mortality. J. Orthop. Traumatol. 21, 12. 10.1186/s10195-020-00550-y
    1. Dvorzhinskiy A., Perino G., Chojnowski R., Van Der Meulen M. C. H., Bostrom M. P. G., Yang X. (2021). Ceramic Composite with Gentamicin Decreases Persistent Infection and Increases Bone Formation in a Rat Model of Debrided Osteomyelitis. J. Bone Jt. Infect. 6, 283–293. 10.5194/jbji-6-283-2021
    1. Edwards C., Counsell A., Boulton C., Moran C. G. (2008). Early Infection after Hip Fracture Surgery. The J. Bone Jt. Surg. Br. volume 90-B, 770–777. 10.1302/0301-620x.90b6.20194
    1. Fuchs A., Langenmair E., Hirschmüller A., Südkamp N., Konstantinidis L. (2019). Implant Augmentation for Trochanteric Fractures with an Innovative, Ready to Use Calcium-Phosphate-Cement. J. Orthopaedics Bone Res. 1, 104.
    1. Goodnough L. H., Wadhwa H., Tigchelaar S. S., Debaun M. R., Chen M. J., Graves M. L., et al. (2021). Indications for Cement Augmentation in Fixation of Geriatric Intertrochanteric Femur Fractures: a Systematic Review of Evidence. Arch. Orthop. Trauma Surg. 10.1007/s00402-021-03872-6
    1. Grimsrud C., Monzon R. J., Richman J., Ries M. D. (2005). Cemented Hip Arthroplasty with a Novel Cerclage Cable Technique for Unstable Intertrochanteric Hip Fractures. The J. Arthroplasty 20, 337–343. 10.1016/j.arth.2004.04.017
    1. Gullberg B., Johnell O., Kanis J. A. (1997). World-wide Projections for Hip Fracture. Osteoporos. Int. 7, 407–413. 10.1007/pl00004148
    1. Gupta R., Gupta V., Gupta N. (2012). Outcomes of Osteoporotic Trochanteric Fractures Treated with Cement-Augmented Dynamic Hip Screw. Indian J. Orthop. 46, 640–645. 10.4103/0019-5413.104193
    1. Kok J., Širka A., Liu Y., Tarasevičius Š., Belickas J., Tägil M., et al. (2021a). Augmenting a Dynamic Hip Screw with a Calcium Sulfate/hydroxyapatite Biomaterial. Med. Eng. Phys. 92, 102–109. 10.1016/j.medengphy.2021.05.006
    1. Kok J., Törnquist E., Raina D., Le Cann S., Novak V., Sirka A., et al. (2021b). “Fracture Behavior of a Composite of Bone and Calcium Sulfate/hydroxyapatite,” in XXVIII Congress of the International Society of Biomechanics, Remote, France, July, 2021.
    1. Leichtle C. I., Lorenz A., Rothstock S., Happel J., Walter F., Shiozawa T., et al. (2016). Pull-out Strength of Cemented Solid versus Fenestrated Pedicle Screws in Osteoporotic Vertebrae. Bone Jt. Res. 5, 419–426. 10.1302/2046-3758.59.2000580
    1. Mattisson L., Bojan A., Enocson A. (2018). Epidemiology, Treatment and Mortality of Trochanteric and Subtrochanteric Hip Fractures: Data from the Swedish Fracture Register. BMC Musculoskelet. Disord. 19, 369. 10.1186/s12891-018-2276-3
    1. Mattsson P., Larsson S. (2006). Calcium Phosphate Cement for Augmentation Did Not Improve Results after Internal Fixation of Displaced Femoral Neck Fractures: A Randomized Study of 118 Patients. Acta Orthopaedica 77, 251–256. 10.1080/17453670610045984
    1. Mattsson P., Larsson S. (2004). Unstable Trochanteric Fractures Augmented with Calcium Phosphate Cement: a Prospective Randomized Study Using Radiostereometry to Measure Fracture Stability. Scand. J. Surg. 93, 223–228. 10.1177/145749690409300310
    1. McNally M. A., Ferguson J. Y., Lau A. C. K., Diefenbeck M., Scarborough M., Ramsden A. J., et al. (2016). Single-stage Treatment of Chronic Osteomyelitis with a New Absorbable, Gentamicin-Loaded, Calcium Sulphate/hydroxyapatite Biocomposite: a Prospective Series of 100 Cases. Bone Jt. J. 98-b, 1289–1296. 10.1302/0301-620x.98b9.38057
    1. NIH Concensus development panel (2001). NIH Concensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. Jama 285, 785–795. 10.1001/jama.285.6.785
    1. Nilsson M., Wielanek L., Wang J. S., Tanner K. E., Lidgren L. (2003). Factors Influencing the Compressive Strength of an Injectable Calcium Sulfate-Hydroxyapatite Cement. J. Mater. Sci. Mater. Med. 14, 399–404. 10.1023/a:1023254632704
    1. Odén A., Mccloskey E. V., Kanis J. A., Harvey N. C., Johansson H. (2015). Burden of High Fracture Probability Worldwide: Secular Increases 2010-2040. Osteoporos. Int. 26, 2243–2248. 10.1007/s00198-015-3154-6
    1. Rai A. K., Goel R., Bhatia C., Singh S., Thalanki S., Gondane A. (2018). Cement Augmentation of Dynamic Hip Screw to Prevent Screw Cut Out in Osteoporotic Patients with Intertrochanteric Fractures: A Case Series. Hip Pelvis 30, 269–275. 10.5371/hp.2018.30.4.269
    1. Raina D. B., Matuszewski L. M., Vater C., Bolte J., Isaksson H., Lidgren L., et al. (2020b). A Facile One-Stage Treatment of Critical Bone Defects Using a Calcium Sulfate/hydroxyapatite Biomaterial Providing Spatiotemporal Delivery of Bone Morphogenic Protein-2 and Zoledronic Acid. Sci. Adv. 6, eabc1779. 10.1126/sciadv.abc1779
    1. Raina D. B., Isaksson H., Hettwer W., Kumar A., Lidgren L., Tägil M. (2016). A Biphasic Calcium Sulphate/Hydroxyapatite Carrier Containing Bone Morphogenic Protein-2 and Zoledronic Acid Generates Bone. Sci. Rep. 6, 26033. 10.1038/srep26033
    1. Raina D. B., Larsson D., Sezgin E. A., Isaksson H., Tägil M., Lidgren L. (2019). Biomodulation of an Implant for Enhanced Bone-Implant anchorage. Acta Biomater. 96, 619–630. 10.1016/j.actbio.2019.07.009
    1. Raina D. B., Liu Y., Isaksson H., Tägil M., Lidgren L. (2020a). Synthetic Hydroxyapatite: a Recruiting Platform for Biologically Active Molecules. Acta Orthopaedica 91, 126–132. 10.1080/17453674.2019.1686865
    1. Sezgin E. A., Markevičiūtė V., Širka A., Tarasevičius Š., Raina D. B., Isaksson H., et al. (2020). Combined Fracture and Mortality Risk Evaluation for Stratifying Treatment in Hip Fracture Patients: A Feasibility Study. Jt. Dis. Relat. Surg. 31, 163–168. 10.5606/ehc.2020.73458
    1. Stoffel K. K., Leys T., Damen N., Nicholls R. L., Kuster M. S. (2008). A New Technique for Cement Augmentation of the Sliding Hip Screw in Proximal Femur Fractures. Clin. Biomech. 23, 45–51. 10.1016/j.clinbiomech.2007.08.014
    1. Stravinskas M., Tarasevicius S., Laukaitis S., Nilsson M., Raina D. B., Lidgren L. (2018). A Ceramic Bone Substitute Containing Gentamicin Gives Good Outcome in Trochanteric Hip Fractures Treated with Dynamic Hip Screw and in Revision of Total Hip Arthroplasty: a Case Series. BMC Musculoskelet. Disord. 19, 438. 10.1186/s12891-018-2360-8
    1. Wang J.-S., Tägil M., Isaksson H., Boström M., Lidgren L. (2016). Tissue Reaction and Material Biodegradation of a Calcium Sulfate/apatite Biphasic Bone Substitute in Rat Muscle. J. Orthopaedic Translation 6, 10–17. 10.1016/j.jot.2015.11.002
    1. Whitehouse M. R., Atwal N. S., Pabbruwe M., Blom A. W., Bannister G. C. (2014). Osteonecrosis with the Use of Polymethylmethacrylate Cement for Hip Replacement: thermal-induced Damage Evidenced In Vivo by Decreased Osteocyte Viability. Eur. Cell Mater 27, 50–53. 10.22203/ecm.v027a05
    1. Wu M. H., Lee P. C., Peng K. T., Wu C. C., Huang T. J., Hsu R. W. (2012). Complications of Cement-Augmented Dynamic Hip Screws in Unstable Type Intertrochanteric Fractures-Aa Case Series Study. Chang Gung Med. J. 35, 345–353. 10.4103/2319-4170.106135
    1. Young S., Holde M., Gunasekaran S., Poser R., Constantz B. (1998). The Correlation of Radiographic, MRI and Histologic Evaluations over Two Years of a Carbonated Apatite Cement in a Rabbit Model. J. Orthopaedic Trauma 13, 301. 10.1097/00005131-199905000-00054
    1. Zampelis V., Tägil M., Lidgren L., Isaksson H., Atroshi I., Wang J.-S. (2013). The Effect of a Biphasic Injectable Bone Substitute on the Interface Strength in a Rabbit Knee Prosthesis Model. J. Orthopaedic Surg. Res. 8, 25. 10.1186/1749-799x-8-25

Source: PubMed

3
Se inscrever