Linking the Endocannabinoidome with Specific Metabolic Parameters in an Overweight and Insulin-Resistant Population: From Multivariate Exploratory Analysis to Univariate Analysis and Construction of Predictive Models

Clara Depommier, Nicolas Flamand, Rudy Pelicaen, Dominique Maiter, Jean-Paul Thissen, Audrey Loumaye, Michel P Hermans, Amandine Everard, Nathalie M Delzenne, Vincenzo Di Marzo, Patrice D Cani, Clara Depommier, Nicolas Flamand, Rudy Pelicaen, Dominique Maiter, Jean-Paul Thissen, Audrey Loumaye, Michel P Hermans, Amandine Everard, Nathalie M Delzenne, Vincenzo Di Marzo, Patrice D Cani

Abstract

The global obesity epidemic continues to rise worldwide. In this context, unraveling new interconnections between biological systems involved in obesity etiology is highly relevant. Dysregulation of the endocannabinoidome (eCBome) is associated with metabolic complications in obesity. This study aims at deciphering new associations between circulating endogenous bioactive lipids belonging to the eCBome and metabolic parameters in a population of overweight or obese individuals with metabolic syndrome. To this aim, we combined different multivariate exploratory analysis methods: canonical correlation analysis and principal component analysis, revealed associations between eCBome subsets, and metabolic parameters such as leptin, lipopolysaccharide-binding protein, and non-esterified fatty acids (NEFA). Subsequent construction of predictive regression models according to the linear combination of selected endocannabinoids demonstrates good prediction performance for NEFA. Descriptive approaches reveal the importance of specific circulating endocannabinoids and key related congeners to explain variance in the metabolic parameters in our cohort. Analysis of quartiles confirmed that these bioactive lipids were significantly higher in individuals characterized by important levels for aforementioned metabolic variables. In conclusion, by proposing a methodology for the exploration of large-scale data, our study offers additional evidence of the existence of an interplay between eCBome related-entities and metabolic parameters known to be altered in obesity.

Trial registration: ClinicalTrials.gov NCT02637115.

Keywords: LBP; NEFA; endocannabinoidome; endocannabinoids; human; leptin; metabolic syndrome; multivariate analysis; obesity.

Conflict of interest statement

P.D.C. is co-founder of A-Mansia Biotech SA. The other authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Unsupervised exploration of the relationship between measured eCB system-related mediators and biological parameters using regularized canonical correlation (rCCA) and correlation matrix. (A) Correlation circle plot allocating biological parameters and eCBome features along the main components derived from the integration of both data sets. The components correspond to the equiangular vector between x- and y-variates. The features in the area outside the inner concentric circle (radius < 0.5) were retained as significant and shown in the scatter plot. (B) Relevance network of top correlations between biological parameters (circles) and eCBome lipids (rectangles) with a cut-off = 0.55. Lines are colored according to the strength of the association score between two variables with red showing positive correlations. (C) Correlation matrix (Spearman with Holm’s adjustment); positive correlations are displayed in blue and negative correlations in red color. The color intensity and the size of the circle are proportional to the correlation coefficients. “X” refers to the first data set, the metabolic biological parameters while “Y” refers to the second data set, the endocannabinoids. Abbreviations: see Table 1.
Figure 2
Figure 2
Deeper exploration of the relationship between measured eCB-related mediators and the biological parameters selected from rCCA using PCA. (A) Individual plots, the color gradient for each individual was established according to the concentration of the referred biological variable. (B) Scatterplots showing the linear relation between first principal components and the referred variable. (C) Scatterplots showing the linear relation between second principal components and the metabolic variable. The confidence interval is displayed in grey around the mean. (B,C) Each linear regression plot is accompanied by the R square, the p value and the coefficient of correlation (Pearson). Abbreviations: see Table 1.
Figure 3
Figure 3
Modeling and validation of variable response according to a selected subset of the eCBome. (A,B) PLSR correlation plot between predicted and measured NEFA levels according to the selected eCBome mediator subset, illustrating the predictive quality of NEFA in the (A) training group (n = 26) and (B) the test group (n = 6). (C) PLSR correlation plot between predicted and measured leptin according to the selected eCBome mediator subset, constructed on all observations without cross-validation (n = 32). (D) Scale plot illustrating the lw, rc, smc, sr and vip for each of the eCBome predictors in the variable-response prediction model. (E) PLSR correlation plot between predicted and measured LBP according to the selected eCBs mediator subset, construct on all observations without cross-validation (n = 32). (F) Scale plot illustrating the lw, rc, smc, sr, and vip for each of the eCBs predictors in the variable-response prediction model. (A,C,E) The black line illustrated a perfect correlation (R2 = 1), the red line showed the measured correlation (five components for NEFA, four components for leptin, three components for LBP). (D,F) Color legend: red = smc (significance multivariate correlation); dark green = vip (variable importance in projections); light green = sr (selectivity ratio); dark blue = lw (loading weight); light blue = rc (regression coefficient). Abbreviations: see Table 1.
Figure 4
Figure 4
Univariate tests on quartiles. The number 1 corresponds to the lower quartile, while the number 4 corresponds to the upper quartile. (A,B) Boxplots of the concentration of (A) OEA, (B) AEA, (C) DHEA, according to NEFA quartiles. (DF) Boxplots of the concentration of (D) EPA, (E) EPEA, (F) DHEA, according to leptin quartiles. (GI) Boxplots of the concentration of (G) AEA, (H) EPEA, (I) DPEA, according to LBP quartiles. Data with different superscript letters are significantly different at p < 0.05, according to the post-hoc ANOVA statistical analysis (C,F), or Kruskal-Wallis multiple comparisons test (A,B,D,E,GI). Abbreviations: see Table 1.

References

    1. Di Marzo V. The endocannabinoidome as a substrate for noneuphoric phytocannabinoid action and gut microbiome dysfunction in neuropsychiatric disorders. Dialogues Clin. Neurosci. 2020;22:259–269. doi: 10.31887/DCNS.2020.22.3/vdimarzo.
    1. Cani P.D., Plovier H., Van Hul M., Geurts L., Delzenne N.M., Druart C., Everard A. Endocannabinoids--at the crossroads between the gut microbiota and host metabolism. Nat. Rev. Endocrinol. 2016;12:133–143. doi: 10.1038/nrendo.2015.211.
    1. Veilleux A., Di Marzo V., Silvestri C. The Expanded Endocannabinoid System/Endocannabinoidome as a Potential Target for Treating Diabetes Mellitus. Curr. Diabetes Rep. 2019;19:117. doi: 10.1007/s11892-019-1248-9.
    1. Cristino L., Bisogno T., Di Marzo V. Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat. Rev. Neurol. 2020;16:9–29. doi: 10.1038/s41582-019-0284-z.
    1. Di Marzo V. New approaches and challenges to targeting the endocannabinoid system. Nat. Rev. Drug Discov. 2018;17:623–639. doi: 10.1038/nrd.2018.115.
    1. Simon V., Cota D. Mechanisms in Endocrinology: Endocannabinoids and metabolism: Past, present and future. Eur. J. Endocrinol. 2017;176:R309–R324. doi: 10.1530/EJE-16-1044.
    1. Silvestri C., Di Marzo V. The endocannabinoid system in energy homeostasis and the etiopathology of metabolic disorders. Cell Metab. 2013;17:475–490. doi: 10.1016/j.cmet.2013.03.001.
    1. Di Marzo V., Silvestri C. Lifestyle and Metabolic Syndrome: Contribution of the Endocannabinoidome. Nutrients. 2019;11:1956. doi: 10.3390/nu11081956.
    1. Forte N., Fernández-Rilo A.C., Palomba L., Di Marzo V., Cristino L. Obesity Affects the Microbiota-Gut-Brain Axis and the Regulation Thereof by Endocannabinoids and Related Mediators. Int. J. Mol. Sci. 2020;21:1554. doi: 10.3390/ijms21051554.
    1. Osei-Hyiaman D., Liu J., Zhou L., Godlewski G., Harvey-White J., Jeong W.I., Bátkai S., Marsicano G., Lutz B., Buettner C., et al. Hepatic CB1 receptor is required for development of diet-induced steatosis, dyslipidemia, and insulin and leptin resistance in mice. J. Clin. Investig. 2008;118:3160–3169. doi: 10.1172/JCI34827.
    1. Castonguay-Paradis S., Lacroix S., Rochefort G., Parent L., Perron J., Martin C., Lamarche B., Raymond F., Flamand N., Di Marzo V., et al. Dietary fatty acid intake and gut microbiota determine circulating endocannabinoidome signaling beyond the effect of body fat. Sci. Rep. 2020;10:15975. doi: 10.1038/s41598-020-72861-3.
    1. Gatta-Cherifi B., Cota D. New insights on the role of the endocannabinoid system in the regulation of energy balance. Int. J. Obes. 2016;40:210–219. doi: 10.1038/ijo.2015.179.
    1. Karwad M.A., Macpherson T., Wang B., Theophilidou E., Sarmad S., Barrett D.A., Larvin M., Wright K.L., Lund J.N., O’Sullivan S.E. Oleoylethanolamine and palmitoylethanolamine modulate intestinal permeability in vitro via TRPV1 and PPARalpha. FASEB J. 2017;31:469–481. doi: 10.1096/fj.201500132.
    1. Borrelli F., Romano B., Petrosino S., Pagano E., Capasso R., Coppola D., Battista G., Orlando P., Di Marzo V., Izzo A.A. Palmitoylethanolamide, a naturally occurring lipid, is an orally effective intestinal anti-inflammatory agent. Br. J. Pharmacol. 2015;172:142–158. doi: 10.1111/bph.12907.
    1. Syed S.K., Bui H.H., Beavers L.S., Farb T.B., Ficorilli J., Chesterfield A.K., Kuo M.S., Bokvist K., Barrett D.G., Efanov A.M. Regulation of GPR119 receptor activity with endocannabinoid-like lipids. Am. J. Physiol. Endocrinol. Metab. 2012;303:E1469–E1478. doi: 10.1152/ajpendo.00269.2012.
    1. Overton H.A., Babbs A.J., Doel S.M., Fyfe M.C., Gardner L.S., Griffin G., Jackson H.C., Procter M.J., Rasamison C.M., Tang-Christensen M., et al. Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents. Cell Metab. 2006;3:167–175. doi: 10.1016/j.cmet.2006.02.004.
    1. Godlewski G., Offertaler L., Wagner J.A., Kunos G. Receptors for acylethanolamides-GPR55 and GPR119. Prostaglandins Other Lipid Mediat. 2009;89:105–111. doi: 10.1016/j.prostaglandins.2009.07.001.
    1. Iannotti F.A., Di Marzo V., Petrosino S. Endocannabinoids and endocannabinoid-related mediators: Targets, metabolism and role in neurological disorders. Prog. Lipid Res. 2016;62:107–128. doi: 10.1016/j.plipres.2016.02.002.
    1. Meng C., Zeleznik O.A., Thallinger G.G., Kuster B., Gholami A.M., Culhane A.C. Dimension reduction techniques for the integrative analysis of multi-omics data. Briefings Bioinform. 2016;17:628–641. doi: 10.1093/bib/bbv108.
    1. Rohart F., Gautier B., Singh A., Le Cao K.A. mixOmics: An R package for ‘omics feature selection and multiple data integration. PLoS Comput. Biol. 2017;13:e1005752. doi: 10.1371/journal.pcbi.1005752.
    1. Depommier C., Everard A., Druart C., Plovier H., Van Hul M., Vieira-Silva S., Falony G., Raes J., Maiter D., Delzenne N.M., et al. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: A proof-of-concept exploratory study. Nat. Med. 2019;25:1096–1103. doi: 10.1038/s41591-019-0495-2.
    1. Werner M., Tonjes A., Stumvoll M., Thiery J., Kratzsch J. Assay-dependent variability of serum insulin levels during oral glucose tolerance test: Influence on reference intervals for insulin and on cut-off values for insulin sensitivity indices. Clin. Chem. Lab. Med. 2008;46:240–246. doi: 10.1515/CCLM.2008.020.
    1. Borza D., Karmali R., Andre S., Valsamis J., Cytryn E., Hermans M.P., Beyer I. Influence of assay-dependent variability of serum insulin levels on insulin sensitivity indices. Clin. Chem. Lab. Med. 2008;46:1655–1656. doi: 10.1515/CCLM.2008.315.
    1. Turcotte C., Archambault A.S., Dumais É., Martin C., Blanchet M.R., Bissonnette E., Ohashi N., Yamamoto K., Itoh T., Laviolette M., et al. Endocannabinoid hydrolysis inhibition unmasks that unsaturated fatty acids induce a robust biosynthesis of 2-arachidonoyl-glycerol and its congeners in human myeloid leukocytes. FASEB J. 2020;34:4253–4265. doi: 10.1096/fj.201902916R.
    1. Everard A., Plovier H., Rastelli M., Van Hul M., de Wouters d’Oplinter A., Geurts L., Druart C., Robine S., Delzenne N.M., Muccioli G.G., et al. Intestinal epithelial N-acylphosphatidylethanolamine phospholipase D links dietary fat to metabolic adaptations in obesity and steatosis. Nat. Commun. 2019;10:457. doi: 10.1038/s41467-018-08051-7.
    1. Le Cao K.-A.R., Gonzalez I., Dejean S., Gautier B., Bartolo F., Monget P., Coquery J., Yao F., Liquet B. mixOmics: Omics Data Integration Project. [(accessed on 17 November 2020)]; R Package Version 6.1.1. Available online: .
    1. Gonzalez I., Déjean S., Martin P., Baccini A. CCA: An R Package to Extend Canonical Correlation Analysis. J. Stat. Softw. 2007;23 doi: 10.18637/jss.v023.i12.
    1. Gonzalez I., Déjean S., Martin P., Gonçalves O., Besse P., Baccini A. Highlighting Relationships Between Heteregeneous Biological Data Through Graphical Displays Based On Regularized Canonical Correlation Analysis. J. Biol. Syst. 2009;17:173–199. doi: 10.1142/S0218339009002831.
    1. González I., Lê Cao K.-A., Davis M.J., Déjean S. network: Relevance Network for (r)CCA and (s)PLS regression. [(accessed on 17 November 2020)]; Available online: .
    1. Gonzalez I., Cao K.A., Davis M.J., Dejean S. Visualising associations between paired ‘omics’ data sets. BioData Min. 2012;5:19. doi: 10.1186/1756-0381-5-19.
    1. Witkamp R.F. The role of fatty acids and their endocannabinoid-like derivatives in the molecular regulation of appetite. Mol. Asp. Med. 2018;64:45–67. doi: 10.1016/j.mam.2018.01.002.
    1. Lefort C., Roumain M., Van Hul M., Rastelli M., Manco R., Leclercq I., Delzenne N.M., Marzo V.D., Flamand N., Luquet S., et al. Hepatic NAPE-PLD Is a Key Regulator of Liver Lipid Metabolism. Cells. 2020;9:1247. doi: 10.3390/cells9051247.
    1. Gruden G., Barutta F., Kunos G., Pacher P. Role of the endocannabinoid system in diabetes and diabetic complications. Br. J. Pharmacol. 2016;173:1116–1127. doi: 10.1111/bph.13226.
    1. Bazwinsky-Wutschke I., Zipprich A., Dehghani F. Endocannabinoid System in Hepatic Glucose Metabolism, Fatty Liver Disease, and Cirrhosis. Int. J. Mol. Sci. 2019;20:2516. doi: 10.3390/ijms20102516.
    1. Anderson R.A.T., Black W.C., Hai J.F.R. Multivariate Data Analysis. Volume 5 Prentice hall; Upper Saddle River, NJ, USA: 1998.
    1. Fanelli F., Mezzullo M., Repaci A., Belluomo I., Ibarra Gasparini D., Di Dalmazi G., Mastroroberto M., Vicennati V., Gambineri A., Morselli-Labate A.M., et al. Profiling plasma N-Acylethanolamine levels and their ratios as a biomarker of obesity and dysmetabolism. Mol. Metab. 2018;14:82–94. doi: 10.1016/j.molmet.2018.06.002.
    1. Côté M., Matias I., Lemieux I., Petrosino S., Alméras N., Després J.P., Di Marzo V. Circulating endocannabinoid levels, abdominal adiposity and related cardiometabolic risk factors in obese men. Int. J. Obes. 2007;31:692–699. doi: 10.1038/sj.ijo.0803539.
    1. Blüher M., Engeli S., Klöting N., Berndt J., Fasshauer M., Bátkai S., Pacher P., Schön M.R., Jordan J., Stumvoll M. Dysregulation of the peripheral and adipose tissue endocannabinoid system in human abdominal obesity. Diabetes. 2006;55:3053–3060. doi: 10.2337/db06-0812.
    1. Mahesh S., Jayas D., Paliwal J., White N. Comparison of Partial Least Squares Regression (PLSR) and Principal Components Regression (PCR) Methods for Protein and Hardness Predictions using the Near-Infrared (NIR) Hyperspectral Images of Bulk Samples of Canadian Wheat. Food Bioprocess Technol. 2014;8:31–40. doi: 10.1007/s11947-014-1381-z.
    1. Kabir A., Rahman M.J., Shamim A.A., Klemm R.D.W., Labrique A.B., Rashid M., Christian P., West K.P., Jr. Identifying maternal and infant factors associated with newborn size in rural Bangladesh by partial least squares (PLS) regression analysis. PLoS ONE. 2017;12:e0189677. doi: 10.1371/journal.pone.0189677.
    1. Kimura I., Ichimura A., Ohue-Kitano R., Igarashi M. Free Fatty Acid Receptors in Health and Disease. Physiol. Rev. 2019;100:171–210. doi: 10.1152/physrev.00041.2018.
    1. Faraj M., Lu H., Cianflone K. Diabetes, lipids, and adipocyte secretagogues. Biochem. Cell Biol. 2004;82:170–190. doi: 10.1139/o03-078.
    1. Blaak E.E. Fatty acid metabolism in obesity and type 2 diabetes mellitus. Proc. Nutr. Soc. 2003;62:753–760. doi: 10.1079/PNS2003290.
    1. Guzmán M., Lo Verme J., Fu J., Oveisi F., Blázquez C., Piomelli D. Oleoylethanolamide stimulates lipolysis by activating the nuclear receptor peroxisome proliferator-activated receptor alpha (PPAR-alpha) J. Biol. Chem. 2004;279:27849–27854. doi: 10.1074/jbc.M404087200.
    1. Fu J., Oveisi F., Gaetani S., Lin E., Piomelli D. Oleoylethanolamide, an endogenous PPAR-alpha agonist, lowers body weight and hyperlipidemia in obese rats. Neuropharmacology. 2005;48:1147–1153. doi: 10.1016/j.neuropharm.2005.02.013.
    1. Terrazzino S., Berto F., Dalle Carbonare M., Fabris M., Guiotto A., Bernardini D., Leon A. Stearoylethanolamide exerts anorexic effects in mice via down-regulation of liver stearoyl-coenzyme A desaturase-1 mRNA expression. FASEB J. 2004;18:1580–1582. doi: 10.1096/fj.03-1080fje.
    1. Shi D., Zhan X., Yu X., Jia M., Zhang Y., Yao J., Hu X., Bao Z. Inhibiting CB1 receptors improves lipogenesis in an in vitro non-alcoholic fatty liver disease model. Lipids Health Dis. 2014;13:173. doi: 10.1186/1476-511X-13-173.
    1. Schwabe R. Endocannabinoids promote hepatic lipogenesis and steatosis through CB1 receptors. Hepatology. 2005;42:959–961. doi: 10.1002/hep.20900.
    1. Buettner C., Muse E.D., Cheng A., Chen L., Scherer T., Pocai A., Su K., Cheng B., Li X., Harvey-White J., et al. Leptin controls adipose tissue lipogenesis via central, STAT3–independent mechanisms. Nat. Med. 2008;14:667–675. doi: 10.1038/nm1775.
    1. Joosten M.M., Balvers M.G., Verhoeckx K.C., Hendriks H.F., Witkamp R.F. Plasma anandamide and other N-acylethanolamines are correlated with their corresponding free fatty acid levels under both fasting and non-fasting conditions in women. Nutr. Metab. 2010;7:49. doi: 10.1186/1743-7075-7-49.
    1. Pérez-Pérez A., Sánchez-Jiménez F., Vilariño-García T., Sánchez-Margalet V. Role of Leptin in Inflammation and Vice Versa. Int. J. Mol. Sci. 2020;21:5887. doi: 10.3390/ijms21165887.
    1. Balvers M.G., Verhoeckx K.C., Plastina P., Wortelboer H.M., Meijerink J., Witkamp R.F. Docosahexaenoic acid and eicosapentaenoic acid are converted by 3T3-L1 adipocytes to N-acyl ethanolamines with anti-inflammatory properties. Biochim. Biophys. Acta. 2010;1801:1107–1114. doi: 10.1016/j.bbalip.2010.06.006.
    1. Gdula-Argasińska J., Bystrowska B. Docosahexaenoic acid attenuates in endocannabinoid synthesis in RAW 264.7 macrophages activated with benzo(a)pyrene and lipopolysaccharide. Toxicol. Lett. 2016;258:93–100. doi: 10.1016/j.toxlet.2016.06.017.
    1. McDougle D.R., Watson J.E., Abdeen A.A., Adili R., Caputo M.P., Krapf J.E., Johnson R.W., Kilian K.A., Holinstat M., Das A. Anti-inflammatory ω-3 endocannabinoid epoxides. Proc. Natl. Acad. Sci. USA. 2017;114:E6034. doi: 10.1073/pnas.1610325114.
    1. Valassi E., Scacchi M., Cavagnini F. Neuroendocrine control of food intake. Nutr. Metab. Cardiovasc. Dis. 2008;18:158–168. doi: 10.1016/j.numecd.2007.06.004.
    1. Di Marzo V., Goparaju S.K., Wang L., Liu J., Batkai S., Jarai Z., Fezza F., Miura G.I., Palmiter R.D., Sugiura T., et al. Leptin-regulated endocannabinoids are involved in maintaining food intake. Nature. 2001;410:822–825. doi: 10.1038/35071088.
    1. Balsevich G., Petrie G.N., Hill M.N. Endocannabinoids: Effectors of glucocorticoid signaling. Front. Neuroendocrinol. 2017;47:86–108. doi: 10.1016/j.yfrne.2017.07.005.
    1. Ruiz A.G., Casafont F., Crespo J., Cayón A., Mayorga M., Estebanez A., Fernadez-Escalante J.C., Pons-Romero F. Lipopolysaccharide-binding protein plasma levels and liver TNF-alpha gene expression in obese patients: Evidence for the potential role of endotoxin in the pathogenesis of non-alcoholic steatohepatitis. Obes. Surg. 2007;17:1374–1380. doi: 10.1007/s11695-007-9243-7.
    1. Sun L., Yu Z., Ye X., Zou S., Li H., Yu D., Wu H., Chen Y., Dore J., Clement K., et al. A marker of endotoxemia is associated with obesity and related metabolic disorders in apparently healthy Chinese. Diabetes Care. 2010;33:1925–1932. doi: 10.2337/dc10-0340.
    1. Moreno-Navarrete J.M., Ortega F., Serino M., Luche E., Waget A., Pardo G., Salvador J., Ricart W., Frühbeck G., Burcelin R., et al. Circulating lipopolysaccharide-binding protein (LBP) as a marker of obesity-related insulin resistance. Int. J. Obes. 2012;36:1442–1449. doi: 10.1038/ijo.2011.256.
    1. Genser L., Aguanno D., Soula H.A., Dong L., Trystram L., Assmann K., Salem J.E., Vaillant J.C., Oppert J.M., Laugerette F., et al. Increased jejunal permeability in human obesity is revealed by a lipid challenge and is linked to inflammation and type 2 diabetes. J. Pathol. 2018;246:217–230. doi: 10.1002/path.5134.
    1. Turcotte C., Chouinard F., Lefebvre J.S., Flamand N. Regulation of inflammation by cannabinoids, the endocannabinoids 2-arachidonoyl-glycerol and arachidonoyl-ethanolamide, and their metabolites. J. Leukoc. Biol. 2015;97:1049–1070. doi: 10.1189/jlb.3RU0115-021R.
    1. Yang R., Fredman G., Krishnamoorthy S., Agrawal N., Irimia D., Piomelli D., Serhan C.N. Decoding functional metabolomics with docosahexaenoyl ethanolamide (DHEA) identifies novel bioactive signals. J. Biol. Chem. 2011;286:31532–31541. doi: 10.1074/jbc.M111.237990.
    1. Turcotte C., Blanchet M.R., Laviolette M., Flamand N. The CB(2) receptor and its role as a regulator of inflammation. Cell. Mol. Life Sci. 2016;73:4449–4470. doi: 10.1007/s00018-016-2300-4.
    1. Di Marzo V., Izzo A.A. Endocannabinoid overactivity and intestinal inflammation. Gut. 2006;55:1373–1376. doi: 10.1136/gut.2005.090472.
    1. Karwad M.A., Couch D.G., Theophilidou E., Sarmad S., Barrett D.A., Larvin M., Wright K.L., Lund J.N., O’Sullivan S.E. The role of CB(1) in intestinal permeability and inflammation. FASEB J. 2017;31:3267–3277. doi: 10.1096/fj.201601346R.

Source: PubMed

3
Se inscrever