Cryptosporidium proliferans n. sp. (Apicomplexa: Cryptosporidiidae): Molecular and Biological Evidence of Cryptic Species within Gastric Cryptosporidium of Mammals

Martin Kváč, Nikola Havrdová, Lenka Hlásková, Tereza Daňková, Jiří Kanděra, Jana Ježková, Jiří Vítovec, Bohumil Sak, Ynes Ortega, Lihua Xiao, David Modrý, Jeba Rose Jennifer Jesudoss Chelladurai, Veronika Prantlová, John McEvoy, Martin Kváč, Nikola Havrdová, Lenka Hlásková, Tereza Daňková, Jiří Kanděra, Jana Ježková, Jiří Vítovec, Bohumil Sak, Ynes Ortega, Lihua Xiao, David Modrý, Jeba Rose Jennifer Jesudoss Chelladurai, Veronika Prantlová, John McEvoy

Abstract

The morphological, biological, and molecular characteristics of Cryptosporidium muris strain TS03 are described, and the species name Cryptosporidium proliferans n. sp. is proposed. Cryptosporidium proliferans obtained from a naturally infected East African mole rat (Tachyoryctes splendens) in Kenya was propagated under laboratory conditions in rodents (SCID mice and southern multimammate mice, Mastomys coucha) and used in experiments to examine oocyst morphology and transmission. DNA from the propagated C. proliferans isolate, and C. proliferans DNA isolated from the feces of an African buffalo (Syncerus caffer) in Central African Republic, a donkey (Equus africanus) in Algeria, and a domestic horse (Equus caballus) in the Czech Republic were used for phylogenetic analyses. Oocysts of C. proliferans are morphologically distinguishable from C. parvum and C. muris HZ206, measuring 6.8-8.8 (mean = 7.7 μm) × 4.8-6.2 μm (mean = 5.3) with a length to width ratio of 1.48 (n = 100). Experimental studies using an isolate originated from T. splendens have shown that the course of C. proliferans infection in rodent hosts differs from that of C. muris and C. andersoni. The prepatent period of 18-21 days post infection (DPI) for C. proliferans in southern multimammate mice (Mastomys coucha) was similar to that of C. andersoni and longer than the 6-8 DPI prepatent period for C. muris RN66 and HZ206 in the same host. Histopatologicaly, stomach glands of southern multimammate mice infected with C. proliferans were markedly dilated and filled with necrotic material, mucus, and numerous Cryptosporidium developmental stages. Epithelial cells of infected glands were atrophic, exhibited cuboidal or squamous metaplasia, and significantly proliferated into the lumen of the stomach, forming papillary structures. The epithelial height and stomach weight were six-fold greater than in non-infected controls. Phylogenetic analyses based on small subunit rRNA, Cryptosporidium oocyst wall protein, thrombospondin-related adhesive protein of Cryptosporidium-1, heat shock protein 70, actin, heat shock protein 90 (MS2), MS1, MS3, and M16 gene sequences revealed that C. proliferans is genetically distinct from C. muris and other previously described Cryptosporidium species.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1. Cryptosporidium proliferans , Cryptosporidium muris…
Fig 1. Cryptosporidium proliferans, Cryptosporidium muris HZ206, and Cryptosporidium parvum oocysts in (A) differential interference contrast microscopy and stained by (B) aniline–carbol–methyl violet (C) Auramine Phenol and (D) anti-Cryptosporidium FITC-conjugated antibody.
Bar = 10 μm.
Fig 2. Phylogenetic relationships between Cryptosporidium proliferans…
Fig 2. Phylogenetic relationships between Cryptosporidium proliferans (highlighted) and other Cryptosporidium spp. as inferred by a neighbor-joining analysis (NJ)/maximum parsimony(MP)/maximum likelihood (ML) of (A) the SSU (706 base positions in the final dataset; ML = log -2886.67) and (B) TRAP-C1 (531 base positions in the final dataset, ML = log -1929.25).
The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates). Numbers at the nodes represent bootstrap values for the nodes gaining more than 50% support. Scale bar included in each tree.
Fig 3. Phylogenetic relationships between Cryptosporidium proliferans…
Fig 3. Phylogenetic relationships between Cryptosporidium proliferans (highlighted) and other Cryptosporidium spp. as inferred by a neighbor-joining analysis (NJ)/maximum parsimony(MP)/maximum likelihood (ML) of (A) HSP70 (211 base positions in the final dataset, ML = log -1745.42) and (B) COWP (369 base positions in the final dataset, ML = log -532.78).
The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates). Numbers at the nodes represent bootstrap values for the nodes gaining more than 50% support. Scale bar included in each tree.
Fig 4. Phylogenetic relationships between Cryptosporidium proliferans…
Fig 4. Phylogenetic relationships between Cryptosporidium proliferans (highlighted) and other Cryptosporidium spp. as inferred by a neighbor-joining analysis (NJ)/maximum parsimony (MP)/maximum likelihood (ML) of (A) actin (728 base positions in the final dataset, ML = log = -5522.35) and (B) MS1 (436 base positions in the final dataset, ML = log -886.75). The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates).
Numbers at the nodes represent bootstrap values for the nodes gaining more than 50% support. Interrupted branches have been shortened five-fold. Scale bar included in each tree.
Fig 5. Phylogenetic relationships between Cryptosporidium proliferans…
Fig 5. Phylogenetic relationships between Cryptosporidium proliferans (highlighted) and other Cryptosporidium spp. as inferred by a neighbor-joining analysis (NJ)/maximum parsimony (MP)/maximum likelihood (ML) of (A) MS2 (442 base positions in the final dataset, ML = log -792.33), (B) MS3 (485 base positions in the final dataset, ML = log = -832.45), and (C) MS16 (580 base positions in the final dataset, ML = log = -956.78).
The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates). Numbers at the nodes represent bootstrap values for the nodes gaining more than 50% support. Scale bar included in each tree.
Fig 6. Phylogenetic relationships between Cryptosporidium proliferans…
Fig 6. Phylogenetic relationships between Cryptosporidium proliferans and selected Cryptosporidium spp. as inferred by a neighbor-joining analysis (NJ)/maximum parsimony(MP)/maximum likelihood (ML) analysis of a concatenated sequence constructed from partial DNA sequences of SSU, actin, COWP, HSP70, and TRAP-C1 genes (1991 base positions in the final dataset, ML = log = -4368.98).
The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test (1000 replicates). Numbers at the nodes represent bootstrap values for the nodes gaining more than 50% support. Scale bar included in tree.
Fig 7. Course of infection of Cryptosporidium…
Fig 7. Course of infection of Cryptosporidium proliferans and Cryptosporidium muris HZ206 in Mastomys coucha based on coprological examination of feces.
Fig 8. Height of mucosa of Mastomys…
Fig 8. Height of mucosa of Mastomys coucha stomach of A) control group, B) Cryptosporidium muris HZ206 infection, and C) Cryptosporidium proliferans infection at 28 day post infection; D) stomach mucosa proliferation in Mastomys coucha with Cryptosporidium proliferans at 140 DPI.
Haematoxylin and eosin. Bar = 150 μm.
Fig 9. Change of stomach weight of…
Fig 9. Change of stomach weight of Mastomys coucha during experimental infection with Cryptosporidium proliferans and Cryptosporidium muris HZ206 compared to the control group.

References

    1. O'Donoghue PJ. Cryptosporidium and cryptosporidiosis in man and animals. Int J Parasitol. 1995;25(2):139–95. Epub 1995/02/01. .
    1. Fayer R. General Biology In: Fayer R, Xiao L, editors. Cryptosporidium and cryptosporidiosis. 2 ed: CRC Press, Boca Raton, FL; 2007. p. 1–42.
    1. Tyzzer EE. A sporozoan found in the peptic glands of the common mouse. Proc Soc Exp Biol Med. 1907;5:12.
    1. Lindsay DS, Upton SJ, Owens DS, Morgan UM, Mead JR, Blagburn BL. Cryptosporidium andersoni n. sp. (Apicomplexa: Cryptosporiidae) from cattle, Bos taurus. J Eukaryot Microbiol. 2000;47(1):91–5. Epub 2000/01/29. .
    1. Upton SJ, McAllister CT, Freed PS, Barnard SM. Cryptosporidium spp. in wild and captive reptiles. J Wildl Dis. 1989;25(1):20–30. Epub 1989/01/01. .
    1. Morgan UM, Sargent KD, Deplazes P, Forbes DA, Spano F, Hertzberg H, et al. Molecular characterization of Cryptosporidium from various hosts. Parasitology. 1998;117 31–7. Epub 1998/08/08. .
    1. Morgan UM, Xiao L, Fayer R, Graczyk TK, Lal AA, Deplazes P, et al. Phylogenetic analysis of Cryptosporidium isolates from captive reptiles using 18S rDNA sequence data and random amplified polymorphic DNA analysis. J Parasitol. 1999;85(3):525–30. Epub 1999/07/01. .
    1. Traversa D, Iorio R, Otranto D, Modrý D, Šlapeta J. Cryptosporidium from tortoises: Genetic characterisation, phylogeny and zoonotic implications. Mol Cell Probes. 2008;22(2):122–8. Epub 2008/02/01. 10.1016/j.mcp.2007.11.001 .
    1. Ng J, Pavlásek I, Ryan U. Identification of novel Cryptosporidium genotypes from avian hosts. Appl Environ Microbiol. 2006;72(12):7548–53. 10.1128/AEM.01352-06
    1. Xiao L, Ryan UM, Graczyk TK, Limor J, Li L, Kombert M, et al. Genetic diversity of Cryptosporidium spp. in captive reptiles. Appl Environ Microbiol. 2004;70(2):891–9. Epub 2004/02/10.
    1. Graczyk TK, Fayer R, Cranfield MR. Cryptosporidium parvum is not transmissible to fish, amphibians, or reptiles. J Parasitol. 1996;82(5):748–51. .
    1. Crawshaw GJ, Mehren KG. Cryptosporidiosis in zoo and wild animals Erkrankungen der Zootiere Verhandlungsbericht des 29 Internationalen Symposiums Uber die Erkrankungen der Zootiere; Cardiff: Akademie-Verlag, Berlin; 1987. p. 353–62.
    1. Jenkins MB, Liotta JL, Lucio-Forster A, Bowman DD. Concentrations, viability, and distribution of Cryptosporidium genotypes in lagoons of swine facilities in the Southern Piedmont and in coastal plain watersheds of Georgia. Appl Environ Microbiol. 2010;76(17):5757–63. 10.1128/AEM.00434-10
    1. Xiao L, Moore JE, Ukoh U, Gatei W, Lowery CJ, Murphy TM, et al. Prevalence and identity of Cryptosporidium spp. in pig slurry. Appl Environ Microbiol. 2006;72(6):4461–3. Epub 2006/06/06. 10.1128/AEM.00370-06
    1. Kváč M, Hanzlíková D, Sak B, Květoňová D. Prevalence and age-related infection of Cryptosporidium suis, C. muris and Cryptosporidium pig genotype II in pigs on a farm complex in the Czech Republic. Vet Parasitol. 2009;160(3–4):319–22. Epub 2008/12/19. 10.1016/j.vetpar.2008.11.007 .
    1. Kváč M, Kestřánová M, Květoňová D, Kotková M, Ortega Y, McEvoy J, et al. Cryptosporidium tyzzeri and Cryptosporidium muris originated from wild West-European house mice (Mus musculus domesticus) and East-European house mice (Mus musculus musculus) are non-infectious for pigs. Exp Parasitol. 2012;131(1):107–10. Epub 2012/04/03. 10.1016/j.exppara.2012.03.016 .
    1. Hikosaka K, Nakai Y. A novel genotype of Cryptosporidium muris from large Japanese field mice, Apodemus speciosus. Parasitol Res. 2005;97(5):373–9. 10.1007/s00436-005-1459-7 .
    1. Murakoshi F, Fukuda Y, Matsubara R, Kato Y, Sato R, Sasaki T, et al. Detection and genotyping of Cryptosporidium spp. in large Japanese field mice, Apodemus speciosus. Vet Parasitol. 2013;196(1–2):184–8. 10.1016/j.vetpar.2013.02.011 .
    1. Feng Y, Yang W, Ryan U, Zhang L, Kváč M, Koudela B, et al. Development of a multilocus sequence tool for typing Cryptosporidium muris and Cryptosporidium andersoni. J Clin Microbiol. 2011;49(1):34–41. 10.1128/JCM.01329-10
    1. Kváč M, Kodádková A, Sak B, Květoňová D, Jalovecká M, Rost M, et al. Activated CD8+ T cells contribute to clearance of gastric Cryptosporidium muris infections. Parasite Immunol. 2011;33(4):210–6. 10.1111/j.1365-3024.2010.01271.x .
    1. Kváč M, Sak B, Květoňová D, Secor WE. Infectivity of gastric and intestinal Cryptosporidium species in immunocompetent Mongolian gerbils (Meriones unguiculatus). Vet Parasitol. 2009;163(1–2):33–8. 10.1016/j.vetpar.2009.03.047 .
    1. Kváč M, Sak B, Kvetoňová D, Ditrich O, Hofmannová L, Modrý D, et al. Infectivity, pathogenicity, and genetic characteristics of mammalian gastric Cryptosporidium spp. in domestic ruminants. Vet Parasitol. 2008;153(3–4):363–7. 10.1016/j.vetpar.2008.01.033 .
    1. Melicherová J, Ilgova J, Kváč M, Sak B, Koudela B, Valigurová A. Life cycle of Cryptosporidium muris in two rodents with different responses to parasitization. Parasitology. 2014;141(2):287–303. 10.1017/S0031182013001637 .
    1. Modrý D, Hofmannová L, Antalová Z, Sak B, Kváč M. Variability in susceptibility of voles (Arvicolinae) to experimental infection with Cryptosporidium muris and Cryptosporidium andersoni. Parasitol Res. 2012;111:471–3. Epub 2012/02/04. 10.1007/s00436-012-2821-1 .
    1. Jalovecká M, Sak B, Kváč M, Květonová D, Kučerová Z, Salát J. Activation of protective cell-mediated immune response in gastric mucosa during Cryptosporidium muris infection and re-infection in immunocompetent mice. Parasitol Res. 2010;106(5):1159–66. 10.1007/s00436-010-1785-2 .
    1. Chalmers RM, Sturdee AP, Bull SA, Miller A, Wright SE. The prevalence of Cryptosporidium parvum and C. muris in Mus domesticus, Apodemus sylvaticus and Clethrionomys glareolus in an agricultural system. Parasitol Res. 1997;83(5):478–82. .
    1. Aydin Y, Ozkul IA. Infectivity of Cryptosporidium muris directly isolated from the murine stomach for various laboratory animals. Vet Parasitol. 1996;66(3–4):257–62. Epub 1996/11/15. .
    1. Hůrková L, Hajdušek O, Modrý D. Natural infection of Cryptosporidium muris (Apicomplexa: Cryptosporiidae) in Siberian chipmunks. J Wildl Dis. 2003;39(2):441–4. 10.7589/0090-3558-39.2.441 .
    1. Kváč M, Ondráčková Z, Květoňová D, McEvoy J, Vítovec J, Rost M, et al. The Lesser Egyptian Gerbil (Gerbillus gerbillus) is a suitable host for the long-term propagation of Cryptosporidium andersoni. Exp Parasitol. 2013;134(4):438–42. 10.1016/j.exppara.2013.04.007 .
    1. Koudela B, Modrý D, Vítovec J. Infectivity of Cryptosporidium muris isolated from cattle. Vet Parasitol. 1998;76(3):181–8. .
    1. Ryan U, Xiao L, Read C, Zhou L, Lal AA, Pavlásek I. Identification of novel Cryptosporidium genotypes from the Czech Republic. Appl Environ Microbiol. 2003;69(7):4302–7. Epub 2003/07/04.
    1. Neumayerová H, Koudela B. Effects of low and high temperatures on infectivity of Cryptosporidium muris oocysts suspended in water. Vet Parasitol. 2008;153(3–4):197–202. 10.1016/j.vetpar.2008.02.009 .
    1. Lv C, Zhang L, Wang R, Jian F, Zhang S, Ning C, et al. Cryptosporidium spp. in wild, laboratory, and pet rodents in china: prevalence and molecular characterization. Appl Environ Microbiol. 2009;75(24):7692–9. 10.1128/AEM.01386-09
    1. Rhee JK, So WS, Kim HC. Age-dependent resistance to Cryptosporidium muris (strain MCR) infection in golden hamsters and mice. Korean J Parasitol. 1999;37(1):33–7.
    1. Satoh M, Hikosaka K, Sasaki T, Suyama Y, Yanai T, Ohta M, et al. Characteristics of a novel type of bovine Cryptosporidium andersoni. Appl Environ Microbiol. 2003;69(1):691–2.
    1. Pavlásek I, Lávička M. [The first finding of a spontaneous gastric cryptosporidiosis infection in hamsters (Phodopus roborovskii Satunin, 1903)]. Vet Med (Praha). 1995;40(8):261–3. .
    1. Iseki M, Maekawa T, Moriya K, Uni S, Takada S. Infectivity of Cryptosporidium muris (strain RN 66) in various laboratory animals. Parasitol Res. 1989;75(3):218–22. Epub 1989/01/01. .
    1. Feng Y, Alderisio KA, Yang W, Blancero LA, Kuhne WG, Nadareski CA, et al. Cryptosporidium genotypes in wildlife from a new york watershed. Appl Environ Microbiol. 2007;73(20):6475–83. 10.1128/AEM.01034-07
    1. Warren KS, Swan RA, Morgan-Ryan UM, Friend JA, Elliot A. Cryptosporidium muris infection in bilbies (Macrotis lagotis). Aust Vet J. 2003;81(12):739–41. .
    1. Esteban E, Anderson BC. Cryptosporidium muris: prevalence, persistency, and detrimental effect on milk production in a drylot dairy. J Dairy Sci. 1995;78(5):1068–72. 10.3168/jds.S0022-0302(95)76723-6 .
    1. Trout JM, Santín M, Fayer R. Giardia and Cryptosporidium species and genotypes in coyotes (Canis latrans). J Zoo Wildlife Med. 2006;37(2):141–4.
    1. Dixon BR, Parrington LJ, Parenteau M, Leclair D, Santín M, Fayer R. Giardia duodenalis and Cryptosporidium spp. in the intestinal contents of ringed seals (Phoca hispida) and bearded seals (Erignathus barbatus) in Nunavik, Quebec, Canada. J Parasitol. 2008;94(5):1161–3. Epub 2008/06/26. 10.1645/ge-1485.1 .
    1. Qin SY, Zhang XX, Zhao GH, Zhou DH, Yin MY, Zhao Q, et al. First report of Cryptosporidium spp. in white yaks in China. Parasit Vectors. 2014;7:230 10.1186/1756-3305-7-230
    1. Rhee JK, Kim HC, Eun GS. Infection kinetics and developmental biology of Cryptosporidium muris (strain MCR) in Korean native kids and Corriedale lambs. Korean J Parasitol. 1998;36(3):171–81.
    1. Ryan UM, Bath C, Robertson I, Read C, Elliot A, McInnes L, et al. Sheep may not be an important zoonotic reservoir for Cryptosporidium and Giardia parasites. Appl Environ Microbiol. 2005;71(9):4992–7. Epub 2005/09/10. 10.1128/aem.71.9.4992-4997.2005
    1. Anderson BC. Experimental infection in mice of Cryptosporidium muris isolated from a camel. J Protozool. 1991;38(6):16S–7S. .
    1. Pospischil A, Stiglmair-Herb MT, von Hegel G, Wiesner H. Abomasal cryptosporidiosis in mountain gazelles. Vet Rec. 1987;121(16):379–80. .
    1. Kodádková A, Kváč M, Ditrich O, Sak B, Xiao L. Cryptosporidium muris in a reticulated giraffe (Giraffa camelopardalis reticulata). J Parasitol. 2010;96(1):211–2. 10.1645/GE-2212.1 .
    1. Deng MQ, Cliver DO. Improved immunofluorescence assay for detection of Giardia and Cryptosporidium from asymptomatic adult cervine animals. Parasitol Res. 1999;85(8–9):733–6. .
    1. Valigurová A, Hofmannová L, Koudela B, Vávra J. An ultrastructural comparison of the attachment sites between Gregarina steini and Cryptosporidium muris. J Eukaryot Microbiol. 2007;54(6):495–510.
    1. Siefker C, Rickard LG, Pharr GT, Simmons JS, O'Hara TM. Molecular characterization of Cryptosporidium sp. isolated from northern Alaskan caribou (Rangifer tarandus). J Parasitol. 2002;88(1):213–6. 10.1645/0022-3395(2002)088[0213:MCOCSI];2 .
    1. Sak B, Petrželková KJ, Květoňová D, Mynařová A, Shutt KA, Pomajbíková K, et al. Long-term monitoring of microsporidia, Cryptosporidium and Giardia infections in western Lowland Gorillas (Gorilla gorilla gorilla) at different stages of habituation in Dzanga Sangha Protected Areas, Central African Republic. PloS one. 2013;8(8):e71840 10.1371/journal.pone.0071840
    1. Laatamna AE, Wagnerová P, Sak B, Květoňová D, Xiao L, Rost M, et al. Microsporidia and Cryptosporidium in horses and donkeys in Algeria: Detection of a novel Cryptosporidium hominis subtype family (Ik) in a horse. Vet Parasitol. 2015;208(3–4):135–42. 10.1016/j.vetpar.2015.01.007 .
    1. Wagnerová P, Sak B, McEvoy J, Rost M, Perec Matysiak A, Ježková J, et al. Genetic diversity of Cryptosporidium spp. including novel identification of the Cryptosporidium muris and Cryptosporidium tyzzeri in horses in the Czech Republic and Poland. Parasitol Res. 2015;114(4):1619–24. 10.1007/s00436-015-4353-y .
    1. Katsumata T, Hosea D, Ranuh IG, Uga S, Yanagi T, Kohno S. Short report: possible Cryptosporidium muris infection in humans. Am J Trop Med Hyg. 2000;62(1):70–2.
    1. Guyot K, Follet-Dumoulin A, Lelievre E, Sarfati C, Rabodonirina M, Nevez G, et al. Molecular characterization of Cryptosporidium isolates obtained from humans in France. J Clin Microbiol. 2001;39(10):3472–80.
    1. Dubey JP, Markovits JE, Killary KA. Cryptosporidium muris-like infection in stomach of cynomolgus monkeys (Macaca fascicularis). Vet Pathol. 2002;39(3):363–71. .
    1. Karim MR, Zhang S, Jian F, Li J, Zhou C, Zhang L, et al. Multilocus typing of Cryptosporidium spp. and Giardia duodenalis from non-human primates in China. Int J Parasitol. 2014;44:1039–47. 10.1016/j.ijpara.2014.07.006 .
    1. Qi M, Huang L, Wang R, Xiao L, Xu L, Li J, et al. Natural infection of Cryptosporidium muris in ostriches (Struthio camelus). Vet Parasitol. 2014;205:518–22. 10.1016/j.vetpar.2014.06.035 .
    1. Tilley M, Upton SJ, Chrisp CE. A comparative study on the biology of Cryptosporidium sp. from guinea pigs and Cryptosporidium parvum (Apicomplexa). Can J Microbiol. 1991;37(12):949–52. .
    1. Pedraza-Diaz S, Ortega-Mora LM, Carrion BA, Navarro V, Gomez-Bautista M. Molecular characterisation of Cryptosporidium isolates from pet reptiles. Vet Parasitol. 2009;160(3–4):204–10. Epub 2008/12/23. 10.1016/j.vetpar.2008.11.003 .
    1. Rhee JK, Yook SY, Park BK. Oocyst production and immunogenicity of Cryptosporidium muris (strain MCR) in mice. Korean J Parasitol. 1995;33(4):377–82. .
    1. Matsue T, Fujino T, Kajima J, Tsuji M. Infectivity and oocyst excretion patterns of Cryptosporidium muris in slightly infected mice. J Vet Med Sci. 2001;63(3):319–20. .
    1. Kváč M, Ondráčková Z, Květoňová D, Sak B, Vítovec J. Infectivity and pathogenicity of Cryptosporidium andersoni to a novel host, southern multimammate mouse (Mastomys coucha). Vet Parasitol. 2007;143(3–4):229–33. Epub 2006/09/26. 10.1016/j.vetpar.2006.08.031 .
    1. Miláček P, Vítovec J. Differential staining of cryptosporidia by aniline-carbol-methyl violet and tartrazine in smears from feces and scrapings of intestinal mucosa. Folia Parasitol. 1985;32(1):50 Epub 1985/01/01. .
    1. Arrowood MJ, Sterling CR. Isolation of Cryptosporidium oocysts and sporozoites using discontinuous sucrose and isopycnic Percoll gradients. J Parasitol. 1987;73(2):314–9.
    1. Kilani RT, Sekla L. Purification of Cryptosporidium oocysts and sporozoites by cesium chloride and Percoll gradients. Am J Trop Med Hyg. 1987;36(3):505–8. Epub 1987/05/01. .
    1. Sauch JF, Flanigan D, Galvin ML, Berman D, Jakubowski W. Propidium iodide as an indicator of Giardia cyst viability. Appl Environ Microbiol. 1991;57(11):3243–7. Epub 1991/11/01.
    1. Casemore DP. ACP Broadsheet 128: June 1991. Laboratory methods for diagnosing cryptosporidiosis. J Clin Pathol. 1991;44(6):445–51.
    1. Jiang J, Alderisio KA, Xiao L. Distribution of Cryptosporidium genotypes in storm event water samples from three watersheds in New York. Appl Environ Microbiol. 2005;71(8):4446–54. Epub 2005/08/09. 10.1128/AEM.71.8.4446-4454.2005
    1. Xiao L, Morgan UM, Limor J, Escalante A, Arrowood M, Shulaw W, et al. Genetic diversity within Cryptosporidium parvum and related Cryptosporidium species. Appl Environ Microbiol. 1999;65(8):3386–91.
    1. Sulaiman IM, Lal AA, Xiao L. Molecular phylogeny and evolutionary relationships of Cryptosporidium parasites at the actin locus. J Parasitol. 2002;88(2):388–94.
    1. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28(10):2731–9. 10.1093/molbev/msr121
    1. Guindon S, Gascuel O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol. 2003;52(5):696–704. .
    1. Kváč M, Vítovec J. Prevalence and pathogenicity of Cryptosporidium andersoni in one herd of beef cattle. J Vet Med B. 2003;50(9):451–7. Epub 2003/11/25. .
    1. Tyzzer EE. Cryptosporidium parvum (sp. nov.) a coccidium found in the small intestine of the common mouse. Arch Protistenkd. 1912;26:394–412.
    1. Fayer R, Speer CA, Dubey JP. The general biology of Cryptosporidium In: Fayer R, editor. Cryptosporidium and cryptosporidiosis. Boca Raton, FL: CRC Press; 1997. p. 1–42.
    1. Xiao L, Escalante L, Yang C, Sulaiman I, Escalante AA, Montali RJ, et al. Phylogenetic analysis of Cryptosporidium parasites based on the small-subunit rRNA gene locus. Appl Environ Microbiol. 1999;65(4):1578–83.
    1. Ren X, Zhao J, Zhang L, Ning C, Jian F, Wang R, et al. Cryptosporidium tyzzeri n. sp. (Apicomplexa: Cryptosporidiidae) in domestic mice (Mus musculus). Exp Parasitol. 2012;130(3):274–81. Epub 2011/08/02. 10.1016/j.exppara.2011.07.012 .
    1. Fayer R, Trout JM, Xiao L, Morgan UM, Lai AA, Dubey JP. Cryptosporidium canis n. sp. from domestic dogs. J Parasitol. 2001;87(6):1415–22. Epub 2002/01/10. 10.1645/0022-3395(2001)087[1415:ccnsfd];2 .
    1. Morgan-Ryan UM, Fall A, Ward LA, Hijjawi N, Sulaiman I, Fayer R, et al. Cryptosporidium hominis n. sp. (Apicomplexa: Cryptosporidiidae) from Homo sapiens. J Eukaryot Microbiol. 2002;49(6):433–40.
    1. Ng-Hublin JS, Singleton GR, Ryan U. Molecular characterization of Cryptosporidium spp. from wild rats and mice from rural communities in the Philippines. Infect Genet Evol. 2013;16:5–12. 10.1016/j.meegid.2013.01.011 .
    1. Sréter T, Egyed Z, Szell Z, Kovacs G, Nikolausz M, Marialigeti K, et al. Morphologic, host specificity, and genetic characterization of a European Cryptosporidium andersoni isolate. J Parasitol. 2000;86(6):1244–9. 10.1645/0022-3395(2000)086[1244:MHSAGC];2 .
    1. Fayer R, Santín M. Cryptosporidium xiaoi n. sp. (Apicomplexa: Cryptosporidiidae) in sheep (Ovis aries). Vet Parasitol. 2009;164(2–4):192–200. Epub 2009/06/09. 10.1016/j.vetpar.2009.05.011 .
    1. Vítovec J, Hamadejová K, Landová L, Kváč M, Květoňová D, Sak B. Prevalence and pathogenicity of Cryptosporidium suis in pre- and post-weaned pigs. J Vet Med B. 2006;53(5):239–43. Epub 2006/05/31. 10.1111/j.1439-0450.2006.00950.x .
    1. Kváč M, Hofmannová L, Hlásková L, Květoňová D, Vítovec J, McEvoy J, et al. Cryptosporidium erinacei n. sp. (Apicomplexa: Cryptosporidiidae) in hedgehogs. Vet Parasitol. 2014;201(1–2):9–17. 10.1016/j.vetpar.2014.01.014 .
    1. Robinson G, Wright S, Elwin K, Hadfield SJ, Katzer F, Bartley PM, et al. Re-description of Cryptosporidium cuniculus Inman and Takeuchi, 1979 (Apicomplexa: Cryptosporidiidae): morphology, biology and phylogeny. Int J Parasitol. 2010;40(13):1539–48. Epub 2010/07/06. 10.1016/j.ijpara.2010.05.010 .
    1. Kváč M, McEvoy J, Loudová M, Stenger B, Sak B, Květoňová D, et al. Coevolution of Cryptosporidium tyzzeri and the house mouse (Mus musculus). Int J Parasitol. 2013;43:805–17. 10.1016/j.ijpara.2013.04.007 .
    1. Nakai Y, Hikosaka K, Sato M, Sasaki T, Kaneta Y, Okazaki N. Detection of Cryptosporidium muris type oocysts from beef cattle in a farm and from domestic and wild animals in and around the farm. J Vet Med Sci. 2004;66(8):983–4. Epub 2004/09/09. .
    1. Taylor MA, Marshall RN, Green JA, Catchpole J. The pathogenesis of experimental infections of Cryptosporidium muris (strain RN 66) in outbred nude mice. Vet Parasitol. 1999;86(1):41–8. .
    1. McDonald V, Deer R, Uni S, Iseki M, Bancroft GJ. Immune responses to Cryptosporidium muris and Cryptosporidium parvum in adult immunocompetent or immunocompromised (nude and SCID) mice. Infect Immun. 1992;60(8):3325–31.
    1. Anderson BC. Abomasal cryptosporidiosis in cattle. Vet Pathol. 1987;24(3):235–8. .
    1. Tyzzer EE. An extracellular coccidium, Cryptosporidium muris (gen. et sp. nov.) of the gastric glands of the common mouse. J Med Res. 1910;23:487–509.
    1. Ozkul IA, Aydin Y. Natural Cryptosporidium muris infection of the stomach in laboratory mice. Vet Parasitol. 1994;55(1–2):129–32. .
    1. Anderson BC. Cryptosporidiosis in bovine and human health. J Dairy Sci. 1998;81(11):3036–41.
    1. Koyama Y, Satoh M, Maekawa K, Hikosaka K, Nakai Y. Isolation of Cryptosporidium andersoni Kawatabi type in a slaughterhouse in the northern island of Japan. Vet Parasitol. 2005;130(3–4):323–6. 10.1016/j.vetpar.2005.03.014 .

Source: PubMed

3
Se inscrever