"Sticky Bone" Preparation Device: A Pilot Study on the Release of Cytokines and Growth Factors

Ezio Gheno, Gutemberg Gomes Alves, Roberto Ghiretti, Rafael Coutinho Mello-Machado, Antonio Signore, Emanuelle Stellet Lourenço, Paulo Emílio Correa Leite, Carlos Fernando de Almeida Barros Mourão, Dong-Seok Sohn, Mônica Diuana Calasans-Maia, Ezio Gheno, Gutemberg Gomes Alves, Roberto Ghiretti, Rafael Coutinho Mello-Machado, Antonio Signore, Emanuelle Stellet Lourenço, Paulo Emílio Correa Leite, Carlos Fernando de Almeida Barros Mourão, Dong-Seok Sohn, Mônica Diuana Calasans-Maia

Abstract

Sticky bone, a growth factor-enriched bone graft matrix, is a promising autologous material for bone tissue regeneration. However, its production is strongly dependent on manual handling steps. In this sense, a new device was developed to simplify the confection of the sticky bone, named Sticky Bone Preparation Device (SBPD®). The purpose of this pilot study was to investigate the suitability of the SBPD® to prepare biomaterials for bone regeneration with autologous platelet concentrates. The SBPD® allows the blending of particulate samples from synthetic, xenograft, or autogenous bone with autologous platelet concentrates, making it easy to use and avoiding the need of further manipulations for the combination of the materials. The protocol for the preparation of sticky bone samples using the SBPD® is described, and the resulting product is compared with hand-mixed SB preparations regarding in vitro parameters such as cell content and the ability to release growth factors and cytokines relevant to tissue regeneration. The entrapped cell content was estimated, and the ability to release biological mediators was assessed after 7 days of incubation in culture medium. Both preparations increased the leukocyte and platelet concentrations compared to whole-blood samples (p < 0.05), without significant differences between SB and SBPD®. SBPD® samples released several growth factors, including VEGF, FGFb, and PDGF, at concentrations physiologically equivalent to those released by SB preparations. Therefore, the use of SBPD® results in a similar product to the standard protocol, but with more straightforward and shorter preparation times and less manipulation. These preliminary results suggest this device as a suitable alternative for combining bone substitute materials with platelet concentrates for bone tissue regeneration.

Keywords: PRF; PRP; bone graft; bone regeneration; growth factors; sticky bone.

Conflict of interest statement

The authors Ezio Gheno and Roberto Guiretti are involved in the patent of SBPD, but they had no influence on the analysis of the results.

Figures

Figure 1
Figure 1
The Sticky Bone Preparation Device (SBPD®).
Figure 2
Figure 2
(A) The sequence of steps of sticky bone preparation with the SBPD. The process starts with the peripheral blood collection (Step 1), followed by the placement of the device (Step 2), the addition of particulate biomaterial (Step 3), and centrifugation according to the platelet aggregate protocol chosen (Step 4). It ends with the removal of the SBPD® with the complete sticky bone preparation (Step 5). (B) Detailed view of the insertion of the SBPD into the tube. (C) Detailed view of the sterile metallic funnel and the particulate bone substitute being inserted.
Figure 3
Figure 3
The particulate bone substitute mixed with the CGF (“sticky bone”) prepared with the SBPD® after centrifugation.
Figure 4
Figure 4
Cell content of the hand-mixed (SB) and SBPD® sticky bone preparations, as compared to whole-blood samples, represented by the mean ± SD of lymphocytes (A), red blood cells (B), and platelets (C). An asterisk (*) indicates a significant difference from the whole-blood group (p < 0.05). Results indicate the mean ± SD of three biological replicates with three technical replicates.

References

    1. Al-Hamed F.S., Mahri M., Al-Waeli H., Torres J., Badran Z., Tamimi F. Regenerative Effect of Platelet Concentrates in Oral and Craniofacial Regeneration. Front. Cardiovasc. Med. 2019;6:126. doi: 10.3389/fcvm.2019.00126.
    1. Trybek G., Rydlinska J., Aniko-Wlodarczyk M. Effect of Platelet-Rich Fibrin Application on Non-Infectious Complications after Surgical Extraction of Impacted Mandibular Third Molars. Int. J. Environ. Res. Public Health. 2021;18:8249. doi: 10.3390/ijerph18168249.
    1. Ehrenfest D.M.D., Rasmusson L., Albrektsson T. Classification of platelet concentrates: From pure platelet-rich plasma (P-PRP) to leucocyte- and platelet-rich fibrin (L-PRF) Trends Biotechnol. 2009;27:158–167. doi: 10.1016/j.tibtech.2008.11.009.
    1. Marx R.E., Carlson E.R., Eichstaedt R.M., Schimmele S.R., Strauss J.E., Georgeff K.R. Platelet-rich plasma: Growth factor enhancement for bone grafts. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 1998;85:638–646. doi: 10.1016/S1079-2104(98)90029-4.
    1. Choukroun J., Adda F., Schoeffler C., Vervelle A. Une opportunité en paro-implantologie: Le PRF. Implantodontie. 2001;42:e62.
    1. Ghanaati S., Booms P., Orlowska A., Kubesch A., Lorenz J., Rutkowski J., Landes C., Sader R., Kirkpatrick C., Choukroun J. Advanced platelet-rich fibrin: A new concept for cell-based tissue engineering by means of inflammatory cells. J. Oral Implantol. 2014;40:679–689. doi: 10.1563/aaid-joi-D-14-00138.
    1. Mourão C.F.d.A.B., Gheno E., Lourenço E.S., de Lima Barbosa R., Kurtzman G.M., Javid K., Mavropoulos E., Benedicenti S., Calasans-Maia M.D., de Mello Machado R.C., et al. Characterization of a new membrane from concentrated growth factors associated with denaturized Albumin (Alb-CGF) for clinical applications: A preliminary study. Int. J. Growth Factors Stem Cells Dent. 2018;1:64. doi: 10.4103/GFSC.GFSC_21_18.
    1. Gheno E., Mourão C.F.d.A.B., Mello-Machado R.C., Stellet Lourenço E., Miron R.J., Catarino K.F.F., Alves A.T., Alves G.G., Calasans-Maia M.D. In vivo evaluation of the biocompatibility and biodegradation of a new denatured plasma membrane combined with liquid PRF (Alb-PRF) Platelets. 2021;32:542–554. doi: 10.1080/09537104.2020.1775188.
    1. Fujioka-Kobayashi M., Schaller B., Mourão C.F.d.A.B., Zhang Y., Sculean A., Miron R.J. Biological characterization of an injectable platelet-rich fibrin mixture consisting of autologous albumin gel and liquid platelet-rich fibrin (Alb-PRF) Platelets. 2021;32:74–81. doi: 10.1080/09537104.2020.1717455.
    1. Sohn D.-S., Heo J.-U., Kwak D.-H., Kim D.-E., Kim J.-M., Moon J.-W., Lee J.-H., Park I.-S. Bone regeneration in the maxillary sinus using an autologous fibrin-rich block with concentrated growth factors alone. Implant. Dent. 2011;20:389–395. doi: 10.1097/ID.0b013e31822f7a70.
    1. Mourão C.F.d.A.B., Valiense H., Melo E.R., Mourão N.B., Maia M.D. Obtention of injectable platelets rich-fibrin (i-PRF) and its polymerization with bone graft: Technical note. Rev. Col. Bras. Cir. 2015;42:421–423. doi: 10.1590/0100-69912015006013.
    1. Sohn D.-S., Huang B., Kim J., Park W.E., Park C.C. Utilization of autologous concentrated growth factors (CGF) enriched bone graft matrix (Sticky bone) and CGF-enriched fibrin membrane in Implant Dentistry. J. Implant Adv. Clin. Dent. 2015;7:11–18.
    1. Da Silva M.T., Mourão C.F.d.A.B., Mello-Machado R.C., Montemezzi P., Barbosa R.d.L., Sartoretto S.C., Leite P.E.C., Javid K., Kawase T., Alves G.G., et al. Effects of Leukocyte-Platelet-Rich Fibrin (L-PRF) on Pain, Soft Tissue Healing, Growth Factors, and Cytokines after Third Molar Extraction: A Randomized, Split-Mouth, Double-Blinded Clinical Trial. Appl. Sci. 2021;11:1666. doi: 10.3390/app11041666.
    1. Mourão C.F.d.A.B., de Mello-Machado R.C., Javid K., Moraschini V. The use of leukocyte- and platelet-rich fibrin in the management of soft tissue healing and pain in post-extraction sockets: A randomized clinical trial. J. Cranio Maxillofac. Surg. 2020;48:452–457. doi: 10.1016/j.jcms.2020.02.020.
    1. Damsaz M., Castagnoli C.Z., Eshghpour M., Alamdari D.H., Alamdari A.H., Noujeim Z.E.F., Haidar Z.S. Evidence-Based Clinical Efficacy of Leukocyte and Platelet-Rich Fibrin in Maxillary Sinus Floor Lift, Graft and Surgical Augmentation Procedures. Front. Surg. 2020;7:537138. doi: 10.3389/fsurg.2020.537138.
    1. De Almeida Barros Mourão C.F., Lourenço E.S., Nascimento J.R.B., Machado R.C.M., Rossi A.M., Leite P.E.C., Granjeiro J.M., Alves G.G., Calasans-Maia M.D. Does the association of blood-derived growth factors to nanostructured carbonated hydroxyapatite contributes to the maxillary sinus floor elevation? A randomized clinical trial. Clin. Oral Investig. 2019;23:369–379. doi: 10.1007/s00784-018-2445-7.
    1. Roth N., Zilliacus J., Beronius A. Development of the SciRAP approach for evaluating the reliability and relevance of in vitro toxicity data. Front. Toxicol. 2021;3:746430. doi: 10.3389/ftox.2021.746430.
    1. Temmerman A., Vandessel J., Castro A., Jacobs R., Teughels W., Pinto N., Quirynen M. The use of leucocyte and platelet-rich fibrin in socket management and ridge preservation: A split-mouth, randomized, controlled clinical trial. J. Clin. Periodontol. 2016;43:990–999. doi: 10.1111/jcpe.12612.
    1. Alissa R., Esposito M., Horner K., Oliver R. The influence of platelet-rich plasma on the healing of extraction sockets: An explorative randomised clinical trial. Eur. J. Oral Implantol. 2010;3:121–134.
    1. Albanese A., Licata M.E., Polizzi B., Campisi G. Platelet-rich plasma (PRP) in dental and oral surgery: From the wound healing to bone regeneration. Immun. Ageing. 2013;10:23. doi: 10.1186/1742-4933-10-23.
    1. Lourenço E.S., Alves G.G., de Lima Barbosa R., Spiegel C.N., de Mello-Machado R.C., Al-Maawi S., Ghanaati S., de Almeida Barros Mourão C.F. Effects of rotor angle and time after centrifugation on the biological in vitro properties of platelet rich fibrin membranes. J. Biomed. Mater. Res. Part B Appl. Biomater. 2021;109:60–68. doi: 10.1002/jbm.b.34680.
    1. Lourenço E.S., Mourão C.F.d.A.B., Leite P.E.C., Granjeiro J.M., Calasans-Maia M.D., Alves G.G. The in vitro release of cytokines and growth factors from fibrin membranes produced through horizontal centrifugation. J. Biomed. Mater. Res. Part A. 2018;106:1373–1380. doi: 10.1002/jbm.a.36346.
    1. Kim J.-M., Sohn D.-S., Bae M.-S., Moon J.-W., Lee J.-H., Park I.-S. Flapless transcrestal sinus augmentation using hydrodynamic piezoelectric internal sinus elevation with autologous concentrated growth factors alone. Implant. Dent. 2014;23:168–174. doi: 10.1097/ID.0000000000000053.
    1. Ali S., Bakry S.A., Abd-Elhakam H. Platelet-rich fibrin in maxillary sinus augmentation: A systematic review. J. Oral Implantol. 2015;41:746–753. doi: 10.1563/AAID-JOI-D-14-00167.
    1. Arican G., Özmeriç A., Fiirat A., Kaymaz F., Ocak M., Çelik H.H., Alemdaroğlu K.B. Micro–ct findings of concentrated growth factors (cgf) on bone healing in masquelet’s technique—An experimental study in rabbits. Arch. Orthop. Trauma Surg. 2022;142:83–90. doi: 10.1007/s00402-020-03596-z.
    1. Wang X., Wang G., Zhao X., Feng Y., Liu H., Li F. Short-Term Evaluation of Guided Bone Reconstruction with Titanium Mesh Membranes and CGF Membranes in Immediate Implantation of Anterior Maxillary Tooth. Biomed. Res. Int. 2021;24:4754078. doi: 10.1155/2021/4754078.
    1. Kabir M., Hirakawa A., Zhu B., Yokozeki K., Shakya M., Huang B., Murata M. Mechanical Properties of Human Concentrated Growth Factor (CGF) Membrane and the CGF Graft with Bone Morphogenetic Protein-2 (BMP-2) onto Periosteum of the Skull of Nude Mice. Int. J. Mol. Sci. 2021;22:11331. doi: 10.3390/ijms222111331.
    1. Rodella L.F., Favero G., Boninsegna R., Buffoli B., Labanca M., Scarì G., Rezzani R. Growth factors, CD34 positive cells, and fibrin network analysis in concentrated growth factors fraction. Microsc. Res. Tech. 2011;74:772–777. doi: 10.1002/jemt.20968.
    1. Dohan Ehrenfest D.M., Pinto N.R., Pereda A., Jiménez P., Corso M.D., Kang B.-S., Nally M., Lanata N., Wang H.-L., Quirynen M. The impact of the centrifuge characteristics and centrifugation protocols on the cells, growth factors, and fibrin architecture of a leukocyte- and platelet-rich fibrin (L-PRF) clot and membrane. Platelets. 2018;29:171–184. doi: 10.1080/09537104.2017.1293812.
    1. Upadhayaya V., Arora A., Goyal A. Bioactive platelet aggregates: Prp, Prgf, Prf, Cgf and sticky bone. Angiogenesis. 2017;7:5–11. doi: 10.9790/0853-1605060511.
    1. Dohan Ehrenfest D.M., Del Corso M., Diss A., Mouhyi J., Charrier J.B. Three-dimensional architecture and cell composition of a Choukroun’s platelet-rich fibrin clot and membrane. J. Periodontol. 2010;81:546–555. doi: 10.1902/jop.2009.090531.
    1. Macias M.P., Fitzpatrick L.A., Brenneise I., McGarry M.P., Lee J.J., Lee N.A. Expression of IL-5 alters bone metabolism and induces ossification of the spleen in transgenic mice. J. Clin. Investig. 2001;107:949–959. doi: 10.1172/JCI11232.
    1. Mulholland B.S., Forwood M.R., Morrison N.A. Monocyte chemoattractant protein-1 (MCP-1/CCL2) drives activation of bone remodelling and skeletal metastasis. Curr. Osteoporos. Rep. 2019;17:538–547. doi: 10.1007/s11914-019-00545-7.
    1. Edderkaoui B. Potential role of chemokines in fracture repair. Front. Endocrinol. 2017;8:39. doi: 10.3389/fendo.2017.00039.
    1. Dohan D.M., Choukroun J., Diss A., Dohan S.L., Dohan A.J., Mouhyi J., Gogly B. Platelet-rich fibrin (PRF): A second-generation platelet concentrate. Part III: Leucocyte activation: A new feature for platelet concentrates? Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2006;101:e51–e55. doi: 10.1016/j.tripleo.2005.07.010.
    1. Miron R.J., Xu H., Chai J., Wang J., Zheng S., Feng M., Zhang X., Wei Y., Chen Y., Mourão C.F.d.A.B., et al. Comparison of platelet-rich fibrin (PRF) produced using 3 commercially available centrifuges at both high (~700 g) and low (~200 g) relative centrifugation forces. Clin. Oral Investig. 2020;24:1171–1182. doi: 10.1007/s00784-019-02981-2.
    1. Rosner B. Fundamentals of Biostatistics. Brooks/Cole Cengage Learning; Boston, MA, USA: 2011.

Source: PubMed

3
Se inscrever