Stress ulcer prophylaxis versus placebo-a blinded randomized control trial to evaluate the safety of two strategies in critically ill infants with congenital heart disease (SUPPRESS-CHD)

Kimberly I Mills, Ben D Albert, Lori J Bechard, Christopher P Duggan, Aditya Kaza, Seth Rakoff-Nahoum, Hera Vlamakis, Lynn A Sleeper, Jane W Newburger, Gregory P Priebe, Nilesh M Mehta, Kimberly I Mills, Ben D Albert, Lori J Bechard, Christopher P Duggan, Aditya Kaza, Seth Rakoff-Nahoum, Hera Vlamakis, Lynn A Sleeper, Jane W Newburger, Gregory P Priebe, Nilesh M Mehta

Abstract

Background: Critically ill infants with congenital heart disease (CHD) are often prescribed stress ulcer prophylaxis (SUP) to prevent upper gastrointestinal bleeding, despite the low incidence of stress ulcers and limited data on the safety and efficacy of SUP in infants. Recently, SUP has been associated with an increased incidence of hospital-acquired infections, community-acquired pneumonia, and necrotizing enterocolitis. The objective of this pilot study is to investigate the feasibility of performing a randomized controlled trial to assess the safety and efficacy of withholding SUP in infants with congenital heart disease admitted to the cardiac intensive care unit.

Methods: A single center, prospective, double-blinded, randomized placebo-controlled pilot feasibility trial will be performed in infants with CHD admitted to the cardiac intensive care unit and anticipated to require respiratory support for > 24 h. Patients will be randomized to receive a histamine-2 receptor antagonist (H2RA) or placebo until they are discontinued from respiratory support. Randomization will be performed within 2 strata defined by admission type (medical or surgical) and age (neonate, age < 30 days, or infant, 1 month to 1 year). Allocation will be a 1:1 ratio using permuted blocks to ensure balanced allocations across the two treatment groups within each stratum. The primary outcomes include feasibility of screening, consent, timely allocation of study drug, and protocol adherence. The primary safety outcome is the rate of clinically significant upper gastrointestinal bleeding. The secondary outcomes are the difference in the relative and absolute abundance of the gut microbiota and functional microbial profiles between the two study groups. We plan to enroll 100 patients in this pilot study.

Discussion: Routine use of SUP to prevent upper gastrointestinal bleeding in infants is controversial due to a low incidence of bleeding events and concern for adverse effects. The role of SUP in infants with CHD has not been examined, and there is equipoise on the risks and benefits of withholding this therapy. In addition, this therapy has been discontinued in other neonatal populations due to the concern for hospital-acquired infections and necrotizing enterocolitis. Furthermore, exploring changes to the microbiome after exposure to SUP may highlight the mechanisms by which SUP impacts potential microbial dysbiosis of the gut and its association with hospital-acquired infections. Assessment of the feasibility of a trial of withholding SUP in critically ill infants with CHD will facilitate planning of a larger multicenter trial of safety and efficacy of SUP in this vulnerable population.

Trial registration: ClinicalTrials.gov , NCT03667703. Registered 12 September 2018, https://ichgcp.net/clinical-trials-registry/NCT03667703?term=SUPPRESS+CHD&draw=2&rank=1 . All WHO Trial Registration Data Set Criteria are met in this manuscript.

Keywords: Congenital heart disease; Gastrointestinal hemorrhage; H2 blocker; Infection; Microbiome; Pediatric cardiac critical care; Pediatric critical care; Pediatric intensive care.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Study flowchart of trial design

References

    1. Cook DJ, Griffith LE, Walter SD, Guyatt GH, Meade MO, Heyland DK, et al. The attributable mortality and length of intensive care unit stay of clinically important gastrointestinal bleeding in critically ill patients. Crit Care (London, England). 2001;5(6):368–75.
    1. Deerojanawong J, Peongsujarit D, Vivatvakin B, Prapphal N. Incidence and risk factors of upper gastrointestinal bleeding in mechanically ventilated children. Pediatr Crit Care Med. 2009;10(1):91–95. doi: 10.1097/PCC.0b013e3181936a37.
    1. Terrin G, Passariello A, De Curtis M, Manguso F, Salvia G, Lega L, et al. Ranitidine is associated with infections, necrotizing enterocolitis, and fatal outcome in newborns. Pediatrics. 2012;129(1):e40–e45. doi: 10.1542/peds.2011-0796.
    1. Selvanderan SP, Summers MJ, Finnis ME, Plummer MP, Ali Abdelhamid Y, Anderson MB, et al. Pantoprazole or placebo for stress ulcer prophylaxis (POP-UP): randomized double-blind exploratory study. Crit Care Med. 2016;44(10):1842–1850. doi: 10.1097/CCM.0000000000001819.
    1. Guillet R, Stoll BJ, Cotten CM, Gantz M, McDonald S, Poole WK, et al. Association of H2-blocker therapy and higher incidence of necrotizing enterocolitis in very low birth weight infants. Pediatrics. 2006;117(2):e137–e142. doi: 10.1542/peds.2005-1543.
    1. Bianconi S, Gudavalli M, Sutija VG, Lopez AL, Barillas-Arias L, Ron N. Ranitidine and late-onset sepsis in the neonatal intensive care unit. J Perinat Med. 2007;35(2):147–150. doi: 10.1515/JPM.2007.017.
    1. Alhazzani W, Alshamsi F, Belley-Cote E, Heels-Ansdell D, Brignardello-Petersen R, Alquraini M, et al. Efficacy and safety of stress ulcer prophylaxis in critically ill patients: a network meta-analysis of randomized trials. Intensive Care Med. 2018;44(1):1–11. doi: 10.1007/s00134-017-5005-8.
    1. Albert BD, Zurakowski D, Bechard LJ, Priebe GP, Duggan CP, Heyland DK, et al. Enteral nutrition and acid-suppressive therapy in the PICU: impact on the risk of ventilator-associated pneumonia. Pediatr Crit Care Med. 2016;17(10):924–929. doi: 10.1097/PCC.0000000000000915.
    1. Faisy C, Guerot E, Diehl JL, Iftimovici E, Fagon JY. Clinically significant gastrointestinal bleeding in critically ill patients with and without stress-ulcer prophylaxis. Intensive Care Med. 2003;29(8):1306–1313. doi: 10.1007/s00134-003-1863-3.
    1. Yearsley KA, Gilby LJ, Ramadas AV, Kubiak EM, Fone DL, Allison MC. Proton pump inhibitor therapy is a risk factor for Clostridium difficile-associated diarrhoea. Aliment Pharmacol Ther. 2006;24(4):613–619. doi: 10.1111/j.1365-2036.2006.03015.x.
    1. Cook DJ, Reeve BK, Guyatt GH, Heyland DK, Griffith LE, Buckingham L, et al. Stress ulcer prophylaxis in critically ill patients. Resolving discordant meta-analyses. JAMA. 1996;275(4):308–314. doi: 10.1001/jama.1996.03530280060038.
    1. Duffett M, Choong K, Foster J, Gilfoyle E, Lacroix J, Pai N, et al. Pediatric intensive care stress ulcer prevention (PIC-UP): a protocol for a pilot randomized trial. Pilot Feasibility Stud. 2017;3:26. doi: 10.1186/s40814-017-0142-y.
    1. Costarino AT, Dai D, Feng R, Feudtner C, Guevara JP. Gastric acid suppressant prophylaxis in pediatric intensive care: current practice as reflected in a large administrative database. Pediatr Crit Care Med. 2015;16(7):605–612. doi: 10.1097/PCC.0000000000000427.
    1. Human Microbiome Project Consortium. A framework for human microbiome research. Nature. 2012;486(7402):215–21.
    1. Arnold DM, Donahoe L, Clarke FJ, Tkaczyk AJ, Heels-Ansdell D, Zytaruk N, et al. Bleeding during critical illness: a prospective cohort study using a new measurement tool. Clin Invest Med. 2007;30(2):E93–102. doi: 10.25011/cim.v30i2.985.
    1. Arnold DM, Lauzier F, Rabbat C, Zytaruk N, Barlow Cash B, Clarke F, et al. Adjudication of bleeding outcomes in an international thromboprophylaxis trial in critical illness. Thromb Res. 2013;131(3):204–209. doi: 10.1016/j.thromres.2012.12.005.
    1. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6(8):1621–1624. doi: 10.1038/ismej.2012.8.
    1. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581–583. doi: 10.1038/nmeth.3869.
    1. McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2012;6(3):610–618. doi: 10.1038/ismej.2011.139.
    1. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73(16):5261–5267. doi: 10.1128/AEM.00062-07.
    1. McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8(4):e61217. doi: 10.1371/journal.pone.0061217.
    1. Mallick H, Ma S, Franzosa EA, Vatanen T, Morgan XC, Huttenhower C. Experimental design and quantitative analysis of microbial community multiomics. Genome Biol. 2017;18(1):228. doi: 10.1186/s13059-017-1359-z.
    1. Smyth GK. Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol. 2004;3:Article3. doi: 10.2202/1544-6115.1027.
    1. Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L. Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol. 2013;31(1):46–53. doi: 10.1038/nbt.2450.
    1. Choong K, Duffett M, Cook DJ, Randolph AG. The impact of clinical trials conducted by research networks in pediatric critical care. Pediatr Crit Care Med. 2016;17(9):837–844. doi: 10.1097/PCC.0000000000000835.
    1. Duffett M, Choong K, Hartling L, Menon K, Thabane L, Cook DJ. Randomized controlled trials in pediatric critical care: a scoping review. Crit Care (London, England) 2013;17(5):R256. doi: 10.1186/cc13083.
    1. Craig P, Dieppe P, Macintyre S, Michie S, Nazareth I, Petticrew M. Developing and evaluating complex interventions: the new Medical Research Council guidance. BMJ (Clinical research ed) 2008;337:a1655.

Source: PubMed

3
Se inscrever