Clinical and Physiological Perspectives of β-Glucans: The Past, Present, and Future

Khawaja Muhammad Imran Bashir, Jae-Suk Choi, Khawaja Muhammad Imran Bashir, Jae-Suk Choi

Abstract

β-Glucans are a group of biologically-active fibers or polysaccharides from natural sources with proven medical significance. β-Glucans are known to have antitumor, anti-inflammatory, anti-obesity, anti-allergic, anti-osteoporotic, and immunomodulating activities. β-Glucans are natural bioactive compounds and can be taken orally, as a food supplement, or as part of a daily diet, and are considered safe to use. The medical significance and efficiency of β-glucans are confirmed in vitro, as well as using animal- and human-based clinical studies. However, systematic study on the clinical and physiological significance of β-glucans is scarce. In this review, we not only discuss the clinical and physiological importance of β-glucans, we also compare their biological activities through the existing in vitro and animal-based in vivo studies. This review provides extensive data on the clinical study of β-glucans.

Keywords: anti-obesity; anti-osteoporosis; antitumor; bioactive polysaccharides; immunomodulation; β-glucans.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
A linear 1,3 glycosidic chain of β-d-glucose monomers linked by a 1,6 glycosidic bond [11].

References

    1. Harada T., Ohno N. Contribution of dectin-1 and granulocyte macrophage-colony stimulating factor (GM-CSF) to immunomodulating actions of β-glucan. Int. Immunopharmacol. 2008;8:556–566. doi: 10.1016/j.intimp.2007.12.011.
    1. Sanchez N.C.B., Young T.R., Carroll J.A., Rathmann R.J., Johnson B.J. Yeast cell wall supplementation alters aspects of the physiological and acute phase responses of crossbred heifers to an endotoxin challenge. Innate Immun. 2013;19:411–419. doi: 10.1177/1753425912469673.
    1. Kuczaj M., Preś J., Zachwieja A., Twardoń J., Orda J., Dobicki A. Effect of supplementing dairy cows with live yeasts cells and dried brewer’s yeasts on milk chemical composition, somatic cell count and blood biochemical indices. Vet. Med. 2014;17:6.
    1. Klasing K.C., Korver D.R. Leukocytic cytokines regulate growth rate and composition following activation of the immune system. J. Anim. Sci. 1997;75:58–67.
    1. Auinger A., Riede L., Bothe G., Busch R., Gruenwald J. Yeast (1,3)-(1,6)-β-glucan helps to maintain the body’s defence against pathogens: A double-blind, randomized, placebo-controlled, multicentric study in healthy subjects. Eur. J. Nutr. 2013;52:1913–1918. doi: 10.1007/s00394-013-0492-z.
    1. Vetvicka V., Vetvickova J. Physiological effects of different types of β-glucan. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc. Czech Repub. 2007;151:225–231. doi: 10.5507/bp.2007.038.
    1. Brown L., Rosner B., Willett W.W., Sacks F.M. Cholesterol-lowering effects of dietary fiber: A meta-analysis. Am. J. Clin. Nutr. 1999;69:30–42.
    1. Cummings J.H., Stephen A.M. Carbohydrate terminology and classification. Eur. J. Clin. Nutr. 2007;61:5–18. doi: 10.1038/sj.ejcn.1602936.
    1. Novak M., Vetvicka V. β-glucans, history, and the present: Immunomodulatory aspects and mechanisms of action. J. Immunotoxicol. 2008;5:47–57. doi: 10.1080/15476910802019045.
    1. Brown J.L., Kossaczka Z., Jiang B., Bussey H. A mutational analysis of killer toxin resistance in Saccharomyces cerevisiae identifies new genes involved in cell wall (1→6)-β-glucan synthesis. Genetics. 1993;133:4837–4849.
    1. Chan G.C., Chan W.K., Sze D.M. The effects of β-glucan on human immune and cancer cells. J. Hematol. Oncol. 2009;2:25. doi: 10.1186/1756-8722-2-25.
    1. Stuart I.M., Loi L., Fincher G.B. Immunological comparison of (1→3,1→4)-β-glucan endohydrolases in germinating cereals. J. Cereal Sci. 1987;6:45–52. doi: 10.1016/S0733-5210(87)80039-5.
    1. Charalampopoulos D., Wang R., Pandiella S.S., Webb C. Application of cereals and cereal components in functional foods: A review. Int. J. Food Microbiol. 2002;79:131–141. doi: 10.1016/S0168-1605(02)00187-3.
    1. Demirbas A. β-Glucan and mineral nutrient contents of cereals grown in Turkey. Food Chem. 2005;90:773–777. doi: 10.1016/j.foodchem.2004.06.003.
    1. Holtekjølen A.K., Uhlen A.K., Brathen E., Sahlstrøm S., Knutsen S.H. Contents of starch and non-starch polysaccharides in barley varieties of different origin. Food Chem. 2006;94:348–358. doi: 10.1016/j.foodchem.2004.11.022.
    1. Bacic A., Fincher G.B., Stone B.A. Chemistry, Biochemistry, and Biology of (1→3)-β-Glucans and Related Polysaccharides. 1st ed. Academic Press; Amsterdam, The Netherlands: 2009.
    1. Teas J. The dietary intake of Laminaria, a brown seaweed, and breast cancer prevention. Nutr. Cancer. 1983;4:217–222. doi: 10.1080/01635588209513760.
    1. Wasser S.P., Weis A.L. Therapeutic effects of substances occurring in higher basidiomycetes mushrooms: A modern perspective. Crit. Rev. Immunol. 1999;19:65–96.
    1. Ripsin C.M., Keenan J.M., Jacobs D.R., Elmer P.J., Welch R.R., Van Horn L., Liu K., Turnbull W.H., Thye F.W., Kestin M., et al. Oat products and lipid lowering: A meta-analysis. J. Am. Med. Assoc. 1992;267:3317–3325. doi: 10.1001/jama.1992.03480240079039.
    1. Kim S.Y., Song H.J., Lee Y.Y., Cho K.-H., Roh Y.K. Biomedical issues of dietary fiber β-Glucan. J. Korean Med. Sci. 2006;21:781–789. doi: 10.3346/jkms.2006.21.5.781.
    1. Mantovani M.S., Bellini M.F., Angeli J.P.F., Oliveira R.J., Silva A.F., Ribeiro L.R. β-glucans in promoting health: Prevention against mutation and cancer. Mutat. Res. 2008;658:154–161. doi: 10.1016/j.mrrev.2007.07.002.
    1. Ina K., Kataoka T., Ando T. The use of lentinan for treating gastric cancer. Anti-Cancer Agents Med. Chem. 2013;13:681–688. doi: 10.2174/1871520611313050002.
    1. Chen J. Recent advances in the studies of β-glucans for cancer therapy. Anti-Cancer Agents Med. Chem. 2013;13:679–680. doi: 10.2174/1871520611313050001.
    1. Vetvicka V., Pinatto-Botelho M.F., Santos A.A.D., De Oliveira C.A.F. Evaluation of a special combination of glucan with organic selenium derivative in different murine tumor model. Anticancer Res. 2014;34:6939–6944.
    1. Behall K.M., Scholfield D.J., Hallfrisch J. Lipids significantly reduced by diets containing Barley in moderately hypercholesterolemic men. J. Am. Coll. Nutr. 2004;23:55–62. doi: 10.1080/07315724.2004.10719343.
    1. Behall K.M., Scholfield D.J., Hallfrisch J. Diets containing barley significantly reduce lipids in mildly hypercholesterolemic men and women. Am. J. Clin. Nutr. 2004;80:1185–1193.
    1. Liatis S., Tsapogas P., Chala E., Dimosthenopoulos C., Kyriakopoulos K., Kapantais E., Katsilambros N. The consumption of bread enriched with β-glucan reduces LDL-cholesterol and improves insulin resistance in patients with type 2 diabetes. Diabetes Metab. 2009;35:115–120. doi: 10.1016/j.diabet.2008.09.004.
    1. Kogan G., Pajtinka M., Babincova M., Miadokova E., Rauko P., Slamenova D., Korolenko T.A. Yeast cell wall polysaccharides as antioxidants and antimutagens: Can they fight cancer? Neoplasma. 2008;55:387–393.
    1. Daou C., Zhang H. Oat β-Glucan: Its role in health promotion and prevention of diseases. Compr. Rev. Food Sci. Food Saf. 2012;11:355–365. doi: 10.1111/j.1541-4337.2012.00189.x.
    1. Murphy E.A., Davis J.M., Carmichael M.D. Immune modulating effects of β-glucan. Curr. Opin. Clin. Nutr. Metab. Care. 2010;13:656–661. doi: 10.1097/MCO.0b013e32833f1afb.
    1. Ooi V.E.C., Liu F. Immunomodulation and anti-cancer activity of polysaccharide-protein complexes. Curr. Med. Chem. 2000;7:715–729. doi: 10.2174/0929867003374705.
    1. Jesenak M., Banovcin P., Rennerova Z., Majtan J. β-glucans in the treatment and prevention of allergic diseases. Allergol. Immunopathol. 2014;42:149–156. doi: 10.1016/j.aller.2012.08.008.
    1. Jesenak M., Urbancikova I., Banovcin P. Respiratory tract infections and the role of biologically active polysaccharides in their management and prevention. Nutrients. 2017;9:779. doi: 10.3390/nu9070779.
    1. Khoury D.E., Cuda C., Luhovyy B.L., Anderson G.H. β-glucan: Health benefits in obesity and metabolic syndrome. J. Nutr. Metab. 2012 doi: 10.1155/2012/851362.
    1. Chen J., Raymond K. β-glucans in the treatment of diabetes and associated cardiovascular risks. Vasc. Health Risk Manag. 2008;4:126–1272. doi: 10.2147/VHRM.S3803.
    1. Hou T.-Y., Wang S.-H., Liang S.-X., Jiang W.-X., Luo D.-D., Huang D.-H. The screening performance of serum 1,3 β-d-glucan in patients with invasive fungal diseases: A meta-analysis of prospective cohort studies. PLoS ONE. 2015;10:e0131602. doi: 10.1371/journal.pone.0131602.
    1. Hallfrisch J., Behall K.M. Physiological responses of men and women to barley and oat extracts (nu-trimX). I. Breath hydrogen, methane, and gastrointestinal symptoms. Cereal Chem. 2003;80:76–79. doi: 10.1094/CCHEM.2003.80.1.76.
    1. Chen M., Seviour R. Medicinal importance of fungal β-(1→3), (1→6)-glucans. Mycol. Res. 2007;111:635–652. doi: 10.1016/j.mycres.2007.02.011.
    1. Johnson J.J., Kirkwood A., Misaki A., Nelson T., Scalettie J., Smith F. Structure of a new glucan. Chem. Ind. 1963;41:820–822.
    1. Kikumoto S., Miyazima T., Kimura K., Okubo S., Komatsu N. Polysaccharide produced by Schizophyllum commune, part II. Chemical structure of an extracellular polysaccharide. Nippon Nougeikagaku Kaishi. 1971;45:162–168. doi: 10.1271/nogeikagaku1924.45.162.
    1. Garcia-Lora A., Martinez M., Pedrinaci S., Garrido F. Different regulation of PKC isoenzymes and MAPK by PSK and IL-2 in the proliferative and cytotoxic activities of the NKL human natural killer cell line. Cancer Immunol. Immunother. 2003;52:59–64.
    1. Tada R., Harada T., Nagi-Miura N., Adachi Y., Nakajima M., Toshiro Y., Ohno N. NMR characterization of the structure of a β-(1→3)-d-glucan isolate from cultured fruit bodies of Sparassis Crispa. Carbohydr. Res. 2007;342:2611–2618. doi: 10.1016/j.carres.2007.08.016.
    1. Kritzman G., Chet I., Henis Y. Isolation of extracellular polysaccharides from Sclerotium rolfsii. Can. J. Bot. 1979;57:1855–1859. doi: 10.1139/b79-234.
    1. Survase S.A., Saudagar P.S., Singhal R.S. Production of scleroglucan from Sclerotium rolfsii MTCC 2156. Bioresour. Technol. 2006;97:989–993. doi: 10.1016/j.biortech.2005.04.037.
    1. Misaki A., Kawaguchi K., Miyaji H., Nagae H., Hokkoku S., Kakuta M., Sasaki T. Structure of pestalotan, a highly branched (1/3)-β-d-glucan elaborated by Pestalotia sp. 815, and the enhancement of its antitumor activity by polyol modification of the side chains. Carbohydr. Res. 1984;129:209–227. doi: 10.1016/0008-6215(84)85313-6.
    1. Schmid F., Stone B.A., McDougall B.M., Bacic A., Martin K.L., Brownlee R.T., Chai E., Seviour R.J. Structure of epiglucan, a highly side-chain/branched (1/3;1/6)-β-glucan from the micro fungus Epicoccum nigrum Ehrenb. Ex Schlecht. Carbohydr. Res. 2001;331:163–171. doi: 10.1016/S0008-6215(01)00023-4.
    1. Warsi S.A., Whelan W.J. Structure of pachyman, the polysaccharide component of Poria cocos. Chem. Ind. 1957;48:1573–1575.
    1. Wang Y., Zhang M., Ruan D., Shashkov A.S., Kilcoyne M., Savage A.V., Zhang L. Chemical components and molecular mass of six polysaccharides isolated from the sclerotium of Poria cocos. Carbohydr. Res. 2004;339:327–334. doi: 10.1016/j.carres.2003.10.006.
    1. Hara C., Kumazawa Y., Inagaki K., Kaneko M., Kiho T., Ukai S. Mitogenic and colony-stimulating factor-inducing activities of polysaccharide fractions from the fruit bodies of Dictyophora indusiata FISCH. Chem. Pharm. Bull. 1991;39:1615–1616. doi: 10.1248/cpb.39.1615.
    1. Gomaa K., Kraus J., Franz G., Röper H. Structural investigations of glucans from cultures of Glomerella cingulata Spaulding & von Schrenck. Carbohydr. Res. 1991;217:153–161.
    1. Gomaa K., Kraus J., Rosskopf F., Röper H., Franz G. Antitumour and immunological activity of a β (1→3/1→6) glucan from Glomerella cingulata. J. Cancer Res. Clin. Oncol. 1992;118:136–140. doi: 10.1007/BF01187502.
    1. Ohno N., Adachi Y., Suzuki I., Sato K., Oikawa S., Yadomae T. Characterization of the antitumor glucan obtained from liquid-cultured Grifola frondosa. Chem. Pharm. Bull. 1986;34:1709–1715. doi: 10.1248/cpb.34.1709.
    1. Sone Y., IsodaJohmura M., Misaki A. Isolation and chemical characterization of polysaccharides from Iwatake, Gyrophara esculenta Miyoshi. Biosci. Biotechnol. Biochem. 1996;60:213–215. doi: 10.1271/bbb.60.213.
    1. Munz C., Steinman R.M., Fujii S. Dendritic cell maturation by innate lymphocytes: Coordinated stimulation of innate and adaptive immunity. J. Exp. Med. 2005;202:203–207. doi: 10.1084/jem.20050810.
    1. Chihara G., Maeda Y.Y., Hamuro J., Sasaki T., Fukuoka F. Inhibition of mouse sarcoma 180 by polysaccharide from Lentinus edodes (Berk.) Sing. Nature. 1969;222:687–688. doi: 10.1038/222687a0.
    1. Chihara G., Hamuro J., Maeda Y.Y., Arai Y., Fukuoka F. Fractionation and purification of the polysaccharides with marked antitumor activity, especially lentinan, from Lentinus edodes (Berk.) Sing. (an edible mushroom) Cancer Res. 1970;30:2776–2781.
    1. Sasaki T., Takasuka N. Further study of the structure of lentinan, an anti-tumor polysaccharide from Lentinus edodes. Carbohydr. Res. 1976;47:99–104. doi: 10.1016/S0008-6215(00)83552-1.
    1. Miyazaki T., Yadomae T., Sugiura M., Ito H., Fujii K., Naruse S., Kunihisa M. Chemical structure of antitumor polysaccharide, coriolan, produced by Coriolus versicolor. Chem. Pharm. Bull. 1974;22:1739–1742. doi: 10.1248/cpb.22.1739.
    1. Kurashige S., Akuawa Y., Endo F. Effects of Lentinus edodes, Grifola frondosa and Pleurotus ostreatus administration on cancer outbreak, and activities of macrophages and lymphocytes in mice treated with a carcinogen, N-butyl-N-butanolnitrosoamine. Immunopharmacol. Immunotoxicol. 1997;19:175–183. doi: 10.3109/08923979709007657.
    1. Zhang M., Cheung P.C.K., Zhang L. Evaluation of mushroom dietary fiber (nonstarch polysaccharides) from sclerotia of Pleurotus tuber-regium as a potential antitumor agent. J. Agric. Food Chem. 2001;49:5059–5062. doi: 10.1021/jf010228l.
    1. Kulicke W.-M., Lettau A.I., Thielking H. Correlation between immunological activity, molar mass, and molecular structure of different (1→3)-β-d-glucans. Carbohydr. Res. 1997;297:135–143. doi: 10.1016/S0008-6215(96)00273-X.
    1. Misaki A., Kakuta M., Sasaki T., Tanaka M., Miyaji H. Studies on interrelation of structure and antitumor effects of polysaccharides: Antitumor action of periodate-modified, branched (1→3)-β-d-glucan of Auricularia auricula-judae, and other polysaccharides containing (1→3)-glycosidic linkages. Carbohydr. Res. 1981;92:115–129. doi: 10.1016/S0008-6215(00)85986-8.
    1. Defaye J., Kohlmunzer S., Sodzawiczny K., Wong E. Structure of an antitumor, water-soluble d-glucan from the carpophores of Tylopilus felleus. Carbohydr. Res. 1988;173:316–323. doi: 10.1016/S0008-6215(00)90829-2.
    1. Grzybek J., Zgorniak-Nowosielska I., Kasprowicz A., Zawilinska B., Kohlmunzer S. Antitumor activity of fungal glucan tylopilan and Propionibacterium acnes preparation. Acta Soc. Bot. Pol. 1994;63:293–298. doi: 10.5586/asbp.1994.040.
    1. Kitamura S., Hori T., Kurita K., Takeo K., Hara C., Itoh W., Tabata K., Elgsaeter A., Stokke B.T. An antitumor, branched (1→3)-β-d-glucan from a water extract of fruiting bodies of Cryptoporus volvatus. Carbohydr. Res. 1994;263:111–121. doi: 10.1016/0008-6215(94)00156-1.
    1. Bell W., Kaesbauer J., Kraus J., Franz G. Pythium aphanidermatum: Culture, cell wall composition, and isolation and structure of antitumor storage and solubilised cell wall (1→3), (1→6)-β-d-glucans. Carbohydr. Res. 1992;231:293–307.
    1. Sone Y., Okuda R., Wada N., Kishida E., Misaki A. Structures and antitumor activities of the polysaccharides isolated from fruiting body and the growing culture of mycelium of Ganoderma lucidum. Agric. Biol. Chem. 1985;49:2641–2653.
    1. Hung W.-T., Wang S.-H., Chen C.-H., Yang W.-B. Structure determination of β-glucans from Ganoderma lucidum with matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. Molecules. 2008;13:1538–1550. doi: 10.3390/molecules13081538.
    1. Oshiman K., Fujimiya Y., Ebina T., Suzuki I., Noji M. Orally administered β-1,6-d-polyglucose extracted from Agaricus blazei results in tumor regression in tumor-bearing mice. Planta Med. 2002;68:610–614. doi: 10.1055/s-2002-32904.
    1. Kobayashi H., Yoshida R., Kanada Y., Fukuda Y., Yagyu T., Inagaki K., Kondo T., Kurita N., Suzuki M., Kanayama N., et al. Suppressing effects of daily oral supplementation of β-glucan extracted from Agaricus blazei Murill on spontaneous and peritoneal disseminated metastasis in mouse model. J. Cancer Res. Clin. Oncol. 2005;131:527–538. doi: 10.1007/s00432-005-0672-1.
    1. Xiao G., Miyazato A., Abe Y., Zhang T., Nakamura K., Inden K., Tanaka M., Tanno D., Miyasaka T., Ishii K., et al. Activation of myeloid dendritic cells by deoxynucleic acids from Cordyceps sinensis via a Toll-like receptor 9-dependent pathway. Cell Immunol. 2010;263:241–250. doi: 10.1016/j.cellimm.2010.04.006.
    1. Pao H.Y., Pan B.S., Leu S.F., Huang B.M. Cordycepin stimulated steroidogenesis in MA-10 mouse leydig tumor cells through the protein kinase C Pathway. J. Agric. Food Chem. 2012;60:4905–4913. doi: 10.1021/jf205091b.
    1. Kim S.P., Kang M.Y., Kim J.H., Nam S.H., Friedman M. Composition and mechanism of antitumor effects of Hericium erinaceus mushroom extracts in tumor-bearing mice. J. Agric. Food Chem. 2011;59:9861–9869. doi: 10.1021/jf201944n.
    1. Yamamoto K., Kimura A.T., Sugitachi A.A., Matsuurac B.A.N. Anti-angiogenic and anti-metastatic effects of β-1,3-d-glucan purified from hanabiratake, Sparassis crispa. Biol. Pharm. Bull. 2009;32:259–263. doi: 10.1248/bpb.32.259.
    1. Lim M.-K., Ku S.-K., Choi J.-S., Kim J.-W. Effect of polycan, a β-glucan originating from Aureobasidium, on a high-fat diet-induced hyperlipemic hamster model. Exp. Ther. Med. 2015;9:1369–1378. doi: 10.3892/etm.2015.2238.
    1. Ku S.-K., Cho H.-R., Choi J.-S., Kim J.-W. Effects of polycan on calcium bioavailability in two different rat models of osteoporosis. Toxicol. Environ. Health Sci. 2015;7:35–42. doi: 10.1007/s13530-015-0218-0.
    1. Jung M.Y., Kim J.W., Kim K.Y., Choi S.H., Ku S.K. Polycan, a β-glucan from Aureobasidium pullulans SM-2001, mitigates ovariectomy-induced osteoporosis in rats. Exp. Ther. Med. 2016;12:1251–1262. doi: 10.3892/etm.2016.3485.
    1. Sovrani V., De Jesus L.I., Simas-Tosin F.F., Smiderle F.R., Iacomini M. Structural characterization and rheological properties of a gel-like β-d-glucan from Pholiota nameko. Carbohydr. Polym. 2017;169:1–8. doi: 10.1016/j.carbpol.2017.03.093.
    1. Iwamuro Y., Aoki M., Mikami Y. Purification and some properties of an exo-β-1,3-glucanase from Porodisculus pendulus. J. Ferment. Technol. 1985;63:405–409.
    1. Whistler R.L., Bushway A.A., Singn P.P., Nakahara W., Tokuzen R. Noncytotoxic, antitumor polysaccharides. Adv. Carbohydr. Chem. Biochem. 1976;32:235–274.
    1. Sato M., Sano H., Iwaki D., Kudo K., Konishi M., Takahashi H., Takahashi T., Imaizumi H., Asai Y., Kuroki Y. Direct binding of Toll-like receptor 2 to zymosan, and zymosan induced NF-kappa B activation and TNF-α secretion are down-regulated by lung collectin surfactant protein A. J. Immunol. 2003;171:417–425. doi: 10.4049/jimmunol.171.1.417.
    1. Mariani C.L., Rajon D., Bova F.J., Streit W.J. Nonspecific immunotherapy with intratumoral lipopolysaccharide and zymosan A but not GM-CSF leads to an effective anti-tumor response in subcutaneous RG-2 gliomas. J. Neurooncol. 2007;85:231–240. doi: 10.1007/s11060-007-9415-2.
    1. Liu X.L., Lin N., Zan D., Yuan J.J., Cai D.L. Effect of zymosan on antioxidant and immune function of S180 tumor-bearing mice. Cell Biochem. Biophys. 2011;60:225–229. doi: 10.1007/s12013-010-9143-7.
    1. LeBlanc B.W., Albina J.E., Reichner J.S. The effect of PGG β-glucan on neutrophil chemotaxis in vivo. J. Leukoc. Biol. 2006;79:667–675. doi: 10.1189/jlb.0305150.
    1. Cramer D.E., Wagner S., Li B., Liu J., Hansen R., Reca R., Wu W., Surma E.Z., Laber D.A., Ratajczak M.Z., et al. Mobilization of hematopoietic progenitor cells by yeast-derived β-glucan requires activation of matrix metalloproteinase-9. Stem Cells. 2008;26:1231–1240. doi: 10.1634/stemcells.2007-0712.
    1. Lebron F., Vassallo R., Puri V., Limper A.H. Pneumocystis carinii cell wall β-glucans initiate macrophage inflammatory responses through NF-kappaB activation. J. Biol. Chem. 2003;278:25001–25008. doi: 10.1074/jbc.M301426200.
    1. Qi C., Cai Y., Gunn L., Ding C., Li B., Kloecker G., Qian K., Vasilakos J., Saijo S., Iwakura Y., et al. Differential pathways regulating innate and adaptive antitumor immune responses by particulate and soluble yeast-derived β-glucans. Blood. 2011;117:6825–6836. doi: 10.1182/blood-2011-02-339812.
    1. Yoon T.J., Kim T.J., Lee H., Shin K.S., Yun Y.P., Moon W.K., Kim D.W., Lee K.H. Anti-tumor metastatic activity of β-glucan purified from mutated Saccharomyces cerevisiae. Int. Immunopharmacol. 2008;8:36–42. doi: 10.1016/j.intimp.2007.10.005.
    1. Stier H., Ebbeskotte V., Gruenwald J. Immune-modulatory effects of dietary yeast β-1,3/1,6-d-glucan. Nutr. J. 2014;13:1–9. doi: 10.1186/1475-2891-13-38.
    1. Sandula J., Machová E., Hribalová V. Mitogenic activity of particulate yeast β-(1→3)-d-glucan and its water-soluble derivatives. Int. J. Biol. Macromol. 1995;17:323–326. doi: 10.1016/0141-8130(96)81839-3.
    1. Nakanishi L., Kimura K., Suzuki T., Ishikawa M., Banno L., Sakane T., Harada T. Demonstration of curdlan-type polysaccharide and some other β-1,3-glucan in microorganisms with aniline blue. J. Gen. Appl. Microbiol. 1976;22:1–11. doi: 10.2323/jgam.22.1.
    1. McIntosh M., Stone B.A., Stanisich V.A. Curdlan and other bacterial (1/3)-β-d-glucans. Appl. Microbiol. Biotechnol. 2005;68:163–173. doi: 10.1007/s00253-005-1959-5.
    1. Moscovici M., Ionescu C., Caraiani T., Căùărică A., Marinescu M.C., Zăhărăchescu V., Ghera D., Gheorghiu E., Stan A., Soare M., et al. Curdlan-type polysaccharide obtained using a strain of Agrobacterium rhizogenes. Rom. Biotechnol. Lett. 2009;14:4530–4537.
    1. West T.P. Elevated curdlan production by a mutant of Agrobacterium sp. ATCC 31749. J. Basic Microbiol. 2009;29:589–592. doi: 10.1002/jobm.200900137.
    1. Shim J.H., Sung K.J., Cho M.C., Choi W.A., Yang Y., Lim J.S., Yoon D.Y. Antitumor effect of soluble β-1,3-glucan from Agrobacterium sp. R259 KCTC 1019. J. Microbiol. Biotechnol. 2007;17:1513–1520.
    1. Elyakova L.A., Pavlov G.M., Isakov V.V., Zaitseva I., Stepchenova T.A. Molecular characteristics of laminarin subfractions. Khimiya Prir. Soedin. 1994;2:296–298. doi: 10.1007/BF00630025.
    1. Chizhov A.O., Dell A., Morris H.R., Reason A.J., Haslam S.M., McDowell R.A., Chizhov O.S., Usov A.I. Structural analysis of laminarans by MALDI and FAB mass spectrometry. Carbohydr. Res. 1998;310:203–210. doi: 10.1016/S0008-6215(98)00177-3.
    1. Wang M.C., Bartnicki-Garcia S. Novel phosphoglucans from the cytoplasm of Phytophthora palmivora and their selective occurrence in certain life cycle stages. J. Biol. Chem. 1973;248:4112–4118.
    1. Wang M.C., Bartnicki-Garcia S. Distribution of mycolaminarans and cell wall β-glucans in the life cycle of Phytophthora. Exp. Mycol. 1980;4:269–280. doi: 10.1016/0147-5975(80)90031-6.
    1. Archibald A.R., Cunningham W.L., Manners D.J., Stark J.R., Ryley J.F. Metabolism of the protozoa, X. The molecular structure of the reserve polysaccharides from Ochromonas malhamensis and Peranema trichophorum. Biochem. J. 1963;88:444–451. doi: 10.1042/bj0880444.
    1. Xia S., Gao B., Li A., Xiong J., Ao Z., Zhang C. Preliminary characterization, antioxidant properties and production of chrysolaminarin from marine diatom Odontella aurita. Mar. Drugs. 2014;12:4883–4897. doi: 10.3390/md12094883.
    1. Storseth T.R., Hansen K., Skjermo J., Krane J. Characterization of a β-d-(1,3)-glucan from the marine diatom Chaetoceros mulleri by high resolution magic-angle spinning NMR spectroscopy on whole algal cells. Carbohydr. Res. 2004;339:421–440. doi: 10.1016/j.carres.2003.10.021.
    1. Vetvicka V., Dvorak B., Vetvickova J., Richter J., Krizan J., Sima P., Yvin J.-C. Orally administered marine (1→3)-β-d-glucan phycarine stimulates both humoral and cellular immunity. Int. J. Biol. Macromol. 2007;40:291–298. doi: 10.1016/j.ijbiomac.2006.08.009.
    1. Clarke A.E., Stone B.A. Structure of the paramylon from Euglena gracilis. Biochim. Biophys. Acta. 1960;44:161–163. doi: 10.1016/0006-3002(60)91534-1.
    1. Kreger D.R., van der Veer J. Paramylon in a chrysophyte. Plant Biol. 1970;19:401–402. doi: 10.1111/j.1438-8677.1970.tb00661.x.
    1. Ford C.W., Percival E. The carbohydrates of Phaeodactylum tricornutum. Preliminary examination of the organism, and characterization of low molecular weight material and of a glucan. J. Chem. Soc. 1965 doi: 10.1039/jr9650007035.
    1. Papageorgiou M., Lakhdara N., Lazaridou A., Biliaderis C.G., Izydorczyk M.S. Water extractable (1→3,1→4)-β-d-glucans from barley and oats: An intervarietal study on their structural features and rheological behaviour. J. Cereal Sci. 2005;42:213–224. doi: 10.1016/j.jcs.2005.03.002.
    1. Bohm N., Kulicke W.M. Rheological studies of barley (1→3)(1→4)-β-glucan in concentrated solution: Mechanistic and kinetic investigation of the gel formation. Carbohydr. Res. 1999;315:302–311. doi: 10.1016/S0008-6215(99)00036-1.
    1. Queenan K.M., Stewart M.L., Smith K.N., Thomas W., Fulcher R.G., Slavin J.L. Concentrated oat β-glucan, a fermentable fiber, lowers serum cholesterol in hypercholesterolemic adults in a randomized controlled trial. Nutr. J. 2007;6:1–8. doi: 10.1186/1475-2891-6-6.
    1. Charlton K.E., Tapsell L.C., Batterham M.J., O’Shea J., Thorne R., Beck E., Tosh S.M. Effect of 6 weeks’ consumption of β-glucan-rich oat products on cholesterol levels in mildly hypercholesterolaemic overweight adults. Br. J. Nutr. 2012;107:1037–1047. doi: 10.1017/S0007114511003850.
    1. Cui W., Wood P.J., Blackwell B.A., Nikiforuk J. Physicochemical properties and structural characterization by two-dimensional NMR spectroscopy of wheat β-d-glucan-Comparison with other cereal β-d-glucans. Carbohydr. Polym. 2000;41:249–258. doi: 10.1016/S0144-8617(99)00143-5.
    1. Li W., Cui S.W., Wang Q. Solution and conformational properties of wheat β-d-glucans studied by light scattering and viscometry. Biomacromolecules. 2006;7:446–452. doi: 10.1021/bm050625v.
    1. Berovic M., Habijanic J., Zore I., Wraber B., Hodzar D., Boh B., Pohleven F. Submerged cultivation of Ganoderma lucidum biomass and immunostimulatory effects of fungal polysaccharides. J. Biotecnol. 2003;103:77–86. doi: 10.1016/S0168-1656(03)00069-5.
    1. Oliveira R.J., Matuo R., Silva A.F., Matiazi H.J., Mantovani M.S., Ribeiro L.R. Protective effect of β-glucan extracted from Saccharomyces cerevisiae, against DNA damage and cytotoxicity in wild-type (K1) and repair-deficient (xrs5) CHO cells. Toxicol. In Vitro. 2007;21:41–52. doi: 10.1016/j.tiv.2006.07.018.
    1. Chan W.K., Law H.K., Lin Z.B., Lau Y.L., Chan G.C. Response of human dendritic cells to different immunomodulatory polysaccharides derived from mushroom and barley. Int. Immunol. 2007;19:891–899. doi: 10.1093/intimm/dxm061.
    1. Higashi T., Hashimoto K., Takagi R., Mizuno Y., Okazaki Y., Tanaka Y., Matsushita S. Curdlan induces DC-mediated Th17 polarization via Jagged1 activation in human dendritic cells. Allergol. Int. 2010;59:161–166. doi: 10.2332/allergolint.09-OA-0103.
    1. Choromanska A., Kulbacka J., Rembialkowska N., Pilat J., Oledzki R., Harasym J., Saczko J. Anticancer properties of low molecular weight oat β-glucan-An in vitro study. Int. J. Biol. Macromol. 2015;80:23–28. doi: 10.1016/j.ijbiomac.2015.05.035.
    1. Leung M.Y.K., Fung K.P., Choy Y.M. The isolation and characterization of an immunomodulatory and anti-tumor polysaccharide preparation from Flammulina velutipes. Immunopharmacology. 1997;35:255–263. doi: 10.1016/S0162-3109(96)00157-9.
    1. Hong F., Yan J., Baran J.T., Allendorf D.J., Hansen R.D., Ostroff G.R., Xing P.X., Cheung N.K., Ross G.D. Mechanism by which orally administered β-1,3-glucans enhance the tumoricidal activity of antitumor monoclonal antibodies in murine tumor models. J. Immunol. 2004;173:797–806. doi: 10.4049/jimmunol.173.2.797.
    1. Zhang L., Xuelian L., Xu X., Zeng F. Correlation between antitumoral activity, molecular weight, and conformation of lentinan. Carbohydr. Res. 2005;340:1515–1521. doi: 10.1016/j.carres.2005.02.032.
    1. Vetvicka V., Yvin J.C. Effects of marine β-glucan on immune reaction. Int. Immunopharmacol. 2004;4:721–730. doi: 10.1016/j.intimp.2004.02.007.
    1. Ohno N., Miura T., Saito K., Nishijima M., Miyazaki T., Yadomae T. Physicochemical characteristics and antitumor activities of a highly branched fungal (1,3)-β-d-Glucan, OL-2, isolated from Omphalia lapidescens. Chem. Pharm. Bull. 1992;40:2215–2218. doi: 10.1248/cpb.40.2215.
    1. Saito K., Nishijima M., Ohno N., Yadomae T., Miyazaki T. Structure and antitumor activity of the less-branched derivatives of an alkali-soluble glucan isolated from Omphalia lapidescens. (Studies on Fungal Polysaccharide. XXXVIII) Chem. Pharm. Bull. 1992;40:261–263. doi: 10.1248/cpb.40.261.
    1. Ohno N., Miura N.N., Nakajima M., Yadomae T. Antitumor 1,3-β-glucan from cultured fruit body of Sparassis crispa. Biol. Pharm. Bull. 2000;23:866–872. doi: 10.1248/bpb.23.866.
    1. Ohno N., Furukawa M., Miura N.N., Adachi Y., Motoi M., Yadomae T. Antitumoral β-glucan from cultured fruit body of Agaricus blazei. Biol. Pharm. Bull. 2001;24:820–828. doi: 10.1248/bpb.24.820.
    1. Ebina T., Fujimiya Y. Antitumor effect of a peptide-glucan preparation extracted from Agaricus blazei in a double-grafted tumor system in mice. Biotherapy. 1998;11:259–265. doi: 10.1023/A:1008054111445.
    1. Driscoll M., Hansen R., Ding C., Cramer D.E., Yan J. Therapeutic potential of various β-glucan sources in conjunction with anti-tumor monoclonal antibody in cancer therapy. Cancer Biol. Ther. 2009;8:218–225. doi: 10.4161/cbt.8.3.7337.
    1. Okamoto T., Kodoi R., Nonaka Y. Lentinan from shiitake mushroom (Lentinus edodes) suppresses expression of cytochrome P450 1A subfamily in the mouse liver. Biofactors. 2004;21:407–409. doi: 10.1002/biof.552210180.
    1. Weitberg A.B. A phase I/II trial of β-(1,3)/(1,6) d-glucan in the treatment of patients with advanced malignancies receiving chemotherapy. J. Exp. Clin. Cancer Res. 2008;27:1–4. doi: 10.1186/1756-9966-27-40.
    1. Ostadrahimi A., Esfahani A., Jafarabadi M.A., Ziaei J.E., Movassaghpourakbari A., Farrin N. Effect of β-glucan on quality of life in women with breast cancer undergoing chemotherapy: A randomized double-blind placebo-controlled clinical trial. Adv. Pharm. Bull. 2014;4:471–477.
    1. Wakshull E., Brunke-Reese D., Lindermuth J., Fisette L., Nathans R.S., Crowley J.J., Tufts J.C., Zimmerman J., Mackin W., Adams D.S. PGG-glucan, a soluble β-(1,3)-glucan, enhances the oxidative burst response, microbicidal activity and activates an NF-kappa B-like factor in human PMN: Evidence for a glycosphingolipid β-(1,3)-glucan receptor. Immunopharmacology. 1999;41:89–107. doi: 10.1016/S0162-3109(98)00059-9.
    1. Lin Y.L., Liang Y.C., Lee S.S., Chiang B.L. Polysaccharide purified from Ganoderma lucidum induced activation and maturation of human monocyte-derived dendritic cells by the NFkappaB and p38 mitogen-activated protein kinase pathways. J. Leukoc. Biol. 2005;78:533–543. doi: 10.1189/jlb.0804481.
    1. Chaung H.-C., Huang T.-C., Yu J.-H., Wuc M.-L., Chung W.-B. Immunomodulatory effects of β-glucans on porcine alveolar macrophages and bone marrow haematopoietic cell-derived dendritic cells. Vet. Immunol. Immunopathol. 2009;131:147–157. doi: 10.1016/j.vetimm.2009.04.004.
    1. Chanput W., Reitsma M., Kleinjans L., Mes J.J., Savelkoul H.F., Wichers H.J. β-glucans are involved in immune-modulation of THP-1 macrophages. Mol. Nutr. Food Res. 2012;56:822–833. doi: 10.1002/mnfr.201100715.
    1. Bobadilla F., Rodriguez-Tirado C., Imarai M., Galotto M.J., Andersson R. Soluble β-1,3/1,6 glucan in seaweed from the southern hemisphere and its immunomodulatory effect. Crabohydr. Polym. 2013;92:241–248. doi: 10.1016/j.carbpol.2012.09.071.
    1. Vetvicka V., Terayama K., Mandeville R., Brousseau P., Kournikakis B., Ostroff G. Pilot study: Orally administered yeast β-1,3-glucan prophylactically protects against anthrax infection and cancer in mice. J. Am. Nutraceut. Assoc. 2002;5:1–6.
    1. Sakurai T., Hashimoto K., Suzuki I., Ohno N., Oikawa S., Masuda A., Yadomae T. Enhancement of murine alveolar macrophage functions by orally administered β-glucan. Int. J. Immunopharmacol. 1992;14:821–830. doi: 10.1016/0192-0561(92)90080-5.
    1. Di Luzio N.R., Williams D.L., Mcnamee R.B., Edwards B.F., Kitahama A. Comparative tumor-inhibitory and anti-bacterial activity of soluble and particulate glucan. Int. J. Cancer. 1979;24:773–779. doi: 10.1002/ijc.2910240613.
    1. Reynolds J.A., Kastello M.D., Harrigton D.G., Crabs C.L., Peters C.J., Jemski J.V., Scott G.H., Di Luzio N.R. Glucan-induced enhancement of host resistance to selected infectious diseases. Infect. Immun. 1980;30:51–57.
    1. Hotta H., Hagiwara K., Tabata K., Ito W., Homma M. Augmentation of protective immune responses against Sendai virus infection by fungal polysaccharide schizophyllan. Int. J. Immunopharmacol. 1993;5:55–60. doi: 10.1016/0192-0561(93)90031-S.
    1. Kaiser A.B., Kernodle D. Synergism between poly-(1→6)-β-d-glucopyranose glucana and cefazolin in prophylaxis of staphylococcal wound infection in guinea pig model. Antimicrobiol. Agents Chemother. 1998;42:2449–2451.
    1. Yun C.H., Estrada A., Kessel A.V., Gajadhar A., Redmond M., Laearveld B. Immunomodulatory effects of a oat-β-glucan administered intragastrically or parentally on mice infected with Eimeria verminoformis. Microbiol. Immunol. 1998;42:457–465.
    1. Hetland G., Ohno N., Aaberge I.S., Løvik M. Protective effect of β-glucan against systemic Streptococcus pneumoniae infection in mice. FEMS Immunol. Med. Microbiol. 2000;27:111–116. doi: 10.1016/S0928-8244(99)00172-8.
    1. Hasegawa A., Yamada M., Dombo M., Fukushima R., Matsuura N., Sugitachi A. Sparassis crispa as biological response modifier. Gan To Kagaku Ryoho. 2004;11:1761–1763.
    1. Sener G., Eksioglu-Demiralp E., Cetiner M., Ercan E., Yegen B.C. β-glucan ameliorates methotrexate-induced oxidative organ injury via its antioxidant and immunomodulatory effects. Eur. J. Pharmacol. 2006;542:170–178. doi: 10.1016/j.ejphar.2006.02.056.
    1. Vetvicka V., Vashishta A., Saraswat-Ohri S., Vetvicka J. Immunological effects of yeast- and mushroom-derived β-glucans. J. Med. Food. 2008;11:615–622. doi: 10.1089/jmf.2007.0588.
    1. Vetvicka V., Vancikova Z. Anti-stress action of several orally-given β-glucans. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2010;154:235–238. doi: 10.5507/bp.2010.035.
    1. McCormack E., Skavland J., Mujic M., Bruserud O., Gjertsen B.T. Lentinan: Hematopoietic, immunological, and efficacy studies in a syngeneic model of acute myeloid leukemia. Nutr. Cancer. 2010;62:574–583. doi: 10.1080/01635580903532416.
    1. Mallick S.K., Maiti S., Bhutia S.K., Maiti T.K. Immunostimulatory properties of a polysaccharide isolated from Astraeus hygrometricus. J. Med. Food. 2010;13:665–672. doi: 10.1089/jmf.2009.1300.
    1. Sugiyama A., Hata S., Suzuki K., Yoshida E., Nakano R., Mitra S., Arachida R., Asayama Y., Yabuta Y., Takeucki T. Oral administration of paramylon, a β-1,3-glucan isolated from Euglena gracilis Z inhibits development of atopic dermatitis-like skin lesions in NC/Nga mice. J. Vet. Med. Sci. 2010;72:755–763. doi: 10.1292/jvms.09-0526.
    1. Chang Z.-Q., Reza M.A., Lee J.-S., Gebru E., Jang S.-H., Choi M.-J., Lee S.-J., Damte D., Kim J.-C., Park S.-C. Immunomodulatory activities and subacute toxicity of a novel β-glucan from Paenibacillus polymyxa JB115 in rats. Immunopharmacol. Immunotoxicol. 2011;33:124–134. doi: 10.3109/08923973.2010.487069.
    1. Beynen A.C., Saris D.H.J., Paap P.M., Altena F.V., Visser E.A., Middelkoop J., De Jong L., Staats M. Dietary β-1,3/1,6-glucans reduce clinical signs of canine atopy. Am. J. Anim. Vet. Sci. 2011;6:146–152.
    1. Hong H., Kim C.-J., Kim J.-D., Seo J.-H. β-glucan reduces exercise-induced stress through down regulation of c-Fos and c-Jun expression in the brains of exhausted rats. Mol. Med. Rep. 2014;9:1660–1666. doi: 10.3892/mmr.2014.2005.
    1. Babineau T.J., Hackford A., Kenler A., Bistrian B., Forse R.A., Fairchild P.G., Heard S., Keroack M., Caushaj P., Benotti P. A phase II multicenter, double-blind, randomized, placebo-controlled study of three dosages of an immunomodulator (PGG-glucan) in high-risk surgical patients. Arch. Surg. 1994;129:1204–1210. doi: 10.1001/archsurg.1994.01420350102014.
    1. Meira D.A., Pereira P.C.M., Marcondes-Machado J., Barravieira R.P., Pellegrino J.R.J., Rezkallah-Iwasso M.T., Peracoli M.T.S., Castilho L.M., Thomzaini I., Silva C.L., et al. The use of glucan as immunostimulant in treatment of paracoccidiomycosis. Am. J. Trop. Med. Hyg. 1996;55:496–503. doi: 10.4269/ajtmh.1996.55.496.
    1. Holck P., Sletmoen M., Stokke B.T., Permin H., Norn S. Potentiation of histamine release by microfungal (1,3)- and (1,6)-β-d-glucans. Basic Clin. Pharmacol. Toxicol. 2007;101:455–458. doi: 10.1111/j.1742-7843.2007.00140.x.
    1. Sarinho E., Medeiros D., Schor D., Silva A.R., Sales V., Motta M.E., Costa A., Azoubel A., Rizzo J.A. Production of interleukin-10 in asthmatic children after β-1–3-glucan. Allergol. Immunopathol. (Madr.) 2009;37:188–192. doi: 10.1016/j.aller.2009.02.005.
    1. Juvonen K.R., Purhonen A.-K., Salmenkallio-Marttila M., Lahteenmaki L., Laaksonen D.E., Herzig K.-H., Uusitupa M.I.J., Poutanen K.S., Karhunen L.J. Viscosity of oat bran-enriched beverages influences gastrointestinal hormonal responses in healthy humans. J. Nutr. 2009;139:461–466. doi: 10.3945/jn.108.099945.
    1. Carpenter K.C., Breslin W.L., Davidson T., Adams A., McFarlin B.K. Baker’s yeast β-glucan supplementation increases monocytes and cytokined post-exercise: Implications for infection risk? Br. J. Nutr. 2013;109:478–486. doi: 10.1017/S0007114512001407.
    1. Lee J.G., Kim Y.S., Lee Y.J., Ahn H.Y., Kim M., Kim M., Cho M.J., Cho Y., Lee J.H. Effect of immune-enhancing enteral nutrition enriched with or without β-glucan on immunomodulation in critically ill patients. Nutrients. 2016;8:336. doi: 10.3390/nu8060336.
    1. Talbott S., Talbott J. Effect of β 1,3/1,6 glucan on upper respiratory tract infection symptoms and mood state in marathon athletes. J. Sport Sci. Med. 2009;8:509–515.
    1. Talbott S., Talbott J. β 1,3/1,6 glucan decreases upper respiratory tract infection symptoms and improves psychological well-being in moderate to highly-stressed subjects. Agro Food Ind. Hi-Tech. 2010;21:21–24.
    1. Talbott S.M., Talbott J.A. Baker’s yeast β-glucan supplement reduces upper respiratory symptoms and improved mood state in stressed women. J. Am. Coll. Nutr. 2012;31:295–300. doi: 10.1080/07315724.2012.10720441.
    1. Vetvicka V., Richter J., Svozil V., Dobiášová L.R., Král V. Placebo-driven clinical trials of yeast-derived β-(1,3) glucan in children with chronic respiratory problems. Ann. Transl. Med. 2013;1:26.
    1. Vetvicka V., Richter J., Svozil V., Dobiasova K.R., Kral V. Placebo-driven clinical trials of transfer point glucan#300 in children with chronic respiratory problems: Antibody production. Am. J. Immunol. 2013;9:43–47.
    1. Vetvicka V., Richter J., Svozil V., Dobiasova L.R., Kral V. Placebo-driven clinical trials of transfer point glucan#300 in children with chronic respiratory problems: III. Clinical findings. Am. J. Immunol. 2013;9:88–93.
    1. Richter J., Svozil V., Kral V., Rajnohova Dobiasova L., Stiborova I., Vetvicka V. Clinical trials of yeast-derived β-(1,3) glucan in children: Effects on innate immunity. Ann. Transl. Med. 2014;2:15.
    1. Richter J., Kral V., Svozil V., Dobiasova L.R., Pohorska J., Stiborova I., Vetvicka V. Effects of transfer point glucan#300 supplementation on children exposed to passive smoking-placebo-driven double-blind clinical trials. J. Nutr. Health Sci. 2014;1:1–8.
    1. Richter J., Svozil V., Kral V., Dobiasova L.R., Vetvicka V. β-glucan affects mucosal immunity in children with chronic respiratory problems under physical stress: Clinical trials. Ann. Transl. Med. 2015;3:52.
    1. Jesenak M., Sanislo L., Kuniakova R., Rennerova Z., Buchanec J., Banovcin P. Imunoglukan P4H® in the prevention of recurrent respiratory infections in childhood. Cesk Pediatra. 2010;73:639–647.
    1. Jesenak M., Majtan J., Rennerova Z., Kyselovic J., Banovcin P., Hrubisko M. Immunomodulatory effect of pleuran (β-glucan from Pleurotus ostreatus) in children with recurrent respiratory tract infections. Int. Immunopharmacol. 2013;15:395–399. doi: 10.1016/j.intimp.2012.11.020.
    1. Jesenak M., Hrubisko M., Majtan J., Rennerova Z., Banovcin P. Anti-allergic effect of pleuran (β-glucan from Pleurotus ostreatus) in children with recurrent respiratory tract infections. Phytother. Res. 2014;28:471–474. doi: 10.1002/ptr.5020.
    1. Jesenak M., Urbancek S., Majtan J., Banovcin P., Hercogova J. β-Glucan-based cream (containing pleuran isolated from Pleurotus ostreatus) in supportive treatment of mild-to moderate atopic dermatitis. J. Dermatol. Treat. 2015 doi: 10.3109/09546634.2015.1117565.
    1. Grau S.J., Sirvent P.L., Ingles M.M., Urgell R.M. β-glucans from Pleurotus ostreatus for prevention of recurrent respiratory tract infections. Acta Pediatr. Esp. 2015;73:186–193.
    1. Pasnik J., Slemp A., Cywinska-Bernas A., Zeman K., Jesenak M. Preventive effect of pleuran (β-glucan isolated from Pleurotus ostreatus) in children with recurrent respiratory tract infections-Open-label prospective study. Curr. Pediatr. Res. 2017;21:99–104.
    1. Turnbull J.L., Patchen M.L., Scadden D.T. The polysaccharide, PGG-glucan, enhances human myelopoiesis by direct action independent of and additive to early-acting cytokines. Acta Haematol. 1999;102:66–71. doi: 10.1159/000040972.
    1. Choi J.-S., Kim J.-W., Kim K.-Y., Cho H.-R., Ha Y.-M., Ku S.K., Cho K.K., Choi I.S. In vitro activities of polycalcium, a mixture of polycan and calcium lactate-gluconate, on osteoclasts and osteoblasts. J. Life Sci. 2011;21:199–1203. doi: 10.5352/JLS.2011.21.8.1199.
    1. Choi J.-S., Kim J.W., Jung G.-W., Moon S.-B., Cho H.-R., Sung S.H., Jung J.J., Kwon Y.S., Ku S.K., Sohn J.-H. Effect of a β-glucan from Aureobasidium on TGF-β1-modulated in vitro dermal wound repair. Toxicol. Environ. Health Sci. 2016;8:12–18. doi: 10.1007/s13530-016-0257-1.
    1. Przekora A., Palka K., Ginalska G. Biomedical potential of Chitosan/HA and Chitosan/β-1,3-glucan/HA biomaterials as scaffolds for bone regeneration-A comparative study. Mater. Sci. Eng. C. 2016;58:891–899. doi: 10.1016/j.msec.2015.09.046.
    1. Tohamy A.A., El-Gohr A.A., El-Nahas S.M., Noshy M.M. β-glucan inhibits the genotoxicity of cyclophosphamide, adramycin and cisplatin. Mutat. Res. 2003;541:45–53. doi: 10.1016/S1383-5718(03)00184-0.
    1. Choi J.-S., Kim J.W., Kim K.Y., Cho H.-R., Choi I.S., Ku S.K. Antiosteoporotic effects of polycan in combination with calcium lactate-gluconate in ovariectomized rats. Exp. Ther. Med. 2014;8:957–967. doi: 10.3892/etm.2014.1793.
    1. Choi J.-S., Shin H.-S., Kim K.Y., Ku S.K., Choi I.S., Kim J.W. Effect of polycalcium, a mixture of polycan and calcium lactate-gluconate in a 1:9 weight ratio, on rats with surgery-induced osteoarthritis. Exp. Ther. Med. 2015;9:1780–1790. doi: 10.3892/etm.2015.2332.
    1. Park S.-I., Kang S.-J., Han C.-H., Kim J.-W., Song C.-H., Lee S.-N., Ku S.-K., Lee Y.-J. The effects of topical application of polycal (a 2:98 (g/g) mixture of polycan and calcium gluconate) on experimental periodontitis and alveolar bone loss in rats. Molecules. 2016;21:527. doi: 10.3390/molecules21040527.
    1. Borkowski L., Pawłowska M., Radzki R.P., Bieńko M., Polkowska I., Belcarz A., Karpiński M., Słowik T., Matuszewski L., Ślósarczyk A., et al. Effect of a carbonated HAP/β-glucan composite bone substitute on healing of drilled bone voids in the proximal tibial metaphysis of rabbits. Mater. Sci. Eng. C. 2015 doi: 10.1016/j.msec.2015.04.009.
    1. Choi J.-S., Park M.Y., Kim J.D., Cho H.R., Choi I.S., Kim J.W. Safety and efficacy of polycalcium for improving biomarkers of bone metabolism: A 4-week open-label clinical study. J. Med. Food. 2013;16:263–267. doi: 10.1089/jmf.2012.2537.
    1. Kim J.D., Park M.Y., Kim J.W., Kim K.Y., Cho H.R., Choi I.S., Choi J.-S., Ku S.K., Park S.-J. Randomized, double-blind, placebo-controlled trial of the effects of polycan, β-glucan originating from Aureobasidium pullulans, on bone biomarkers in healthy women. J. Physiol. Pathol. Korean Med. 2015;29:330–336. doi: 10.15188/kjopp.2015.08.29.4.330.
    1. Hashimoto T., Nonaka Y., Minato K.-Y., Kawakami S., Mizuno M., Fukuda I. Suppressive effect of polysaccharides from the edible and medicinal mushrooms, Lentinus edodes and Agaricus blazei, on the expression of cytochrome p450s in mice. Biosci. Biotechnol. Biochem. 2002;66:1610–1614. doi: 10.1271/bbb.66.1610.
    1. Neyrinck A.M., Possemiers S., Verstraete W., De Backer F., Cani P.D., Delzenne N.M. Dietary modulation of clostridial cluster XIVa gut bacteria (Roseburia spp.) by chitin-glucan fiber improves host metabolic alterations induced by high-fat diet in mice. J. Nutr. Biochem. 2012;23:51–59. doi: 10.1016/j.jnutbio.2010.10.008.
    1. Sohn J.-H., Kim J.W., Jung G.-W., Park D.-C., Moon S.-B., Cho H.-R., Ku S.K., Choi J.-S. Effects of β-glucan and Folium mori extract combinations in STZ-induced diabetic rats: Effectiveness of various BGFM complex compositions in treating diabetes. Curr. Nutr. Food Sci. 2017 doi: 10.2174/1573401313666170609094842.
    1. Tappy L., Gugolz E., Wursch P. Effects of breakfast cereals containing various amounts of β-glucan fibers on plasma glucose and insulin responses in NIDDM subjects. Diabetes Care. 1996;19:831–834. doi: 10.2337/diacare.19.8.831.
    1. Bourdon I., Yokoyama W., Davis P., Hudson C., Backus R., Richter D., Knuckles B., Schneeman B.O. Postprandial lipid, glucose, insulin, and cholecystokinin responses in men fed barley pasta enriched with β-glucan. Am. J. Clin. Nutr. 1999;69:55–63.
    1. Cavallero A., Empilli S., Brighenti F., Stanca A.M. High (1→3,1→4)-β-glucan barley fractions in bread making and their effects on human glycemic response. J. Cereal Sci. 2002;36:59–66. doi: 10.1006/jcrs.2002.0454.
    1. Jenkins A.L., Jenkins D.J.A., Zdravkovic U., Wursch P., Vuksan V. Depression of the glycemic index by high levels of β-glucan fiber in two functional foods tested in type 2 diabetes. Eur. J. Clin. Nutr. 2002;56:622–628. doi: 10.1038/sj.ejcn.1601367.
    1. Tapola N., Karvonen H., Niskanen L., Mikola M., Sarkkinen E. Glycemic responses of oat bran products in type 2 diabetic patients. Nutr. Metab. Cardiovasc. Dis. 2005;15:255–261. doi: 10.1016/j.numecd.2004.09.003.
    1. Biorklund M., Rees A.V., Mensink R.P., Onning G. Changes in serum lipids and postprandial glucose and insulin concentrations after consumption of beverages with β-glucans from oats or barley: A randomised dose-controlled trial. Eur. J. Clin. Nutr. 2005;59:1272–1281. doi: 10.1038/sj.ejcn.1602240.
    1. Mäkeläinen H., Anttila H., Sihvonen J., Hietanen R.M., Tahvonen R., Salminen E., Mikola M., Sontag-Strohm T. The effect of β-glucan on the glycemic and insulin index. Eur. J. Clin. Nutr. 2007;61:779–785. doi: 10.1038/sj.ejcn.1602561.
    1. Granfeldt Y., Nyberg L., Björck I. Muesli with 4 g oat β-glucans lowers glucose and insulin responses after a bread meal in healthy subjects. Eur. J. Clin. Nutr. 2008;62:600–607. doi: 10.1038/sj.ejcn.1602747.
    1. Thondre P.S., Henry C.J.K. High-molecular-weight barley β-glucan in chapatis (unleavened Indian flat bread) lowers glycemic index. Nutr. Res. 2009;29:480–486. doi: 10.1016/j.nutres.2009.07.003.
    1. Cugnet-Anceau C., Nazare J.A., Biorklund M., le Coquil E., Sassolas A., Sothier M., Holm J., Landin-Olsson M., Önning G., Laville M., et al. A controlled study of consumption of β-glucan-enriched soups for 2 months by type 2 diabetic free-living subjects. Br. J. Nutr. 2010;103:422–428. doi: 10.1017/S0007114509991875.
    1. Vetvicka V., Vetvickova J. Effects of yeast-derived β-glucans on blood cholesterol and macrophage functionality Glucans, blood cholesterol, and macrophage function. J. Immunotoxicol. 2009;6:30–35. doi: 10.1080/15476910802604317.
    1. Kusmiati, Dhewantata F.X.R. Cholesterol-lowering effect of β-glucan extracted from Saccharomyces cerevisiae in rats. Sci. Pharm. 2016;84:153–165.
    1. Davidson M.H., Dugan L.D., Burns J.H., Bova J., Story K., Drennan K.B. The hypocholesterolemic effects of β-glucan in oatmeal and oat bran. A dose-controlled study. J. Am. Med. Assoc. 1991;265:1833–1839. doi: 10.1001/jama.1991.03460140061027.
    1. Nicolosi R., Bell S.J., Bistrian B.R., Greenberg I., Forse R.A., Blackburn G.L. Plasma lipid changes after supplementation with β-glucan fiber from yeast. Am. J. Clin. Nutr. 1999;70:208–212.
    1. Lovegrove J.A., Clohessy A., Milon H., Williams C.M. Modest doses of β-glucan do not reduce concentrations of potentially atherogenic lipoproteins. Am. J. Clin. Nutr. 2000;72:49–55.
    1. Jenkins D.J.A., Kendall C.W.C., Vuksan V., Vidgen E., Parker T., Faulkner D., Mehling C.C., Garsetti M., Testolin G., Cunnane S.C., et al. Soluble fiber intake at a dose approved by the US Food and Drug Administration for a claim of health benefits: Serum lipid risk factors for cardiovascular disease assessed in a randomized controlled crossover trial. Am. J. Clin. Nutr. 2002;75:834–839.
    1. Keogh G.F., Cooper G.J.S., Mulvey T.B., McArdle B.H., Coles G.D., Monro J.A., Poppitt S.D. Randomized controlled crossover study of the effect of a highly β-glucan-enriched barley on cardiovascular disease risk factors in mildly hypercholesterolemic men. Am. J. Clin. Nutr. 2003;78:711–718.
    1. Kerckhoffs D.A.J.M., Hornstra G., Mensink R.P. Cholesterol-lowering effect of β-glucan from oat bran in mildly hypercholesterolemic subjects may decrease when β-glucan is incorporated into bread and cookies. Am. J. Clin. Nutr. 2003;78:221–227.
    1. He J., Streiffer R.H., Muntner P., Krousel-Wood M.A., Whelton P.K. Effect of dietary fiber intake on blood pressure: A randomized, double-blind, placebo-controlled trial. J. Hypertens. 2004;22:73–80. doi: 10.1097/00004872-200401000-00015.
    1. Maki K.C., Galant R., Samuel P., Tesser J., Witchger M.S., Ribaya-Mercado J.D., Blumberg J.B., Geohas J. Effects of consuming foods containing oat β-glucan on blood pressure, carbohydrate metabolism and biomarkers of oxidative stress in men and women with elevated blood pressure. Eur. J. Clin. Nutr. 2007;61:786–795. doi: 10.1038/sj.ejcn.1602562.
    1. Shimizu C., Kihara M., Aoe S., Araki S., Ito K., Hayashi K., Watari J., Sakata Y., Ikegami S. Effect of high β-glucan barley on serum cholesterol concentrations and visceral fat area in Japanese men—A randomized, double-blinded, placebo-controlled trial. Plant Foods Hum. Nutr. 2008;63:21–25. doi: 10.1007/s11130-007-0064-6.
    1. Slamenova D., Labaj J., Krizkova L., Kogan G., Sandula J., Bresgen N., Eckl P. Protective effects of fungal β-d-glucan derivatives against oxidative DNA lesions in V79 hamster lung cells. Cancer Lett. 2003;198:153–160. doi: 10.1016/S0304-3835(03)00336-7.
    1. Krizkova L., Zitnanova I., Mislovicova D., Masarova J., Sasinkova V., Durackova Z., Krajcovica J. Antioxidant and antimutagenic activity of mannan neoglycoconjugates: Mannan-human serum albumin and mannan-penicillin G acylase. Mutat. Res. 2006;606:72–79. doi: 10.1016/j.mrgentox.2006.03.003.
    1. Oliveira R.J., Ribeiro L.R., Silva A.F., Matuo R., Mantovani M.S. Evaluation of antimutagenic activity and mechanisms of action of β-glucan from barley, in CHO-K1 and HTC cell lines using the micronucleus test. Toxicol. In Vitro. 2006;20:1225–1233. doi: 10.1016/j.tiv.2006.04.001.
    1. Angeli J.P.F., Ribeiro L.R., Gonzaga M.L.C., Soares S.A., Ricardo M.P.S.N., Tsuboy M.S., Stidl R., Knasmuller S., Linhares R.E., Mantovani M.S. Protective effects of β-glucan extracted from Agaricus brasiliensis against chemically induced DNA damage in human lymphocytes. Cell Biol. Toxicol. 2006;22:285–291. doi: 10.1007/s10565-006-0087-z.
    1. Angeli J.P.F., Ribeiro L.R., Bellini M.F., Mantovani M.S. Anticlastogenic effect of β-glucan extracted from barley towards chemically induced DNA damage in rodent cells. Hum. Exp. Toxicol. 2006;25:319–324. doi: 10.1191/0960327106ht631oa.
    1. Angeli J.P.F., Ribeiro L.R., Bellini M.F., Mantovani M.S. β-Glucan extracted from the medicinal mushroom Agaricus blazei prevents the genotoxic effects of benzo[a]pyrene in the human hepatoma cell line HepG2. Arch. Toxicol. 2009;83:81–86. doi: 10.1007/s00204-008-0319-5.
    1. Erkol H., Kahramansoy N., Kordon Ö., Büyükaşık O., Serin E., Ulaş N. Effects of β-glucan on hepatic damage caused by obstructive jaundice. Ulus Travma Acil Cerrahi Derg. 2011;17:303–307. doi: 10.5505/tjtes.2011.88964.
    1. Ceyhan A.M., Akkaya V.B., Gulecol S.C., Ceyhan B.M., Ozguner F., Chen W. Protective effects of β-glucan against oxidative injury induced by 2.45-GHz electromagnetic radiation in the skin tissue of rats. Arch. Dermatol. Res. 2012;304:521–527. doi: 10.1007/s00403-012-1205-9.
    1. Pillai T.G., Devi P.U. Mushroom β-glucan: Potential candidate for post irradiation protection. Mutat. Res. 2013;751:109–115. doi: 10.1016/j.mrgentox.2012.12.005.

Source: PubMed

3
Se inscrever