An Integral Pharmacokinetic Analysis of Piperacillin and Tazobactam in Plasma and Urine in Critically Ill Patients

Eveline Wallenburg, Rob Ter Heine, Jeroen A Schouten, Jelmer Raaijmakers, Jaap Ten Oever, Eva Kolwijck, David M Burger, Peter Pickkers, Tim Frenzel, Roger J M Brüggemann, Eveline Wallenburg, Rob Ter Heine, Jeroen A Schouten, Jelmer Raaijmakers, Jaap Ten Oever, Eva Kolwijck, David M Burger, Peter Pickkers, Tim Frenzel, Roger J M Brüggemann

Abstract

Background and objectives: Although dose optimization studies have been performed for piperacillin and tazobactam separately, a combined integral analysis is not yet reported. As piperacillin and tazobactam pharmacokinetics are likely to show correlation, a combined pharmacokinetic model should be preferred to account for this correlation when predicting the exposure. Therefore, the aim of this study was to describe the pharmacokinetics and evaluate different dosing regimens of piperacillin and tazobactam in critically ill patients using an integral population pharmacokinetic model in plasma and urine.

Methods: In this observational study, a total of 39 adult intensive care unit patients receiving piperacillin-tazobactam as part of routine clinical care were included. Piperacillin and tazobactam concentrations in plasma and urine were measured and analyzed using non-linear mixed-effects modeling. Monte Carlo simulations were performed to predict the concentrations for different dosing strategies and different categories of renal function.

Results: A combined two-compartment linear pharmacokinetic model for both piperacillin and tazobactam was developed, with an output compartment for the renally excreted fraction. The addition of 24-h urine creatinine clearance significantly improved the model fit. A dose of 12/1.5 g/24 h as a continuous infusion is sufficient to reach a tazobactam concentration above the target (2.89 mg/L) and a piperacillin concentration above the target of 100% f T>1×MIC (minimum inhibitory concentration [MIC] ≤ 16 mg/L). To reach a target of 100% f T>5×MIC with an MIC of 16 mg/L, piperacillin doses of up to 20 g/24 h are inadequate. Potential toxic piperacillin levels were reached in 19.6% and 47.8% of the population with a dose of 12 g/24 h and 20 g/24 h, respectively.

Conclusions: A regular dose of 12/1.5 g/24 h is sufficient in > 90% of the critically ill population to treat infections caused by Escherichia coli and Klebsiella pneumoniae with MICs ≤ 8 mg/L. In case of infections caused by Pseudomonas aeruginosa with an MIC of 16 mg/L, there is a fine line between therapeutic and toxic exposure. Dosing guided by renal function and therapeutic drug monitoring could enhance target attainment in such cases.

Gov identifier: NCT03738683.

Conflict of interest statement

All authors declared no competing interests related to this work.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Observed piperacillin concentrations versus observed tazobactam concentrations
Fig. 2
Fig. 2
Schematic depiction of the pharmacokinetic model. The elimination rate constants describing the model are as follows: k12 = Qpiperacillin/V1,piperacillin,k21 = Qpiperacillin/V2,piperacillin, k10 = CLnonrenal,piperacillin/V1,piperacillin, k15 = CLrenal,piperacillin/V1,piperacillin, k34 = Qtazobactam/V1,tazobactam, k43 = Qtazobactam/V2,tazobactam, k30 = CLnonrenal,tazobactam/V1,tazobactam, k36 = CLrenal,tazobactam/V1,tazobactam
Fig. 3
Fig. 3
Simulated piperacillin concentrations for different dosing regimens versus creatinine clearance. The blue horizontal lines represent a target of 100% fT>1×MIC (22.9 mg/L) and 100% fT>5×MIC (114 mg/L), assuming an MIC of 16 mg/L. The red horizontal line represents the upper limit of toxicity (157 mg/L). Simulations were performed in 20 groups of creatinine clearance between 10 and 200 mL/min, with 10 mL/min increments. In this figure, pairs of two groups have been combined. MIC minimum inhibitory concentration
Fig. 4
Fig. 4
Simulated tazobactam concentrations for different dosing regimens versus creatinine clearance. The blue horizontal line represents a target of 2.86 mg/L. Simulations were performed in 20 groups of creatinine clearance between 10 and 200 mL/min, with 10 mL/min increments. In this figure, pairs of two groups have been combined
Fig. 5
Fig. 5
Piperacillin (left) and tazobactam (right) concentrations in urine

References

    1. Summary of Product Characteristics: Piperacillin/Tazobactam 4g/0.5g Powder for Solution for Infusion 2017. . Accessed 7 Oct 2021.
    1. Beovic B, Dousak M, Ferreira-Coimbra J, Nadrah K, Rubulotta F, Belliato M, et al. Antibiotic use in patients with COVID-19: a ‘snapshot’ Infectious Diseases International Research Initiative (ID-IRI) survey. J Antimicrob Chemother. 2020;75(11):3386–3390. doi: 10.1093/jac/dkaa326.
    1. Remschmidt C, Schneider S, Meyer E, Schroeren-Boersch B, Gastmeier P, Schwab F. Surveillance of antibiotic use and resistance in intensive care units (SARI) Dtsch Arztebl Int. 2017;114(50):858–865.
    1. Abdul-Aziz MH, Alffenaar JC, Bassetti M, Bracht H, Dimopoulos G, Marriott D, et al. Antimicrobial therapeutic drug monitoring in critically ill adult patients: a position paper. Intensive Care Med. 2020;46(6):1127–1153. doi: 10.1007/s00134-020-06050-1.
    1. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 11.0, 2021. . Accessed 7 Oct 2021.
    1. Drusano GL. Antimicrobial pharmacodynamics: critical interactions of ‘bug and drug’. Nat Rev Microbiol. 2004;2(4):289–300. doi: 10.1038/nrmicro862.
    1. Delattre IK, Taccone FS, Jacobs F, Hites M, Dugernier T, Spapen H, et al. Optimizing beta-lactams treatment in critically-ill patients using pharmacokinetics/pharmacodynamics targets: are first conventional doses effective? Expert Rev Anti Infect Ther. 2017;15(7):677–688. doi: 10.1080/14787210.2017.1338139.
    1. Nicasio AM, VanScoy BD, Mendes RE, Castanheira M, Bulik CC, Okusanya OO, et al. Pharmacokinetics–pharmacodynamics of tazobactam in combination with piperacillin in an in vitro infection model. Antimicrob Agents Chemother. 2016;60(4):2075–2080. doi: 10.1128/AAC.02747-15.
    1. Zander J, Dobbeler G, Nagel D, Scharf C, Huseyn-Zada M, Jung J, et al. Variability of piperacillin concentrations in relation to tazobactam concentrations in critically ill patients. Int J Antimicrob Agents. 2016;48(4):435–439. doi: 10.1016/j.ijantimicag.2016.06.013.
    1. Liu Q, Rand K, Derendorf H. Impact of tazobactam pharmacokinetics on the antimicrobial effect of piperacillin–tazobactam combinations. Int J Antimicrob Agents. 2004;23(5):494–497. doi: 10.1016/j.ijantimicag.2003.10.012.
    1. Komuro M, Maeda T, Kakuo H, Matsushita H, Shimada J. Inhibition of the renal excretion of tazobactam by piperacillin. J Antimicrob Chemother. 1994;34(4):555–564. doi: 10.1093/jac/34.4.555.
    1. Bilbao-Meseguer I, Rodriguez-Gascon A, Barrasa H, Isla A, Solinis MA. Augmented renal clearance in critically ill patients: a systematic review. Clin Pharmacokinet. 2018;57(9):1107–1121. doi: 10.1007/s40262-018-0636-7.
    1. Alobaid AS, Wallis SC, Jarrett P, Starr T, Stuart J, Lassig-Smith M, et al. Population pharmacokinetics of piperacillin in nonobese, obese, and morbidly obese critically ill patients. Antimicrob Agents Chemother. 2017;61(3):e01276–e1316. doi: 10.1128/AAC.01276-16.
    1. Kalaria SN, Gopalakrishnan M, Heil EL. A population pharmacokinetics and pharmacodynamic approach to optimize tazobactam activity in critically ill patients. Antimicrob Agents Chemother. 2020;64(3):e02093–e2119. doi: 10.1128/AAC.02093-19.
    1. Klastrup V, Thorsted A, Storgaard M, Christensen S, Friberg LE, Obrink-Hansen K. Population pharmacokinetics of piperacillin following continuous infusion in critically ill patients and impact of renal function on target attainment. Antimicrob Agents Chemother. 2020;64(7):e02556–e2619. doi: 10.1128/AAC.02556-19.
    1. Roberts JA, Kirkpatrick CM, Roberts MS, Dalley AJ, Lipman J. First-dose and steady-state population pharmacokinetics and pharmacodynamics of piperacillin by continuous or intermittent dosing in critically ill patients with sepsis. Int J Antimicrob Agents. 2010;35(2):156–163. doi: 10.1016/j.ijantimicag.2009.10.008.
    1. Dhaese SAM, Colin P, Willems H, Heffernan A, Gadeyne B, Van Vooren S, et al. Saturable elimination of piperacillin in critically ill patients: implications for continuous infusion. Int J Antimicrob Agents. 2019;54(6):741–749. doi: 10.1016/j.ijantimicag.2019.08.024.
    1. Janmahasatian S, Duffull SB, Ash S, Ward LC, Byrne NM, Green B. Quantification of lean bodyweight. Clin Pharmacokinet. 2005;44(10):1051–1065. doi: 10.2165/00003088-200544100-00004.
    1. Holford NHG, Anderson BJ. Allometric size: the scientific theory and extension to normal fat mass. Eur J Pharm Sci. 2017;109S:S59–S64. doi: 10.1016/j.ejps.2017.05.056.
    1. Dosne AG, Bergstrand M, Harling K, Karlsson MO. Improving the estimation of parameter uncertainty distributions in nonlinear mixed effects models using sampling importance resampling. J Pharmacokinet Pharmacodyn. 2016;43(6):583–596. doi: 10.1007/s10928-016-9487-8.
    1. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of Diet in Renal Disease Study Group. Ann Intern Med. 1999;130(6):461–470. doi: 10.7326/0003-4819-130-6-199903160-00002.
    1. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF, 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150(9):604–612. doi: 10.7326/0003-4819-150-9-200905050-00006.
    1. Inker LA, Schmid CH, Tighiouart H, Eckfeldt JH, Feldman HI, Greene T, et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med. 2012;367(1):20–29. doi: 10.1056/NEJMoa1114248.
    1. Roberts JA, Norris R, Paterson DL, Martin JH. Therapeutic drug monitoring of antimicrobials. Br J Clin Pharmacol. 2012;73(1):27–36. doi: 10.1111/j.1365-2125.2011.04080.x.
    1. Roberts JA, Boots R, Rickard CM, Thomas P, Quinn J, Roberts DM, et al. Is continuous infusion ceftriaxone better than once-a-day dosing in intensive care? A randomized controlled pilot study. J Antimicrob Chemother. 2007;59(2):285–291. doi: 10.1093/jac/dkl478.
    1. Quinton MC, Bodeau S, Kontar L, Zerbib Y, Maizel J, Slama M, et al. Neurotoxic concentration of piperacillin during continuous infusion in critically ill patients. Antimicrob Agents Chemother. 2017;61(9):e00654–e717. doi: 10.1128/AAC.00654-17.
    1. Imani S, Buscher H, Marriott D, Gentili S, Sandaradura I. Too much of a good thing: a retrospective study of beta-lactam concentration–toxicity relationships. J Antimicrob Chemother. 2017;72(10):2891–2897. doi: 10.1093/jac/dkx209.
    1. Kinzig M, Sorgel F, Brismar B, Nord CE. Pharmacokinetics and tissue penetration of tazobactam and piperacillin in patients undergoing colorectal surgery. Antimicrob Agents Chemother. 1992;36(9):1997–2004. doi: 10.1128/AAC.36.9.1997.
    1. Richter DC, Frey O, Rohr A, Roberts JA, Koberer A, Fuchs T, et al. Therapeutic drug monitoring-guided continuous infusion of piperacillin/tazobactam significantly improves pharmacokinetic target attainment in critically ill patients: a retrospective analysis of four years of clinical experience. Infection. 2019;47(6):1001–1011. doi: 10.1007/s15010-019-01352-z.
    1. Gould M, Ginn AN, Marriott D, Norris R, Sandaradura I. Urinary piperacillin/tazobactam pharmacokinetics in vitro to determine the pharmacodynamic breakpoint for resistant Enterobacteriaceae. Int J Antimicrob Agents. 2019;54(2):240–244. doi: 10.1016/j.ijantimicag.2019.05.013.
    1. Harris PNA, Tambyah PA, Lye DC, Mo Y, Lee TH, Yilmaz M, et al. Effect of piperacillin–tazobactam vs meropenem on 30-day mortality for patients with E. coli or Klebsiella pneumoniae bloodstream infection and ceftriaxone resistance: a randomized clinical trial. JAMA. 2018;320(10):984–994. doi: 10.1001/jama.2018.12163.
    1. van der Werf TS, Mulder PO, Zijlstra JG, Uges DR, Stegeman CA. Pharmacokinetics of piperacillin and tazobactam in critically ill patients with renal failure, treated with continuous veno-venous hemofiltration (CVVH) Intensive Care Med. 1997;23(8):873–877. doi: 10.1007/s001340050424.
    1. Roger C, Cotta MO, Muller L, Wallis SC, Lipman J, Lefrant JY, et al. Impact of renal replacement modalities on the clearance of piperacillin–tazobactam administered via continuous infusion in critically ill patients. Int J Antimicrob Agents. 2017;50(2):227–231. doi: 10.1016/j.ijantimicag.2017.03.018.
    1. Asin-Prieto E, Rodriguez-Gascon A, Troconiz IF, Soraluce A, Maynar J, Sanchez-Izquierdo JA, et al. Population pharmacokinetics of piperacillin and tazobactam in critically ill patients undergoing continuous renal replacement therapy: application to pharmacokinetic/pharmacodynamic analysis. J Antimicrob Chemother. 2014;69(1):180–189. doi: 10.1093/jac/dkt304.
    1. Bulitta JB, Kinzig M, Jakob V, Holzgrabe U, Sorgel F, Holford NH. Nonlinear pharmacokinetics of piperacillin in healthy volunteers – implications for optimal dosage regimens. Br J Clin Pharmacol. 2010;70(5):682–693. doi: 10.1111/j.1365-2125.2010.03750.x.
    1. Landersdorfer CB, Bulitta JB, Kirkpatrick CM, Kinzig M, Holzgrabe U, Drusano GL, et al. Population pharmacokinetics of piperacillin at two dose levels: influence of nonlinear pharmacokinetics on the pharmacodynamic profile. Antimicrob Agents Chemother. 2012;56(11):5715–5723. doi: 10.1128/AAC.00937-12.
    1. Dhaese SAM, Roberts JA, Carlier M, Verstraete AG, Stove V, De Waele JJ. Population pharmacokinetics of continuous infusion of piperacillin in critically ill patients. Int J Antimicrob Agents. 2018;51(4):594–600. doi: 10.1016/j.ijantimicag.2017.12.015.

Source: PubMed

3
Se inscrever