A role for the medial temporal lobe subsystem in guiding prosociality: the effect of episodic processes on willingness to help others

Brendan Gaesser, Josh Hirschfeld-Kroen, Emily A Wasserman, Mary Horn, Liane Young, Brendan Gaesser, Josh Hirschfeld-Kroen, Emily A Wasserman, Mary Horn, Liane Young

Abstract

Why are we willing to help others? Recent behavioral work on episodic processes (i.e. the ability to represent an event that is specific in time and place) suggests that imagining and remembering scenes of helping a person in need increases intentions to help. Here, we provide insight into the cognitive and neural mechanisms that enhance prosocial intentions via episodic simulation and memory. In Experiment 1, we scanned participants using functional neuroimaging as they imagined and remembered helping episodes, and completed non-episodic control conditions accounting for exposure to the story of need and conceptual priming of helping. Analyses revealed that activity in the medial temporal lobe (MTL) subsystem, as well as the right temporoparietal junction (RTPJ) predicted the effect of conditions on the strength of prosocial intentions. In Experiment 2, we used transcranial magnetic stimulation to disrupt activity in the RTPJ, and better isolate the contribution of MTL subsystem to prosocial intentions. The effect of conditions on willingness to help remained even when activity in the RTPJ was disrupted, suggesting that activity in the MTL subsystem may primarily support this prosocial effect. It seems our willingness to help may be guided, in part, by how easily we can construct imagined and remembered helping episodes.

Keywords: episodic simulation; medial temporal lobes; memory; moral cognition; prosocial.

© The Author(s) 2019. Published by Oxford University Press.

Figures

Fig. 1
Fig. 1
Mean willingness to help, perspective-taking and scene imagery by condition. Willingness to help was significantly higher for ‘episodic’ compared to ‘control’ conditions. ‘episodic’ conditions were matched on the degree of willingness to help, perspective taking and scene imagery evoked by the helping scenario. Error bars indicate standard error of the mean.
Fig. 2
Fig. 2
Relationship between BOLD percent signal change and willingness to help across episodic and control conditions in bilateral hippocampus (top) and hippocampus (bottom) with defined masks also shown. BOLD signal in the parahippocampus and hippocampus negatively predicted willingness to help during the episodic conditions but not during the control conditions (Andrews-Hanna et al., 2010).
Fig. 3
Fig. 3
Relationship between difficulty and willingness to help by condition. Task difficulty significantly predicted willingness to help only for episodic, but not control conditions, suggesting that the more easily imagined and remembered helping episodes are constructed the more willing one is to help in that scenario.
Fig. 4
Fig. 4
Mean ratings of willingness to help and perspective-taking across control and episodic behavioral conditions, under stimulation to control (TMS) and RTPJ (TMS). We did not observe evidence of an effect stimulating the RTPJ on willingness to help. Stimulating the RTPJ, however, did reduce ratings of perspective-taking in the ‘control’ condition, but not in the ‘episodic’ condition. Error bars indicate standard error of the mean.

References

    1. Addis D.R., Cheng T., Roberts R., Schacter D.L. (2011). Hippocampal contributions to the episodic simulation of specific and general future events. Hippocampus, 21(10), 1045–52.
    1. Addis D.R., Sacchetti D.C., Ally B.A., Budson A.E., Schacter D.L. (2009). Episodic simulation of future events is impaired in mild Alzheimer’s disease. Neuropsychologia, 47(12), 2660–71.
    1. Addis D.R., Schacter D. (2012). The hippocampus and imagining the future: where do we stand? Frontiers in Human Neuroscience, 5, 173. 10.3389/fnhum.2011.00173.
    1. Addis D.R., Wong A.T., Schacter D.L. (2007). Remembering the past and imagining the future: common and distinct neural substrates during event construction and elaboration. Neuropsychologia, 45(7), 1363–77.
    1. Andrews-Hanna J.R., Reidler J.S., Sepulcre J., Poulin R., Buckner R.L. (2010). Functional-anatomic fractionation of the brain’s default network. Neuron, 65(4), 550–62.
    1. Andrews-Hanna J.R., Smallwood J., Spreng R.N. (2014). The default network and self-generated thought: component processes, dynamic control, and clinical relevance. Annals of the New York Academy of Sciences, 1316(1), 29–52.
    1. Atance C.M., O’Neill D.K. (2001). Episodic future thinking. Trends in Cognitive Sciences, 5(12), 533–9.
    1. Bates D., Mächler M., Bolker B., Walker S. (2014). Fitting linear mixed-effects models using lme4. ArXiv Preprint ArXiv:1406.5823.
    1. Batson C.D. (2011). Altruism in Humans, USA: Oxford University Press.
    1. Beadle J.N., Tranel D., Cohen N.J., Duff M. (2013). Empathy in hippocampal amnesia. Frontiers in Psychology, 4, 69.
    1. Benoit R. G., Schacter D. L. (2015). Specifying the core network supporting episodic simulation and episodic memory by activation likelihood estimation. Neuropsychologia, 75, 450–7. 10.1016/j.neuropsychologia.2015.06.034
    1. Berryhill M.E., Picasso L., Arnold R., Drowos D., Olson I.R. (2010). Similarities and differences between parietal and frontal patients in autobiographical and constructed experience tasks. Neuropsychologia, 48(5), 1385–93.
    1. Buckner R. L., Carroll D. C. (2007). Self-projection and the brain. Trends in Cognitive Sciences, 11(2), 49–57. 10.1016/j.tics.2006.11.004
    1. Coke J.S., Batson C.D., McDavis K. (1978). Empathic mediation of helping: a two-stage model. Journal of Personality and Social Psychology, 36(7), 752.
    1. Croft K.E., Duff M.C., Kovach C.K., Anderson S.W., Adolphs R., Tranel D. (2010). Detestable or marvelous? Neuroanatomical correlates of character judgments. Neuropsychologia, 48(6), 1789–801.
    1. D’argembeau A., Raffard S., Van der Linden M. (2008). Remembering the past and imagining the future in schizophrenia. Journal of Abnormal Psychology, 117(1), 247.
    1. De Brigard F., Addis D.R., Ford J.H., Schacter D.L., Giovanello K.S. (2013). Remembering what could have happened: neural correlates of episodic counterfactual thinking. Neuropsychologia, 51(12), 2401–14.
    1. Decety J. (2005). Perspective taking as the royal avenue to empathy In: Other Minds: How Humans Bridge the Divide between Self and Others, 143–57. New York, NY: Guilford Press.
    1. Dodell-Feder D., Koster-Hale J., Bedny M., Saxe R. (2011). fMRI item analysis in a theory of mind task. Neuroimage, 55(2), 705–12.
    1. Epstein R.A. (2008). Parahippocampal and retrosplenial contributions to human spatial navigation. Trends in Cognitive Sciences, 12(10), 388–96.
    1. FeldmanHall O., Mobbs D., Evans D., Hiscox L., Navrady L., Dalgleish T. (2012). What we say and what we do: the relationship between real and hypothetical moral choices. Cognition, 123(3), 434–41.
    1. Gaesser B., DiBiase H.D., Kensinger E.A. (2017a). A role for affect in the link between episodic simulation and prosociality. Memory, 25(8), 1052–62.
    1. Gaesser B., Dodds H., Schacter D.L. (2017b). Effects of aging on the relation between episodic simulation and prosocial intentions. Memory, 25(9), 1272–8.
    1. Gaesser B., Horn M., Young L. (2015). When can imagining the self increase willingness to help others? Investigating whether the self-referential nature of episodic simulation fosters prosociality. Social Cognition, 33(6), 562–84.
    1. Gaesser B., Keeler K., Young L. (2018). Moral imagination: facilitating prosocial decision-making through scene imagery and theory of mind. Cognition, 171, 180–93.
    1. Gaesser B., Schacter D.L. (2014). Episodic simulation and episodic memory can increase intentions to help others. Proceedings of the National Academy of Sciences, 111(12), 4415–20.
    1. Gaesser B., Spreng R.N., McLelland V.C., Addis D.R., Schacter D.L. (2013). Imagining the future: evidence for a hippocampal contribution to constructive processing. Hippocampus, 23(12), 1150–61.
    1. Genevsky A., Västfjäll D., Slovic P., Knutson B. (2013). Neural underpinnings of the identifiable victim effect: affect shifts preferences for giving. Journal of Neuroscience, 33(43), 17188–96.
    1. Gino F., Galinsky A.D. (2012). Vicarious dishonesty: when psychological closeness creates distance from one’s moral compass. Organizational Behavior and Human Decision Processes, 119(1), 15–26.
    1. Gugino L.D., Romero J.R., Aglio L., et al. (2001). Transcranial magnetic stimulation coregistered with MRI: a comparison of a guided versus blind stimulation technique and its effect on evoked compound muscle action potentials. Clinical Neurophysiology, 112(10), 1781–92.
    1. Hassabis D., Kumaran D., Maguire E.A. (2007). Using imagination to understand the neural basis of episodic memory. Journal of Neuroscience, 27(52), 14365–74.
    1. Hassabis D., Kumaran D., Vann S.D., Maguire E.A. (2007). Patients with hippocampal amnesia cannot imagine new experiences. Proceedings of the National Academy of Sciences, 104(5), 1726–31.
    1. Hassabis D., Spreng R.N., Rusu A.A., Robbins C.A., Mar R.A., Schacter D.L. (2014). Imagine all the people: how the brain creates and uses personality models to predict behavior. Cerebral Cortex, 24(8), 1979–87.
    1. Hein G., Silani G., Preuschoff K., Batson C.D., Singer T. (2010). Neural responses to ingroup and outgroup members’ suffering predict individual differences in costly helping. Neuron, 68(1), 149–60.
    1. Hill C.A., Suzuki S., Polania R., Moisa M., O’Doherty J.P., Ruff C.C. (2017). A causal account of the brain network computations underlying strategic social behavior. Nature Neuroscience, 20(8), 1142.
    1. Hill P.F., Yi R., Spreng R.N., Diana R.A. (2017). Neural congruence between intertemporal and interpersonal self-control: evidence from delay and social discounting. NeuroImage, 162, 186–98.
    1. Holland D., Kuperman J.M., Dale A.M. (2010). Efficient correction of inhomogeneous static magnetic field-induced distortion in Echo Planar Imaging. Neuroimage, 50(1), 175–83.
    1. Judd C.M., Westfall J., Kenny D.A. (2012). Treating stimuli as a random factor in social psychology: a new and comprehensive solution to a pervasive but largely ignored problem. Journal of Personality and Social Psychology, 103(1), 54.
    1. Kammer T., Beck S., Erb M., Grodd W. (2001). The influence of current direction on phosphene thresholds evoked by transcranial magnetic stimulation. Clinical Neurophysiology, 112(11), 2015–21.
    1. Klein S.B., Loftus J., Kihlstrom J.F. (2002). Memory and temporal experience: the effects of episodic memory loss on an amnesic patient’s ability to remember the past and imagine the future. Social Cognition, 20(5), 353–79.
    1. Kosslyn S.M., Ganis G., Thompson W.L. (2001). Neural foundations of imagery. Nature Reviews Neuroscience, 2(9), 635.
    1. Laurita A. C., Nathan Spreng R. (2017). The Hippocampus and Social Cognition In Hannula D. E., Duff M. C., editors. The Hippocampus from Cells to Systems, pp. 537–58). Cham: Springer International Publishing; 10.1007/978-3-319-50406-3_17
    1. Lenth R.V. (2016). Least-squares means: the R package lsmeans. Journal of Statistical Software, 69(1), 1–33.
    1. Macrae C.N., Johnston L. (1998). Help, I need somebody: automatic action and inaction. Social Cognition, 16(4), 400–17.
    1. Madore K.P., Szpunar K.K., Addis D.R., Schacter D.L. (2016). Episodic specificity induction impacts activity in a core brain network during construction of imagined future experiences. Proceedings of the National Academy of Sciences, 201612278.
    1. Maguire E.A., Mullally S.L. (2013). The hippocampus: a manifesto for change. Journal of Experimental Psychology: General, 142(4), 1180–9.
    1. Mars R.B., Sallet J., Neubert F.-X., Rushworth M.F. (2013). Connectivity profiles reveal the relationship between brain areas for social cognition in human and monkey temporoparietal cortex. Proceedings of the National Academy of Sciences, 110(26), 10806–11.
    1. Marsh A.A. (2016). Neural, cognitive, and evolutionary foundations of human altruism. Wiley Interdisciplinary Reviews: Cognitive Science, 7(1), 59–71.
    1. Martin V.C., Schacter D.L., Corballis M.C., Addis D.R. (2011). A role for the hippocampus in encoding simulations of future events. Proceedings of the National Academy of Sciences, 108(33), 13858–63.
    1. Masten C.L., Morelli S.A., Eisenberger N.I. (2011). An fMRI investigation of empathy for ‘social pain’and subsequent prosocial behavior. Neuroimage, 55(1), 381–8.
    1. Morelli S.A., Lieberman M.D., Zaki J. (2015). The emerging study of positive empathy. Social and Personality Psychology Compass, 9(2), 57–68.
    1. Mulukom V., Schacter D. L., Corballis M. C., Addis D. R. (2013). Re-imagining the future: repetition decreases hippocampal involvement in future simulation. PLoS One, 8(7), e69596.
    1. Nelson L.D., Norton M.I. (2005). From student to superhero: situational primes shape future helping. Journal of Experimental Social Psychology, 41(4), 423–30.
    1. Palombo D. J., Hayes S. M., Peterson K. M., Keane M. M., Verfaellie M. (2018). Medial temporal lobe contributions to episodic future thinking: scene construction or future projection? Cerebral Cortex, 28(2), 447–58. 10.1093/cercor/bhw381
    1. Parkinson C., Liu S., Wheatley T. (2014). A common cortical metric for spatial, temporal, and social distance. Journal of Neuroscience, 34(5), 1979–87.
    1. Race E., Keane M.M., Verfaellie M. (2011). Medial temporal lobe damage causes deficits in episodic memory and episodic future thinking not attributable to deficits in narrative construction. Journal of Neuroscience, 31(28), 10262–9.
    1. Raichle M.E., MacLeod A.M., Snyder A.Z., Powers W.J., Gusnard D.A., Shulman G.L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences, 98(2), 676–82.
    1. Rameson L.T., Morelli S.A., Lieberman M.D. (2012). The neural correlates of empathy: experience, automaticity, and prosocial behavior. Journal of Cognitive Neuroscience, 24(1), 235–45.
    1. Robin J., Moscovitch M. (2014). The effects of spatial contextual familiarity on remembered scenes, episodic memories, and imagined future events. Journal of Experimental Psychology: Learning, Memory, and Cognition, 40(2), 459.
    1. Robin J., Wynn J., Moscovitch M. (2016). The spatial scaffold: The effects of spatial context on memory for events. Journal of Experimental Psychology: Learning, Memory, and Cognition, 42(2), 308.
    1. Rubin R.D., Watson P.D., Duff M.C., Cohen N.J. (2014). The role of the hippocampus in flexible cognition and social behavior. Frontiers in Human Neuroscience, 8, 742.
    1. Santiesteban I., Banissy M.J., Catmur C., Bird G. (2012). Enhancing social ability by stimulating right temporoparietal junction. Current Biology, 22(23), 2274–7.
    1. Saxe R., Kanwisher N. (2003). People thinking about thinking people: the role of the temporo-parietal junction in theory of mind. Neuroimage, 19(4), 1835–42.
    1. Saxe R., Wexler A. (2005). Making sense of another mind: the role of the right temporo-parietal junction. Neuropsychologia, 43(10), 1391–9.
    1. Schacter D.L., Addis D.R., Buckner R.L. (2008). Episodic simulation of future events: concepts, data, and applications. Annals of the New York Academy of Sciences, 1124(1), 39–60.
    1. Schiller D., Eichenbaum H., Buffalo E.A., et al. (2015). Memory and space: towards an understanding of the cognitive map. Journal of Neuroscience, 35(41), 13904–11.
    1. Scholz J., Triantafyllou C., Whitfield-Gabrieli S., Brown E.N., Saxe R. (2009). Distinct regions of right temporo-parietal junction are selective for theory of mind and exogenous attention. PloS One, 4(3), e4869.
    1. Schurz M., Radua J., Aichhorn M., Richlan F., Perner J. (2014). Fractionating theory of mind: a meta-analysis of functional brain imaging studies. Neuroscience & Biobehavioral Reviews, 42, 9–34.
    1. Seligman M. E. P., Railton P., Baumeister R. F., Sripada C. (2013). Navigating Into the Future or Driven by the Past. Perspectives on Psychological Science, 8(2), 119–41. 10.1177/1745691612474317
    1. Singer T., Lamm C. (2009). The social neuroscience of empathy. Annals of the New York Academy of Sciences, 1156(1), 81–96.
    1. Singmann H., Bolker B., Westfall J., et al. (2016). afex: analysis of factorial experiments. R package version 0.16-1.
    1. Slotnick S.D., Moo L.R., Segal J.B., Hart J.,.J. (2003). Distinct prefrontal cortex activity associated with item memory and source memory for visual shapes. Cognitive Brain Research, 17(1), 75–82.
    1. Soutschek A., Ruff C.C., Strombach T., Kalenscher T., Tobler P.N. (2016). Brain stimulation reveals crucial role of overcoming self-centeredness in self-control. Science Advances, 2(10), e1600992.
    1. Spreng R.N., Mar R.A., Kim A.S. (2009). The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis. Journal of Cognitive Neuroscience, 21(3), 489–510.
    1. Suddendorf T., Corballis M. C. (2007). The evolution of foresight: what is mental time travel, and is it unique to humans? Behavioral and Brain Sciences, 30(3), 299–313. 10.1017/S0140525X07001975
    1. Summerfield J.J., Hassabis D., Maguire E.A. (2009). Cortical midline involvement in autobiographical memory. Neuroimage, 44(3), 1188–200.
    1. Summerfield J.J., Hassabis D., Maguire E.A. (2010). Differential engagement of brain regions within a ‘core’network during scene construction. Neuropsychologia, 48(5), 1501–9.
    1. Szpunar K.K., Spreng R.N., Schacter D.L. (2014). A taxonomy of prospection: Introducing an organizational framework for future-oriented cognition. Proceedings of the National Academy of Sciences, 111(52), 18414–21.
    1. Szpunar K.K., St. Jacques P.L., Robbins C.A., Wig G.S., Schacter D.L. (2013). Repetition-related reductions in neural activity reveal component processes of mental simulation. Social Cognitive and Affective Neuroscience, 9(5), 712–22.
    1. Szpunar K.K., Watson J.M., McDermott K.B. (2007). Neural substrates of envisioning the future. Proceedings of the National Academy of Sciences, 104(2), 642–7.
    1. Tamir D. I., Bricker A. B., Dodell-Feder D., Mitchell J. P. (2016). Reading fiction and reading minds: the role of simulation in the default network. Social Cognitive and Affective Neuroscience, 11(2), 215–24. 10.1093/scan/nsv114
    1. Tavares R.M., Mendelsohn A., Grossman Y., et al. (2015). A map for social navigation in the human brain. Neuron, 87(1), 231–43.
    1. Tulving E. (1985). Memory and consciousness. Canadian Psychology/Psychologie Canadienne, 26(1), 1.
    1. Valero-Cabré A., Payne B.R., Pascual-Leone A. (2007). Opposite impact on 14 C-2-deoxyglucose brain metabolism following patterns of high and low frequency repetitive transcranial magnetic stimulation in the posterior parietal cortex. Experimental Brain Research, 176(4), 603–15.
    1. Vito S., Gamboz N., Brandimonte M. A., Barone P., Amboni M., Della Sala S. (2012). Future thinking in Parkinson’s disease: an executive function? Neuropsychologia, 50(7), 1494–501.
    1. Waytz A., Zaki J., Mitchell J.P. (2012). Response of dorsomedial prefrontal cortex predicts altruistic behavior. Journal of Neuroscience, 32(22), 7646–50.
    1. Weiler J.A., Suchan B., Daum I. (2010). Foreseeing the future: occurrence probability of imagined future events modulates hippocampal activation. Hippocampus, 20(6), 685–90.
    1. Yaden D.B., Haidt J., Hood R.W.,.J., Vago D.R., Newberg A.B. (2017). The varieties of self-transcendent experience. Review of General Psychology, 21(2), 143.
    1. Ye H., Chen S., Huang D., Zheng H., Jia Y., Luo J. (2015). Modulation of neural activity in the temporoparietal junction with transcranial direct current stimulation changes the role of beliefs in moral judgment. Frontiers in Human Neuroscience, 9, 659.
    1. Young L., Camprodon J.A., Hauser M., Pascual-Leone A., Saxe R. (2010). Disruption of the right temporoparietal junction with transcranial magnetic stimulation reduces the role of beliefs in moral judgments. Proceedings of the National Academy of Sciences, 107(15), 6753–8.
    1. Zaki J., Ochsner K.N. (2012). The neuroscience of empathy: progress, pitfalls and promise. Nature Neuroscience, 15(5), 675.

Source: PubMed

3
Se inscrever