Assessing the efficacy of two dual-active ingredients long-lasting insecticidal nets for the control of malaria transmitted by pyrethroid-resistant vectors in Benin: study protocol for a three-arm, single-blinded, parallel, cluster-randomized controlled trial

Manfred Accrombessi, Jackie Cook, Corine Ngufor, Arthur Sovi, Edouard Dangbenon, Boulais Yovogan, Hilaire Akpovi, Aurore Hounto, Charles Thickstun, Gil G Padonou, Filemon Tokponnon, Louisa A Messenger, Immo Kleinschmidt, Mark Rowland, Martin C Akogbeto, Natacha Protopopoff, Manfred Accrombessi, Jackie Cook, Corine Ngufor, Arthur Sovi, Edouard Dangbenon, Boulais Yovogan, Hilaire Akpovi, Aurore Hounto, Charles Thickstun, Gil G Padonou, Filemon Tokponnon, Louisa A Messenger, Immo Kleinschmidt, Mark Rowland, Martin C Akogbeto, Natacha Protopopoff

Abstract

Background: Long-lasting insecticidal nets (LLINs) are currently the primary method of malaria control in sub-Saharan Africa and have contributed to a significant reduction in malaria burden over the past 15 years. However, this progress is threatened by the wide-scale selection of insecticide-resistant malaria vectors. It is, therefore, important to accelerate the generation of evidence for new classes of LLINs.

Methods: This protocol presents a three-arm superiority, single-blinded, cluster randomized controlled trial to evaluate the impact of 2 novel dual-active ingredient LLINs on epidemiological and entomological outcomes in Benin, a malaria-endemic area with highly pyrethroid-resistant vector populations. The study arms consist of (i) Royal Guard® LLIN, a net combining a pyrethroid (alpha-cypermethrin) plus an insect growth regulator (pyriproxyfen), which in the adult female is known to disrupt reproduction and egg fertility; (ii) Interceptor G2® LLIN, a net incorporating two adulticides (alpha-cypermethrin and chlorfenapyr) with different modes of action; and (iii) the control arm, Interceptor® LLIN, a pyrethroid (alpha-cypermethrin) only LLIN. In all arms, one net for every 2 people will be distributed to each household. Sixty clusters were identified and randomised 1:1:1 to each study arm. The primary outcome is malaria case incidence measured over 24 months through active case detection in a cohort of 25 children aged 6 months to 10 years, randomly selected from each cluster. Secondary outcomes include 1) malaria infection prevalence (all ages) and prevalence of moderate to severe anaemia in children under 5 years old, measured at 6 and 18 months post-intervention; 2) entomological indices measured every 3 months using human landing catches over 24 months. Insecticide resistance intensity will also be monitored over the study period.

Discussion: This study is the second cluster randomised controlled trial to evaluate the efficacy of these next-generation LLINs to control malaria transmitted by insecticide-resistant mosquitoes. The results of this study will form part of the WHO evidence-based review to support potential public health recommendations of these nets and shape malaria control strategies of sub-Saharan Africa for the next decade.

Trial registration: ClinicalTrials.gov, NCT03931473 , registered on 30 April 2019.

Keywords: Benin; Chlorfenapyr, pyriproxyfen, Royal Guard®; Cluster randomized controlled trial; Dual-active ingredient long-lasting insecticidal nets; Entomological inoculation rate; Interceptor® G2; Malaria case incidence; Malaria prevalence.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Study area. Map showing Cove, Zagnanado and Ouinhi Districts, located in Zou department, central Benin, West Africa (Panel a); the 60 study clusters identified with core and buffer area and intervention allocation (Panel b); a minimum of 1000 m area was created between households in adjacent clusters (Panel c). Source of map: Own from the study investigators (CT, JC, MA, ED).
Fig. 2
Fig. 2
Summary of study design

References

    1. Tizifa TA, Kabaghe AN, McCann RS, van den Berg H, Van Vugt M, Phiri KS. Prevention efforts for malaria. Curr Trop Med Rep. 2018;5:41–50. doi: 10.1007/s40475-018-0133-y.
    1. World Health Organization . World malaria report 2019. Geneva: World Health Organization; 2019.
    1. Ranson H, N’guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V. Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends Parasitol. 2011;27:91–98. doi: 10.1016/j.pt.2010.08.004.
    1. Asidi A, N’Guessan R, Akogbeto M, Curtis C, Rowland M. Loss of household protection from use of insecticide-treated nets against pyrethroid-resistant mosquitoes, Benin. Emerg Infect Dis. 2012;18:1101–1106. doi: 10.3201/eid1807.120218.
    1. Ochomo EO, Bayoh NM, Walker ED, Abongo BO, Ombok MO, Ouma C, et al. The efficacy of long-lasting nets with declining physical integrity may be compromised in areas with high levels of pyrethroid resistance. Malar J. 2013;12:368. doi: 10.1186/1475-2875-12-368.
    1. Kleinschmidt I, Bradley J, Knox TB, Mnzava AP, Kafy HT, Mbogo C, et al. Implications of insecticide resistance for malaria vector control with long-lasting insecticidal nets: a WHO-coordinated, prospective, international, observational cohort study. Lancet Infect Dis. 2018;18:640–649. doi: 10.1016/S1473-3099(18)30172-5.
    1. Tokponnon FT, Sissinto Y, Ogouyémi AH, Adéothy AA, Adechoubou A, Houansou T, et al. Implications of insecticide resistance for malaria vector control with long-lasting insecticidal nets: evidence from health facility data from Benin. Malar J. 2019;18:37. doi: 10.1186/s12936-019-2656-7.
    1. World Health Organization . Global plan for insecticide resistance management in malaria vectors. 2012. p. 132.
    1. Protopopoff N, Mosha JF, Lukole E, Charlwood JD, Wright A, Mwalimu CD, et al. Effectiveness of a long-lasting piperonyl butoxide-treated insecticidal net and indoor residual spray interventions, separately and together, against malaria transmitted by pyrethroid-resistant mosquitoes: a cluster, randomised controlled, two-by-two factorial design trial. Lancet Lond Engl. 2018;391:1577–1588. doi: 10.1016/S0140-6736(18)30427-6.
    1. Staedke SG, Gonahasa S, Dorsey G, Kamya MR, Maiteki-Sebuguzi C, Lynd A, et al. Effect of long-lasting insecticidal nets with and without piperonyl butoxide on malaria indicators in Uganda (LLINEUP): a pragmatic, cluster-randomised trial embedded in a national LLIN distribution campaign. Lancet Lond Engl. 2020;395:1292–1303. doi: 10.1016/S0140-6736(20)30214-2.
    1. Ngufor C, N’Guessan R, Fagbohoun J, Todjinou D, Odjo A, Malone D, et al. Efficacy of the Olyset Duo net against insecticide-resistant mosquito vectors of malaria. Sci Transl Med. 2016;8:356ra121. doi: 10.1126/scitranslmed.aad3270.
    1. Tiono AB, Ouédraogo A, Ouattara D, Bougouma EC, Coulibaly S, Diarra A, et al. Efficacy of Olyset duo, a bednet containing pyriproxyfen and permethrin, versus a permethrin-only net against clinical malaria in an area with highly pyrethroid-resistant vectors in rural Burkina Faso: a cluster-randomised controlled trial. Lancet Lond Engl. 2018;392:569–580. doi: 10.1016/S0140-6736(18)31711-2.
    1. Djènontin A, Ahoua Alou LP, Koffi A, Zogo B, Duarte E, N’Guessan R, et al. Insecticidal and sterilizing effect of Olyset Duo®, a permethrin and pyriproxyfen mixture net against pyrethroid-susceptible and -resistant strains of Anopheles gambiae s.s.: a release-recapture assay in experimental huts. Parasite Paris Fr. 2015;22:27. doi: 10.1051/parasite/2015027.
    1. Ngufor C, Agbevo A, Fagbohoun J, Fongnikin A, Rowland M. Efficacy of Royal Guard, a new alpha-cypermethrin and pyriproxyfen treated mosquito net, against pyrethroid-resistant malaria vectors. Sci Rep. 2020;10:12227. doi: 10.1038/s41598-020-69109-5.
    1. N’Guessan R, Odjo A, Ngufor C, Malone D, Rowland M. A Chlorfenapyr mixture net interceptor® G2 shows high efficacy and wash durability against resistant mosquitoes in West Africa. PLoS One. 2016;11:e0165925. doi: 10.1371/journal.pone.0165925.
    1. Bayili K, N’do S, Namountougou M, Sanou R, Ouattara A, Dabiré RK, et al. Evaluation of efficacy of Interceptor® G2, a long-lasting insecticide net coated with a mixture of chlorfenapyr and alpha-cypermethrin, against pyrethroid-resistant Anopheles gambiae s.l. in Burkina Faso. Malar J. 2017;16:190. doi: 10.1186/s12936-017-1846-4.
    1. Camara S, Ahoua Alou LP, Koffi AA, Clegban YCM, Kabran J-P, Koffi FM, et al. Efficacy of Interceptor® G2, a new long-lasting insecticidal net against wild pyrethroid-resistant Anopheles gambiae s.s. from Côte d’Ivoire: a semi-field trial. Parasite Paris Fr. 2018;25:42. doi: 10.1051/parasite/2018042.
    1. Protopopoff N, Rowland M. Accelerating the evidence for new classes of long-lasting insecticide-treated nets. Lancet. 2018;391:2415–2416. doi: 10.1016/S0140-6736(18)31032-8.
    1. Killeen GF, Ranson H. Insecticide-resistant malaria vectors must be tackled. Lancet Lond Engl. 2018;391:1551–1552. doi: 10.1016/S0140-6736(18)30844-4.
    1. World Health Organization . Design of epidemiological trials for vector control products : Report of a WHO expert advisory group. Geneva, Switzerland: WHO; 2017.
    1. Hancock PA, Hendriks CJM, Tangena J-A, Gibson H, Hemingway J, Coleman M, et al. Mapping trends in insecticide resistance phenotypes in African malaria vectors. PLoS Biol. 2020;18:e3000633. doi: 10.1371/journal.pbio.3000633.
    1. World Health Organization. Guidelines for laboratory and field-testing of long-lasting insecticidal nets (WHO/HTM/NTD/WHOPES/2013.1). Geneva: WHO; 2013.
    1. Churcher TS, Lissenden N, Griffin JT, Worrall E, Ranson H. The impact of pyrethroid resistance on the efficacy and effectiveness of bednets for malaria control in Africa. eLife. 2016;5:e16090.
    1. Sherrard-Smith E, Griffin JT, Winskill P, Corbel V, Pennetier C, Djénontin A, et al. Systematic review of indoor residual spray efficacy and effectiveness against plasmodium falciparum in Africa. Nat Commun. 2018;9:4982. doi: 10.1038/s41467-018-07357-w.
    1. Chan A-W, Tetzlaff JM, Altman DG, Laupacis A, Gøtzsche PC, Krleža-Jerić K, et al. SPIRIT 2013 statement: defining standard protocol items for clinical trials. Ann Intern Med. 2013;158:200–207. doi: 10.7326/0003-4819-158-3-201302050-00583.
    1. National Institute of Statistic and Economic Analysis (INSAE). National census, villages from Department of Zou (RGPH-4, 2013), Cotonou, Benin. 2016:83. Available: . Accessed 11 Feb 2021.
    1. National System of Health Information and Management (SNIGS)). National health statistics 2019, Cotonou, Benin, Ministry of Health. 2020:243. Available: Accessed 11 Feb 2021.
    1. National Institute of Statistic and Economic Analysis (INSAE) Demographic Health Survey in Benin, 2011-2012: Key indicators. Cotonou, Benin and Rockville, Maryland, USA: INSAE et ICF; 2013.
    1. National Institute of Statistic and Economic Analysis (INSAE) Demographic Health Survey in Benin, 2017-2018 : Key indicators. Cotonou, Bénin et Rockville, Maryland, USA: INSAE et ICF; 2019.
    1. Ngufor C, N’Guessan R, Fagbohoun J, Subramaniam K, Odjo A, Fongnikin A, et al. Insecticide resistance profile of Anopheles gambiae from a phase II field station in Cové, southern Benin: implications for the evaluation of novel vector control products. Malar J. 2015;14:464. doi: 10.1186/s12936-015-0981-z.
    1. World Health Organization . List of WHO prequalified Vector Control Products (WHO, Geneva, 2020) 2020.
    1. Black BC, Hollingworth RM, Ahammadsahib KI, Kukel CD, Donovan S. Insecticidal action and mitochondrial uncoupling activity of AC-303,630 and related halogenated Pyrroles. Pestic Biochem Physiol. 1994;50:115–128. doi: 10.1006/pest.1994.1064.
    1. Oxborough RM, N’Guessan R, Jones R, Kitau J, Ngufor C, Malone D, et al. The activity of the pyrrole insecticide chlorfenapyr in mosquito bioassay: towards a more rational testing and screening of non-neurotoxic insecticides for malaria vector control. Malar J. 2015;14. 10.1186/s12936-015-0639-x.
    1. Harris C, Lwetoijera DW, Dongus S, Matowo NS, Lorenz LM, Devine GJ, et al. Sterilising effects of pyriproxyfen on Anopheles arabiensis and its potential use in malaria control. Parasit Vectors. 2013;6:144. doi: 10.1186/1756-3305-6-144.
    1. World Health Organization . Report of the 20th WHOPES Working group meeting. Geneva: WHO; 2017. pp. 4–46.
    1. Seyoum D, Speybroeck N, Duchateau L, Brandt P, Rosas-Aguirre A. Long-lasting insecticide net ownership, access and use in Southwest Ethiopia: a community-based cross-sectional study. Int J Environ Res Public Health. 2017;14(11):1312.
    1. Mboma ZM, Overgaard HJ, Moore S, Bradley J, Moore J, Massue DJ, et al. Mosquito net coverage in years between mass distributions: a case study of Tanzania, 2013. Malar J. 2018;17:100. doi: 10.1186/s12936-018-2247-z.
    1. Yunta C, Grisales N, Nász S, Hemmings K, Pignatelli P, Voice M, et al. Pyriproxyfen is metabolized by P450s associated with pyrethroid resistance in an. Gambiae. Insect Biochem Mol Biol. 2016;78:50–57. doi: 10.1016/j.ibmb.2016.09.001.
    1. Hayes RJ, Bennett S. Simple sample size calculation for cluster-randomized trials. Int J Epidemiol. 1999;28:319–326. doi: 10.1093/ije/28.2.319.
    1. Ogouyemi-Hounto A, Kinde-Gazard D, Nahum A, Abdillahi A, Massougbodji A. Management of malaria in Benin: evaluation of the practices of healthcare professionals following the introduction of artemisinin derivatives. Med Trop Rev Corps Sante Colon. 2009;69:561–564.
    1. Gillies MT, De Meillon B. The Anophelinae of Africa south of the Sahara (Ethiopian zoogeographical region) Publ South Afr Inst Med Res. 1968;54:1–343.
    1. Detinova TS, Gillies MT. Observations on the determination of the age composition and epidemiological importance of populations of Anopheles gambiae Giles and Anopheles funestus Giles in Tanganyika. Bull World Health Organ. 1964;30:23–28.
    1. Wirtz RA, Duncan JF, Njelesani EK, Schneider I, Brown AE, Oster CN, et al. ELISA method for detecting plasmodium falciparum circumsporozoite antibody. Bull World Health Organ. 1989;67:535–542.
    1. Scott JA, Brogdon WG, Collins FH. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg. 1993;49:520–529. doi: 10.4269/ajtmh.1993.49.520.
    1. World Health Organization . Test procedures for insecticide resistance monitoring in malaria vector mosquitoes. Geneva, Switzerland: World Health Organisation; 2016.
    1. Vatandoost H, Abai MR, Akbari M, Raeisi A, Yousefi H, Sheikhi S, et al. Comparison of CDC bottle bioassay with WHO standard method for assessment susceptibility level of malaria vector, Anopheles stephensi to three Imagicides. J Arthropod-Borne Dis. 2019;13:17–26.
    1. Christophers S. The development of the egg follicle in Anophelines. Paludism. 1911;2:73–78.
    1. Mavridis K, Wipf N, Medves S, Erquiaga I, Müller P, Vontas J. Rapid multiplex gene expression assays for monitoring metabolic resistance in the major malaria vector Anopheles gambiae. Parasit Vectors. 2019;12:9. doi: 10.1186/s13071-018-3253-2.
    1. Council for International Organizations of Medical Sciences . International Ethical Guidelines for Biomedical Research Involving Human Subjects. Geneva, Switzerland: World Health Organization; 2002.
    1. World Health Organization; G.M. Programme, editor. Conditions for deployment of mosquito nets treated with a pyrethroid and piperonyl butoxide. Geneva: World Health Organization; 2017.
    1. Koffi AA, Ahoua Alou LP, Djenontin A, Kabran J-PK, Dosso Y, Kone A, et al. Efficacy of Olyset® Duo, a permethrin and pyriproxyfen mixture net against wild pyrethroid-resistant Anopheles gambiae s.s. from Côte d’Ivoire: an experimental hut trial. Parasite Paris Fr. 2015;22:28. doi: 10.1051/parasite/2015028.
    1. Toé KH, Mechan F, Tangena J-AA, Morris M, Solino J, Tchicaya EFS, et al. Assessing the impact of the addition of pyriproxyfen on the durability of permethrin-treated bed nets in Burkina Faso: a compound-randomized controlled trial. Malar J. 2019;18:383. doi: 10.1186/s12936-019-3018-1.
    1. World Health Organization. Data requirements and protocol for determining non-inferiority of insecticide-treated net and indoor residual spraying products within an established WHO intervention class (WHO/CDS/GMP/2018.22.Rev.1.). 2019.
    1. Vinit R, Timinao L, Bubun N, Katusele M, Robinson LJ, Kaman P, et al. Decreased bioefficacy of long-lasting insecticidal nets and the resurgence of malaria in Papua New Guinea. Nat Commun. 2020;11:3646. doi: 10.1038/s41467-020-17456-2.

Source: PubMed

3
Se inscrever