Progressive resistance training for children with cerebral palsy: A randomized controlled trial evaluating the effects on muscle strength and morphology

Britta Hanssen, Nicky Peeters, Nathalie De Beukelaer, Astrid Vannerom, Leen Peeters, Guy Molenaers, Anja Van Campenhout, Ellen Deschepper, Christine Van den Broeck, Kaat Desloovere, Britta Hanssen, Nicky Peeters, Nathalie De Beukelaer, Astrid Vannerom, Leen Peeters, Guy Molenaers, Anja Van Campenhout, Ellen Deschepper, Christine Van den Broeck, Kaat Desloovere

Abstract

Children with spastic cerebral palsy often present with muscle weakness, resulting from neural impairments and muscular alterations. While progressive resistance training (PRT) improves muscle weakness, the effects on muscle morphology remain inconclusive. This investigation evaluated the effects of a PRT program on lower limb muscle strength, morphology and gross motor function. Forty-nine children with spastic cerebral palsy were randomized by minimization. The intervention group (nparticipants = 26, age: 8.3 ± 2.0 years, Gross Motor Function Classification System [GMFCS] level I/II/III: 17/5/4, nlegs = 41) received a 12-week PRT program, consisting of 3-4 sessions per week, with exercises performed in 3 sets of 10 repetitions, aiming at 60%-80% of the 1-repetition maximum. Training sessions were performed under supervision with the physiotherapist and at home. The control group (nparticipants = 22, age: 8.5 ± 2.1 year, GMFCS level I/II/III: 14/5/3, nlegs = 36) continued usual care including regular physiotherapy and use of orthotics. We assessed pre- and post-training knee extension, knee flexion and plantar flexion isometric strength, rectus femoris, semitendinosus and medial gastrocnemius muscle morphology, as well as functional strength, gross motor function and walking capacity. Data processing was performed blinded. Linear mixed models were applied to evaluate the difference in evolution over time between the control and intervention group (interaction-effect) and within each group (time-effect). The α-level was set at p = 0.01. Knee flexion strength and unilateral heel raises showed a significant interaction-effect (p ≤ 0.008), with improvements in the intervention group (p ≤ 0.001). Moreover, significant time-effects were seen for knee extension and plantar flexion isometric strength, rectus femoris and medial gastrocnemius MV, sit-to-stand and lateral step-up in the intervention group (p ≤ 0.004). Echo-intensity, muscle lengths and gross motor function showed limited to no changes. PRT improved strength and MV in the intervention group, whereby strength parameters significantly or close to significantly differed from the control group. Although, relative improvements in strength were larger than improvements in MV, important effects were seen on the maintenance of muscle size relative to skeletal growth. In conclusion, this study proved the effectiveness of a home-based, physiotherapy supervised, PRT program to improve isometric and functional muscle strength in children with SCP without negative effects on muscle properties or any serious adverse events. Clinical Trial Registration: ClinicalTrials.gov, identifier NCT03863197.

Keywords: functional muscle strength; isometric muscle strength; lower extremity; muscle morphology; progressive resistance training; spastic cerebral palsy; ultrasonography.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Hanssen, Peeters, De Beukelaer, Vannerom, Peeters, Molenaers, Van Campenhout, Deschepper, Van den Broeck and Desloovere.

Figures

FIGURE 1
FIGURE 1
All children aged 5–11 years old were extracted from the clinical database of the CP reference center Leuven (n = 342) and screened based on gross motor function classification system level and type of CP. The scheduled appointments at the children’s hospital and gait laboratory were monthly checked to further screen potential participants based on the exclusion criteria (±10% eligible every month, part of the n = 342). Additionally, pediatric physiotherapists at private practices and special needs schools were consulted for potential participants resulting in 6 of the 49 participants not being followed up in Leuven. The first number, before the hyphen, represents the participants that were randomized by minimization by Minim-Py before the forced stop of the study due to the global Covid-19 pandemic, the number after the hyphen represents the participants who were manually minimized afterwards. *Included in primary analyses: control group=22 and intervention group=26 (1 randomized child did not participate in baseline assessments). Included in sensitivity analyses: • Randomized: control group=20 and intervention group=20 (1 randomized child did not participate in baseline assessments). • Finished: control group=19 and intervention group = 19. BTX, botulinum neurotoxin type A; CP, cerebral palsy.
FIGURE 2
FIGURE 2
Estimated marginal mean differences with 95% confidence interval of mixed model analyses for muscle morphology with results for within and between analyses including all participants and all affected legs. *: significant time-effect at p ≤ 0.01. Abbreviations: Δ, change; MG, medial gastrocnemius; RF, rectus femoris; ST, semitendinosus. Units: AU, arbitrary units; mL, milliliter; mm, millimeter.
FIGURE 3
FIGURE 3
Estimated marginal mean differences with 95% confidence interval of mixed model analyses for strength and functional parameters with results for within and between analyses including all participants and all affected legs for bilaterally tested parameters. #: significant time*group interaction-effect at p ≤ 0.01. *: significant time-effect at p ≤ 0.01. Abbreviations: Δ, hange; 1MWT, 1-minute walk test; BHR, bilateral heel raise; GMFM, gross motor function measure; KE, knee extension; KF, knee flexion; LSU, lateral step-up; PF, plantar flexion; SLJ, standing long jump; STS, sit-to-stand; UHR, unilateral heel raise. Units: Cm, centimeter; M, meter; Nm, Newton-meter.
FIGURE 4
FIGURE 4
Estimated marginal mean differences with 95% confidence interval of mixed model analyses for normalized muscle morphology and isometric strength parameters with results for within and between analyses including all participants and all affected legs. #: significant time*group interaction-effect at p ≤ 0.01. *: significant time-effect at p ≤ 0.01. Abbreviations: Δ, change; KE, knee extension; KF, knee flexion; MG, medial gastrocnemius; PF, plantar flexion; RF, rectus femoris; ST, semitendinosus. Units: Cm/cm, centimeter/centimeter; mL/cm, milliliter per centimeter; Nm/kg, Newton-meter per kilogram.

References

    1. Adams G., Gulliford M. C., Ukoumunne O. C., Eldridge S., Chinn S., Campbell M. J. (2004). Patterns of intra-cluster correlation from primary care research to inform study design and analysis. J. Clin. Epidemiol. 57, 785–794. 10.1016/j.jclinepi.2003.12.013
    1. Aertssen W. F. M., Ferguson G. D., Smits-Engelsman B. C. M. (2016). Reliability and structural and construct validity of the functional strength measurement in children aged 4 to 10 years. Phys. Ther. 96, 888–897. 10.2522/ptj.20140018
    1. Aertssen W., Smulders E., Smits-Engelsman B., Rameckers E. (2018). Functional strength measurement in cerebral palsy: Feasibility, test–retest reliability, and construct validity. Dev. Neurorehabil. 22, 453–461. –9. 10.1080/17518423.2018.1518963
    1. Ahtiainen J. P., Walker S., Peltonen H., Holviala J., Sillanpää E., Karavirta L., et al. (2016). Heterogeneity in resistance training-induced muscle strength and mass responses in men and women of different ages. Age (Omaha) 38, 10–13. 10.1007/S11357-015-9870-1
    1. American College of Sports Medicine (2009). American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med. Sci. Sports Exerc. 41, 687–708. 10.1249/MSS.0b013e3181915670
    1. Anker-Van Der Wel I., Smorenburg A. R. P., de Roos N. M., Verschuren O. (2019). Dose, timing, and source of protein intake of young people with spastic cerebral palsy Dose, timing, and source of protein intake of young people with spastic cerebral palsy. Disabil. Rehabil. 42 (15), 2192–2197. 10.1080/09638288.2018.1558291
    1. Baker D., Wilson G., Carlyon B. (1994). Generality versus specificity: A comparison of dynamic and isometric measures of strength and speed-strength. Eur. J. Appl. Physiol. Occup. Physiol. 68, 350–355. 10.1007/BF00571456
    1. Bobath K., Bobath B. (1984). “The Neuro-development treatment in Management of the motor disorders of children with cerebral palsy,” in, ed. Scrutton D. (Oxford: Spastic International Medical Publications; ), 6–18.
    1. Bohannon R. W., Smith M. B. (1987). Inter rater reliability of a modified Ashworth Scale of muscle spasticity. Phys. Ther. 67, 206–207. 10.1093/ptj/67.2.206
    1. Bonafiglia J. T., Preobrazenski N., Gurd B. J. (2021). A systematic review examining the approaches used to estimate interindividual differences in trainability and classify individual responses to exercise training. Front. Physiol. 12, 665044. 10.3389/FPHYS.2021.665044
    1. Boyd R., Graham H. K. (1999). Objective measurement of clinical findings in the use of botulinum toxin type A for the management of children with cerebral palsy. Eur. J. Neurol. 6, s23–s35. 10.1111/j.1468-1331.1999.tb00031.x
    1. Brunton L. K., Bartlett D. J. (2011). Validity and reliability of two abbreviated versions of the gross motor function measure. Phys. Ther. 91, 577–588. 10.2522/ptj.20100279
    1. Cenni F., Monari D., Desloovere K., Erwin A., Schless S., Bruyninckx H. (2016). The reliability and validity of a clinical 3D freehand ultrasound system. Comput. Methods Programs Biomed. 136, 179–187. 10.1016/j.cmpb.2016.09.001
    1. Cho H.-J., Lee B.-H. (2020). Effect of functional progressive resistance exercise on lower extremity structure, muscle tone, dynamic balance and functional ability in children with spastic cerebral palsy. Children 7, E85. 10.3390/children7080085
    1. Chrysagis N., Skordilis E. K., Koutsouki D. (2014). Validity and clinical utility of functional assessments in children with cerebral palsy. Arch. Phys. Med. Rehabil. 95, 369–374. 10.1016/j.apmr.2013.10.025
    1. Clowry G. J. (2007). The dependence of spinal cord development on corticospinal input and its significance in understanding and treating spastic cerebral palsy. Neurosci. Biobehav. Rev. 31, 1114–1124. 10.1016/j.neubiorev.2007.04.007
    1. Damiano D. L., Vaughan C. L., Abel M. E. (2008). Muscle response to heavy resistance exercise in children with spastic cerebral palsy. Dev. Med. Child. Neurol. 37, 731–739. 10.1111/j.1469-8749.1995.tb15019.x
    1. Darras N., Nikaina E., Tziomaki M., Gkrimas G., Papavasiliou A., Pasparakis D. (2021). Development of lower extremity strength in ambulatory children with bilateral spastic cerebral palsy in comparison with typically developing controls using absolute and normalized to body weight force values. Front. Neurol. 12, 617971. 10.3389/fneur.2021.617971
    1. Elder G. C. B., Kirk J., Stewart G., Cook K., Weir D., Marshall A., et al. (2003). Contributing factors to muscle weakness in children with cerebral palsy. Dev. Med. Child. Neurol. 45, 542–550. 10.1017/s0012162203000999
    1. Faigenbaum A. D., Kraemer W. J., Blimkie C. J. R., Jeffreys I., Micheli L. J., Nitka M., et al. (2009). Youth resistance training: Updated position statement paper from the national strength and conditioning association. J. Strength Cond. Res. 23, S60–S79. 10.1519/JSC.0b013e31819df407
    1. Faigenbaum A. D., Myer G. D. (2010). Pediatric resistance training: Benefits, concerns, and program design considerations. Curr. Sports Med. Rep. 9, 161–168. 10.1249/JSR.0b013e3181de1214
    1. Fowler E. G., Staudt L. A., Greenberg M. B., Oppenheim W. L. (2009). Selective Control Assessment of the Lower Extremity (SCALE): Development, validation, and interrater reliability of a clinical tool for patients with cerebral palsy. Dev. Med. Child. Neurol. 51, 607–614. 10.1111/j.1469-8749.2008.03186.x
    1. Fowler E., Ho T., Nwigwe A., Dorey F. (2001). The effect of quadriceps femoris muscle strengthening exercises on spasticity in children with cerebral palsy. Phys. Ther. 81, 1215–1223. 10.1093/ptj/81.6.1215
    1. Franchi M. V., Atherton P. J., Reeves N. D., Flück M., Williams J., Mitchell W. K., et al. (2014). Architectural, functional and molecular responses to concentric and eccentric loading in human skeletal muscle. Acta Physiol. 210, 642–654. 10.1111/apha.12225
    1. Fukunaga T., Funato K., Ikegawa S. (1992). The effects of resistance training on muscle area and strength in prepubescent age. Ann. Pysiological Anthropol. 11, 357–364. 10.2114/ahs1983.11.357
    1. Gage J. R., Schwartz M., Koop S., Novacheck T. (2009). The identification and treatment of gait problems in cerebral palsy. Wiley.
    1. Gillett J. G., Boyd R. N., Carty C. P., Barber L. A. (2016). The impact of strength training on skeletal muscle morphology and architecture in children and adolescents with spastic cerebral palsy: A systematic review. Res. Dev. Disabil. 56, 183–196. 10.1016/j.ridd.2016.06.003
    1. Gillett J. G., Lichtwark G. A., Boyd R. N., Barber L. A. (2018). Functional anaerobic and strength training in young adults with cerebral palsy. Med. Sci. Sports Exerc. 50, 1549–1557. 10.1249/MSS.0000000000001614
    1. Glass D. J. (2005). Skeletal muscle hypertrophy and atrophy signaling pathways. Int. J. Biochem. Cell Biol. 37, 1974–1984. 10.1016/j.biocel.2005.04.018
    1. Goudriaan M., Nieuwenhuys A., Schless S. H., Goemans N., Molenaers G., Desloovere K. (2018). A new strength assessment to evaluate the association between muscle weakness and gait pathology in children with cerebral palsy. PLoS ONE 13, e0191097. 10.1371/journal.pone.0191097
    1. Gough M., Shortland A. P. (2012). Could muscle deformity in children with spastic cerebral palsy be related to an impairment of muscle growth and altered adaptation? Dev. Med. Child. Neurol. 54, 495–499. 10.1111/j.1469-8749.2012.04229.x
    1. Graham H. K., Rosenbaum P., Paneth N., Dan B., Lin J.-P., Damiano D. L., et al. (2016). Cerebral palsy. Nat. Rev. Dis. Prim. 2, 15082. 10.1038/nrdp.2015.82
    1. Grammatikopoulou M. G., Daskalou E., Tsigga M. (2009). Diet, feeding practices, and anthropometry of children and adolescents with cerebral palsy and their siblings. Nutrition 25, 620–626. 10.1016/j.nut.2008.11.025
    1. Granacher U., Goesele A., Roggo K., Wischer T., Fischer S., Zuerny C., et al. (2011). Effects and mechanisms of strength training in children. Int. J. Sports Med. 32, 357–364. 10.1055/s-0031-1271677
    1. Handsfield G. G., Meyer C. H., Abel M. F., Blemker S. S. (2016). Heterogeneity of muscle sizes in the lower limbs of children with cerebral palsy. Muscle Nerve 53, 933–945. 10.1002/mus.24972
    1. Handsfield G. G., Williams S., Khuu S., Lichtwark G., Stott N. S. (2022). Muscle architecture, growth, and biological remodelling in cerebral palsy: A narrative review. BMC Musculoskelet. Disord. 23, 1–17. 10.1186/s12891-022-05110-5
    1. Hanssen B., Peeters N., Dewit T., Huyghe E., Dan B., Molenaers G., et al. Reliability of 3D freehand ultrasound to assess lower limb muscles in children with spastic cerebral palsy and typical development ultrasound (In press).
    1. Hanssen B., Peeters N., Vandekerckhove I., Beukelaer N. D., Molenaers G., Campenhout A. V., et al. (2021). The contribution of decreased muscle size to muscle weakness in children with spastic cerebral palsy. Front. Neurol. 12, 692582. 10.3389/fneur.2021.692582
    1. Herskind A., Ritterband-Rosenbaum A., Willerslev-Olsen M., Lorentzen J., Hanson L., Lichtwark G., et al. (2016). Muscle growth is reduced in 15-month-old children with cerebral palsy. Dev. Med. Child. Neurol. 58, 485–491. 10.1111/dmcn.12950
    1. Himmelmann K., Uvebrant P. (2011). Function and neuroimaging in cerebral palsy: A population-based study. Dev. Med. Child. Neurol. 53, 516–521. 10.1111/j.1469-8749.2011.03932.x
    1. Hubal M. J., Gordish-Dressman H., Thompson P. D., Price T. B., Hoffman E. P., Angelopoulos T. J., et al. (2005). Variability in muscle size and strength gain after unilateral resistance training. Med. Sci. Sports Exerc. 37, 964–972.
    1. Kalra S., Aggarwal A., Chillar N., Faridi M. M. A. (2015). Comparison of micronutrient levels in children with cerebral palsy and neurologically normal controls. Indian J. Pediatr. 82, 140–144. 10.1007/s12098-014-1543-z
    1. Killip S., Mahfoud Z., Pearce K. (2004). What is an intracluster correlation coefficient? Crucial concepts for primary care researchers. Ann. Fam. Med. 2, 204–208. 10.1370/afm.141
    1. Kruse A., Schranz C., Svehlik M., Tilp M. (2019). The effect of functional home-based strength training programs on the mechano-morphological properties of the plantar flexor muscle-tendon unit in children with spastic cerebral palsy. Pediatr. Exerc. Sci. 31, 67–76. 10.1123/pes.2018-0106
    1. Lee J. H., Sung I. Y., Yoo J. Y. (2008). Therapeutic effects of strengthening exercise on gait function of cerebral palsy. Disabil. Rehabil. 30, 1439–1444. 10.1080/09638280701618943
    1. Lee M., Ko Y., Myong SooK SHin M., Lee W. (2015). The effects of progressive functional training on lower limb muscle architecture and motor function in children with spastic cerebral palsy. J. Phys. Ther. Sci. 27, 1581–1584. 10.1589/jpts.27.1581
    1. Liang X., Tan Z., Yun G., Cao J., Wang J., Liu Q., et al. (2021). Effectiveness of exercise interventions for children with cerebral palsy: A systematic review and meta-analysis of randomized controlled trials. J. Rehabil. Med. 53, jrm00176. 10.2340/16501977-2772
    1. Lieber R. L., Friden J. (2000). Functional and clinical significance of skeletal muscle architecture. Muscle Nerve 23, 1647–1666. 10.1002/1097-4598(200011)23:11<1647::AID-MUS1>;2-M
    1. Lillegard W. A., Brown E. W., Wilson D. J., Henderson R., Lewis E. (1997). Efficacy of strength training in prepubescent to early postpubescent males and females: Effects of gender and maturity. Pediatr. Rehabil. 1, 147–157. 10.3109/17518429709167353
    1. Lloyd R. S., Faigenbaum A. D., Stone M. H., Oliver J. L., Jeffreys I., Moody J. A., et al. (2014). Position statement on youth resistance training: The 2014 international consensus. Br. J. Sports Med. 48, 498–505. 10.1136/bjsports-2013-092952
    1. Massaad A., Assi A., Bakouny Z., Bizdikian A. J., Skalli W., Ghanem I. (2019). Alterations of treatment-naïve pelvis and thigh muscle morphology in children with cerebral palsy. J. Biomech. 82, 178–185. 10.1016/j.jbiomech.2018.10.022
    1. Matthews W. B. (1977). Aids to the examination of the peripheral nervous system. J. Neurological Sci. 33, 299. 10.1016/0022-510x(77)90205-2
    1. Matthiasdottir S., Hahn M., Yaraskavitch M., Herzog W. (2014). Muscle and fascicle excursion in children with cerebral palsy. Clin. Biomech. 29, 458–462. 10.1016/j.clinbiomech.2014.01.002
    1. McCarthy J. J., Esser K. A. (2010). Anabolic and catabolic pathways regulating skeletal muscle mass. Curr. Opin. Clin. Nutr. Metab. Care 13, 230–235. 10.1097/MCO.0b013e32833781b5
    1. McDowell B. C., Humphreys L., Kerr C., Stevenson M. (2009). Test–retest reliability of a 1-min walk test in children with bilateral spastic cerebral palsy (BSCP). Gait Posture 29, 267–269. 10.1016/J.GAITPOST.2008.09.010
    1. McNee A. E., Gough M., Morrissey M. C., Shortland A. P. (2009). Increases in muscle volume after plantarflexor strength training in children with spastic cerebral palsy. Dev. Med. Child. Neurol. 51, 429–435. 10.1111/j.1469-8749.2008.03230.x
    1. Merino-Andrés J., García de Mateos-López A., Damiano D. L., Sánchez-Sierra A. (2021). Effect of muscle strength training in children and adolescents with spastic cerebral palsy: A systematic review and meta-analysis. Clin. Rehabil. 36, 4–14. 10.1177/02692155211040199
    1. Mockford M., Caulton J. M. (2010). The pathophysiological basis of weakness in children with cerebral palsy. Pediatr. Phys. Ther. 22, 222–233. 10.1097/PEP.0b013e3181dbaf96
    1. Moreau N. G., Holthaus K., Marlow N. (2013). Differential adaptations of muscle architecture to high-velocity versus traditional strength training in cerebral palsy. Neurorehabil. Neural Repair 27, 325–334. 10.1177/1545968312469834
    1. Moreau N. G., Lieber R. L. (2022). Effects of voluntary exercise on muscle structure and function in cerebral palsy. Dev. Med. Child. Neurol. 64, 700–708. 10.1111/dmcn.15173
    1. Moreau N. G. (2020). Muscle performance in children and youth with cerebral palsy: Implications for resistance training. Cereb. Palsy 1, 2629–2640. 10.1007/978-3-319-74558-9_164
    1. Moreau N. G., Teefey S. A., Damiano D. L. (2010). In vivo muscle architecture and size of the rectus femoris and vastus lateralis in children and adolescents with cerebral palsy. Dev. Med. Child. Neurol. 51, 800–806. 10.1111/j.1469-8749.2009.03307.x
    1. Murach K. A., Fry C. S., Dupont-Versteegden E. E., McCarthy J. J., Peterson C. A. (2021). Fusion and beyond: Satellite cell contributions to loading-induced skeletal muscle adaptation. FASEB J. 35, e21893. 10.1096/fj.202101096R
    1. Noble J. J., Charles-Edwards G. D., Keevil S. F., Lewis A. P., Gough M., Shortland A. P. (2014a). Intramuscular fat in ambulant young adults with bilateral spastic cerebral palsy. BMC Musculoskelet. Disord. 15, 236. 10.1186/1471-2474-15-236
    1. Noble J. J., Fry N. R., Lewis A. P., Keevil S. F., Gough M., Shortland A. P. (2014b). Lower limb muscle volumes in bilateral spastic cerebral palsy. Brain Dev. 36, 294–300. 10.1016/j.braindev.2013.05.008
    1. Noorduyn S. G., Gorter J. W., Verschuren O., Timmons B. W. (2011). Exercise intervention programs for children and adolescents with cerebral palsy: A descriptive review of the current research. Crit. Rev. Phys. Rehabil. Med. 23, 31–47. 10.1615/critrevphysrehabilmed.v23.i1-4.30
    1. Obst S. J., Boyd R., Read F., Barber L. (2017). Quantitative 3-D ultrasound of the medial gastrocnemius muscle in children with unilateral spastic cerebral palsy. Ultrasound Med. Biol. 43 (12), 2814–2823. 10.1016/j.ultrasmedbio.2017.08.929
    1. Palisano R., Rosenbaum P., Walter S., Russell D., Wood E., Galuppi B. (2008). Development and reliability of a system to classify gross motor function in children with cerebral palsy. Dev. Med. Child. Neurol. 39, 214–223. 10.1111/j.1469-8749.1997.tb07414.x
    1. Park E. Y., Kim W. H. (2014). Meta-analysis of the effect of strengthening interventions in individuals with cerebral palsy. Res. Dev. Disabil. 35, 239–249. 10.1016/j.ridd.2013.10.021
    1. Pitcher C. A., Elliott C. M., Fausto A., Valentine J. P., Stannage K., Reid S. L. (2015). Ultrasound characterization of medial gastrocnemius composition in children with spastic cerebral palsy. Muscle Nerve 52, 397–403.
    1. Ramsay J. A., Blimkie C. J. R., Smith K., Garner S., MacDougall J. D., Sale D. G. (1990). Strength training effects in prepubescent boys. Med. Sci. Sports Exerc. 22, 605–614. 10.1249/00005768-199010000-00011
    1. Rose J., McGill K. C. (2005). Neuromuscular activation and motor-unit firing characteristics in cerebral palsy. Dev. Med. Child. Neurol. 47, 329–336. 10.1017/S0012162205000629
    1. Rosenbaum P., Paneth N., Leviton A., Goldstein M., Bax M., Damiano D., et al. (2007). A report: The definition and classification of cerebral palsy April 2006. Dev. Med. Child Neurology 49, 8–14. 10.1111/j.1469-8749.2007.tb12610.x
    1. Ryan J., Cassidy E., Noorduyn S., O’Connel N. (2017). Exercise interventions for cerebral palsy (Review). Cochrane Database Syst. Rev. 6 (6), CD011660. 10.1002/14651858.CD011660.pub2
    1. Ryan J. M., Lavelle G., Theis N., Noorkoiv M., Kilbride C., Korff T., et al. (2020). Progressive resistance training for adolescents with cerebral palsy: The STAR randomized controlled trial. Dev. Med. Child. Neurol. 62, 1283–1293. 10.1111/dmcn.14601
    1. Saghaei M., Saghaei S. (2011). MinimPy. Available at: .
    1. Sale D. G. (1988). Neural adaptation to resistance training. Med. Sci. Sports Exerc. 20, 135–145. 10.1249/00005768-198810001-00009
    1. Schless S.-H., Hanssen B., Cenni F., Bar-On L., Aertbelien E., Molenaers G., et al. (2017). Estimating medial gastrocnemius muscle volume in children with spastic cerebral palsy: A cross-sectional investigation. Dev. Med. Child. Neurol. 60, 81–87. 10.1111/dmcn.13597
    1. Schless S. H., Cenni F., Bar-On L., Hanssen B., Kalkman B., O’brien T., et al. (2019). Medial gastrocnemius volume and echo-intensity after botulinum neurotoxin A interventions in children with spastic cerebral palsy. Dev. Med. Child. Neurol. 61, 783–790. 10.1111/dmcn.14056
    1. Schoenfeld B. J., Ogborn D. I., Vigotsky A. D., Franchi M. v., Krieger J. W. (2017a). Hypertrophic effects of concentric vs. Eccentric muscle actions: A systematic review and meta-analysis. J. Strength Cond. Res. 31, 2599–2608. 10.1519/JSC.0000000000001983
    1. Schoenfeld B. J., Ogborn D., Krieger J. W. (2016). Effects of resistance training frequency on measures of muscle hypertrophy : A systematic review and meta-analysis. Sports Med. 46, 1689–1697. 10.1007/s40279-016-0543-8
    1. Schoenfeld B. J., Peterson M. D., Ogborn D., Contreras B., Sonmez G. T. (2017b). Strength and hypertrophy adaptations between low- vs. High-load resistance training: A systematic review and meta-analysis. J. Strength Cond. Res. 31, 3508–3523. 10.1519/JSC.0000000000002200
    1. Schoenfeld B. J. (2010). The mechanisms of muscle hypertrophy and their application to resistance training. J. Strength Cond. Res. 24, 2857–2872. 10.1519/JSC.0b013e3181e840f3
    1. Scholtes V. A., Becher J. G., Comuth A., Dekkers H., van Dijk L., Dallmeijer A. J. (2010). Effectiveness of functional progressive resistance exercise strength training on muscle strength and mobility in children with cerebral palsy: A randomized controlled trial. Dev. Med. Child. Neurol. 52, e107–e113. 10.1111/j.1469-8749.2009.03604.x
    1. Scholtes V. A., Becher J. G., Janssen-Potten Y. J., Dekkers H., Smallenbroek L., Dallmeijer A. J. (2012). Effectiveness of functional progressive resistance exercise training on walking ability in children with cerebral palsy: A randomized controlled trial. Res. Dev. Disabil. 33, 181–188. 10.1016/j.ridd.2011.08.026
    1. Smith L. R., Chambers H. G., Lieber R. L. (2013). Reduced satellite cell population may lead to contractures in children with cerebral palsy. Dev. Med. Child. Neurol. 55, 264–270. 10.1111/dmcn.12027
    1. Snijders T., Nederveen J. P., McKay B. R., Joanisse S., Verdijk L. B., van Loon L. J. C., et al. (2015). Satellite cells in human skeletal muscle plasticity. Front. Physiol. 6, 283. 10.3389/fphys.2015.00283
    1. Stackhouse S. K., Binder-Macleod S. A., Lee S. C. K. (2005). Voluntary muscle activation, contractile properties, and fatigability in children with and without cerebral palsy. Muscle Nerve 31, 594–601. 10.1002/mus.20302
    1. Stackhouse S. K., Binder-Macleod S. A., Stackhouse C. A., McCarthy J. J., Prosser L. A., Lee S. C. K. (2007). Neuromuscular electrical stimulation versus volitional isometric strength training in children with spastic diplegic cerebral palsy: A preliminary study. Neurorehabil. Neural Repair 21, 475–485. 10.1177/1545968306298932
    1. Stubbs P. W., Diong J. (2015). The effect of strengthening interventions on strength and physical performance in people with cerebral palsy: PEDro systematic review update. Br. J. Sports Med. 0, 189–190. 10.1136/bjsports-2015-094929
    1. Surveillance of Cerebral Palsy in Europe (2002). Prevalence and characteristics of children with cerebral palsy in Europe. Dev. Med. Child. Neurol. 44, 633–640. 10.1017/S0012162201002675
    1. Taylor N. F., Dodd K. J., Baker R. J., Willoughby K., Thomason P., Graham H. K. (2013). Progressive resistance training and mobility-related function in young people with cerebral palsy: A randomized controlled trial. Dev. Med. Child. Neurol. 55, 806–812. 10.1111/dmcn.12190
    1. Tesch P. A. (1988). Skeletal muscle adaptations consequent to long-term heavy resistance exercise. Med. Sci. Sports Exerc. 20, S132–S134. 10.1249/00005768-198810001-00008
    1. Theis N., Brown M. A., Wood P., Waldron M. (2021). Leucine supplementation increases muscle strength and volume, reduces inflammation, and affects wellbeing in adults and adolescents with cerebral palsy. J. Nutr. 151, 59–64. 10.1093/jn/nxaa006
    1. Treece G. M., Prager R. W., Gee A. H., Berman L. (1999). Fast surface and volume estimation from non-parallel cross-sections, for freehand three-dimensional ultrasound. Med. Image Anal. 3, 141–173. 10.1016/S1361-8415(99)80004-8
    1. Van Tittelboom V., Alemdaroğlu-Gürbüz I., Hanssen B., Plasschaert F., Heyrman L., Feys H., et al. (2021). Reliability of functional tests of the lower limbs and core stability in children and adolescents with cerebral palsy. Eur. J. Phys. Rehabil. Med. 57, 738–746. 10.23736/S1973-9087.21.06627-2
    1. Van Vulpen L. F., De Groot S., Rameckers E. A. A., Becher J. G., Dallmeijer A. J. (2017). Effectiveness of functional power training on walking ability in young children with cerebral palsy: Study protocol of a double-baseline trial. Pediatr. Phys. Ther. 29, 275–282. 10.1097/PEP.0000000000000424
    1. Verreydt I., Vandekerchove I., Stoop E., Peeters N., Van Tittelboom V., Van de Walle P., et al. (2022). Instrumented strength assessment in typically developing children and children with a neural or neuromuscular disorder: A reliability, validity and responsiveness study. Front. Physiol. 13, 855222. 10.3389/fphys.2022.855222
    1. Verschuren O., Ada L., Maltais D. B., Gorter J. W., Scianni A., Ketelaar M. (2011). Muscle strengthening in children and adolescents with spastic cerebral palsy: Considerations for future resistance training protocols. Phys. Ther. 91, 1130–1139. 10.2522/ptj.20100356
    1. Verschuren O., Peterson M. D., Balemans A. C. J., Hurvitz E. A. (2016). Exercise and physical activity recommendations for people with cerebral palsy. Dev. Med. Child. Neurol. 58, 798–808. 10.1111/dmcn.13053
    1. Verschuren O., Peterson M. D. (2016). Nutrition and physical activity in people with cerebral palsy: Opposite sides of the same coin. Dev. Med. Child. Neurol. 58, 426. 10.1111/dmcn.13107
    1. Verschuren O., Smorenburg A. R. P., Luiking Y., Bell K., Barber L., Peterson M. D. (2018). Determinants of muscle preservation in individuals with cerebral palsy across the lifespan: A narrative review of the literature. J. Cachexia Sarcopenia Muscle 9, 453–464. 10.1002/jcsm.12287
    1. von Walden F., Gantelius S., Liu C., Borgström H., Björk L., Gremark O., et al. (2018). Muscle contractures in patients with cerebral palsy and acquired brain injury are associated with extracellular matrix expansion, pro-inflammatory gene expression, and reduced rRNA synthesis. Muscle Nerve 58, 277–285. 10.1002/mus.26130
    1. Vulpen L. F. van, Groot S. de, Rameckers E., Becher J. G., Dallmeijer A. J. (2017). Improved walking capacity and muscle strength after functional power-training in young children with cerebral palsy. Neurorehabil Neural Repair 31 (9), 827–841. 10.1177/1545968317723750
    1. Walhain F., Desloovere K., Declerck M., van Campenhout A., Bar-On L. (2020). Interventions and lower-limb macroscopic muscle morphology in children with spastic cerebral palsy: A scoping review. Dev. Med. Child. Neurol. 63, 274–286. 10.1111/dmcn.14652
    1. Wernbom M., Augustsson J., Thomeé R. (2007). The influence of frequency, intensity, volume and mode of strength training on whole muscle cross-sectional area in humans. Sports Med. 37, 225–264. 10.2165/00007256-200737030-00004
    1. Wiley M. E., Damiano D. L. (1998). Lower-extremity strength profiles in spastic cerebral palsy. Dev. Med. Child. Neurol. 40, 100–107. 10.1111/j.1469-8749.1998.tb15369.x
    1. Willerslev-Olsen M., Choe Lund M., Lorentzen J., Barber L., Kofoed-Hansen M., Nielsen J. B. (2018). Impaired muscle growth precedes development of increased stiffness of the triceps surae musculotendinous unit in children with cerebral palsy. Dev. Med. Child. Neurol. 60, 672–679. 10.1111/dmcn.13729
    1. Williams S. A., Elliott C., Valentine J., Gubbay A., Shipman P., Reid S. (2013). Combining strength training and botulinum neurotoxin intervention in children with cerebral palsy: The impact on muscle morphology and strength. Disabil. Rehabil. 35, 596–605. 10.3109/09638288.2012.711898
    1. Williams S. A., Stott N. S., Valentine J., Elliott C., Reid S. L. (2020). Measuring skeletal muscle morphology and architecture with imaging modalities in children with cerebral palsy: A scoping review. Dev. Med. Child. Neurol. 63, 263–273. 10.1111/dmcn.14714
    1. Young H. J., Jenkins N. T., Zhao Q., Mccully K. K. (2015). Measurement of intramuscular fat by muscle echo intensity. Muscle Nerve 52, 963–971. 10.1002/mus.24656

Source: PubMed

3
Se inscrever