Effect of Vupanorsen on Non-High-Density Lipoprotein Cholesterol Levels in Statin-Treated Patients With Elevated Cholesterol: TRANSLATE-TIMI 70

Brian A Bergmark, Nicholas A Marston, Candace R Bramson, Madelyn Curto, Vesper Ramos, Alexandra Jevne, Julia F Kuder, Jeong-Gun Park, Sabina A Murphy, Subodh Verma, Wojtek Wojakowski, Steven G Terra, Marc S Sabatine, Stephen D Wiviott, TRANSLATE-TIMI 70 Investigators, Diane Carbonneau, Raphael Poulin-Robitaille, Jeffrey Wayne, Keung Lee, Samuel Mujica Trenche, Petros Dzongowski, Daniel Gaudet, Joanna Van, Dilawar Ajani, Harold Bays, John O'Mahony, Adam Janas, John Scott, Moustafa Ashraf Moustafa, Thomas Ransom, Sabrina Benjamin, Naresh Aggarwal, Pawel Bogdanski, Douglas Friars, Robert Schlosser, Boguslaw Okopien, Madhusudan Budhraja, Lawrence Feld, Leslie Klaff, Guy Tellier, Giuseppe Mazza, Iwona Wierzbicka, Ewa Jazwinska-Tarnawska, Fernando Boccalandro, Julio Rosenstock, Elizabeth Marquez, Kim Barbel-Johnson, Katarzyna Madziarska, Kenneth Heaton, Jean-Claude Tardif, John Rubino, Miguel Trevino, Katie Moriarty, Anil Gupta, Wojciech Wojakowski, James Fidelholtz, Dinesh Gupta, Hani Alasaad, Shane Christensen, Parag Shah, Stephanie Li, Mark Sherman, Andre Frechette, Cecilia Arango, Alan Egan, Sunny Srivastava, Archna Bajaj, Carlos Ince Jr, Aleksander Zurakowski, Brian A Bergmark, Nicholas A Marston, Candace R Bramson, Madelyn Curto, Vesper Ramos, Alexandra Jevne, Julia F Kuder, Jeong-Gun Park, Sabina A Murphy, Subodh Verma, Wojtek Wojakowski, Steven G Terra, Marc S Sabatine, Stephen D Wiviott, TRANSLATE-TIMI 70 Investigators, Diane Carbonneau, Raphael Poulin-Robitaille, Jeffrey Wayne, Keung Lee, Samuel Mujica Trenche, Petros Dzongowski, Daniel Gaudet, Joanna Van, Dilawar Ajani, Harold Bays, John O'Mahony, Adam Janas, John Scott, Moustafa Ashraf Moustafa, Thomas Ransom, Sabrina Benjamin, Naresh Aggarwal, Pawel Bogdanski, Douglas Friars, Robert Schlosser, Boguslaw Okopien, Madhusudan Budhraja, Lawrence Feld, Leslie Klaff, Guy Tellier, Giuseppe Mazza, Iwona Wierzbicka, Ewa Jazwinska-Tarnawska, Fernando Boccalandro, Julio Rosenstock, Elizabeth Marquez, Kim Barbel-Johnson, Katarzyna Madziarska, Kenneth Heaton, Jean-Claude Tardif, John Rubino, Miguel Trevino, Katie Moriarty, Anil Gupta, Wojciech Wojakowski, James Fidelholtz, Dinesh Gupta, Hani Alasaad, Shane Christensen, Parag Shah, Stephanie Li, Mark Sherman, Andre Frechette, Cecilia Arango, Alan Egan, Sunny Srivastava, Archna Bajaj, Carlos Ince Jr, Aleksander Zurakowski

Abstract

Background: Genetic loss-of-function variants in ANGPTL3 are associated with lower levels of plasma lipids. Vupanorsen is a hepatically targeted antisense oligonucleotide that inhibits Angiopoietin-like 3 (ANGPTL3) protein synthesis.

Methods: Adults with non-high-density lipoprotein cholesterol (non-HDL-C) ≥100 mg/dL and triglycerides 150 to 500 mg/dL on statin therapy were randomized in a double-blind fashion to placebo or 1 of 7 vupanorsen dose regimens (80, 120, or 160 mg SC every 4 weeks, or 60, 80, 120, or 160 mg SC every 2 weeks). The primary end point was placebo-adjusted percentage change from baseline in non-HDL-C at 24 weeks. Secondary end points included placebo-adjusted percentage changes from baseline in triglycerides, low-density lipoprotein cholesterol (LDL-C), apolipoprotein B (ApoB), and ANGPTL3.

Results: Two hundred eighty-six subjects were randomized: 44 to placebo and 242 to vupanorsen. The median age was 64 (interquartile range, 58-69) years, 44% were female, the median non-HDL-C was 132.4 (interquartile range, 118.0-154.1) mg/dL, and the median triglycerides were 216.2 (interquartile range, 181.4-270.4) mg/dL. Vupanorsen resulted in significant decreases from baseline over placebo in non-HDL-C ranging from 22.0% in the 60 mg every 2 weeks arm to 27.7% in the 80 mg every 2 weeks arm (all P<0.001 for all doses). There were dose-dependent reductions in triglycerides that ranged from 41.3% to 56.8% (all P<0.001). The effects on LDL-C and ApoB were more modest (7.9%-16.0% and 6.0%-15.1%, respectively) and without a clear dose-response relationship' and only the higher reductions achieved statistical significance. ANGPTL3 levels were decreased in a dose-dependent manner by 69.9% to 95.2% (all P<0.001). There were no confirmed instances of significant decline in renal function or platelet count with vupanorsen. Injection site reactions and >3× elevations of alanine aminotransferase or aspartate aminotransferase were more common at higher total monthly doses (up to 33.3% and 44.4%, respectively), and there was a dose-dependent increase in hepatic fat fraction (up to 76%).

Conclusions: Vupanorsen administered at monthly equivalent doses from 80 to 320 mg significantly reduced non-HDL-C and additional lipid parameters. Injection site reactions and liver enzyme elevations were more frequent at higher doses, and there was a dose-dependent increase in hepatic fat fraction.

Registration: URL: https://ichgcp.net/clinical-trials-registry/NCT04516291" title="See in ClinicalTrials.gov">NCT04516291.

Keywords: Angiopoietin-like proteins; antisense oligonucleotide; lipids; triglycerides.

Figures

Figure 1.
Figure 1.
Effect of vupanorsen on non–high-density lipoprotein cholesterol at 24 weeks. The effect of vupanorsen on the primary end point of percent change in placebo-adjusted non–high-density lipoprotein cholesterol level at 24 weeks is shown for each dose arm. Data shown are placebo-adjusted least squares mean differences and 95% CIs. Q2W indicates every 2 weeks; and Q4W, every 4 weeks.
Figure 2.
Figure 2.
Effect of vupanorsen on additional lipid parameters at 24 weeks. The effects of vupanorsen on the percent change in placebo-adjusted levels of ANGPTL3 (angiopoietin-like protein 3), triglycerides, low-density lipoprotein cholesterol (LDL-C), and ApoB (apolipoprotein B) at 24 weeks are shown for each dose arm. Data shown are placebo-adjusted least squares mean differences. Q2W indicates every 2 weeks; and Q4W, every 4 weeks.
Figure 3.
Figure 3.
Effect of vupanorsen on non–HDL-C at 24 weeks in key subgroups. Placebo-adjusted least squares mean difference reductions in non–HDL-C at 24 weeks with vupanorsen (pooled) are shown in key subgroups. MI indicates myocardial infarction; mod, moderate; non-HDL-C, non-high-density lipoprotein cholesterol; and Pint, P value for interaction.

References

    1. Cannon CP, Blazing MA, Giugliano RP, McCagg A, White JA, Theroux P, Darius H, Lewis BS, Ophuis TO, Jukema JW, et al. ; IMPROVE-IT Investigators. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med. 2015;372:2387–2397. doi: 10.1056/NEJMoa1410489
    1. Sabatine MS, Giugliano RP, Keech AC, Honarpour N, Wiviott SD, Murphy SA, Kuder JF, Wang H, Liu T, Wasserman SM, et al. ; FOURIER Steering Committee and Investigators. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017;376:1713–1722. doi: 10.1056/NEJMoa1615664
    1. Schwartz GG, Steg PG, Szarek M, Bhatt DL, Bittner VA, Diaz R, Edelberg JM, Goodman SG, Hanotin C, Harrington RA, et al. ; ODYSSEY OUTCOMES Committees and Investigators. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med. 2018;379:2097–2107. doi: 10.1056/NEJMoa1801174
    1. Marston NA, Giugliano RP, Melloni GEM, Park JG, Morrill V, Blazing MA, Ference B, Stein E, Stroes ES, Braunwald E, et al. . Association of apolipoprotein B-containing lipoproteins and risk of myocardial infarction in individuals with and without atherosclerosis: distinguishing between particle concentration, type, and content. JAMA Cardiol. 2022;7:250–256.
    1. Johannesen CDL, Mortensen MB, Langsted A, Nordestgaard BG. Apolipoprotein B and non-HDL cholesterol better reflect residual risk than LDL cholesterol in statin-treated patients. J Am Coll Cardiol. 2021;77:1439–1450. doi: 10.1016/j.jacc.2021.01.027
    1. Shimizugawa T, Ono M, Shimamura M, Yoshida K, Ando Y, Koishi R, Ueda K, Inaba T, Minekura H, Kohama T, et al. . ANGPTL3 decreases very low density lipoprotein triglyceride clearance by inhibition of lipoprotein lipase. J Biol Chem. 2002;277:33742–33748. doi: 10.1074/jbc.M203215200
    1. Dewey FE, Gusarova V, Dunbar RL, O’Dushlaine C, Schurmann C, Gottesman O, McCarthy S, Van Hout CV, Bruse S, Dansky HM, et al. . Genetic and pharmacologic inactivation of ANGPTL3 and cardiovascular disease. N Engl J Med. 2017;377:211–221. doi: 10.1056/NEJMoa1612790
    1. Graham MJ, Lee RG, Brandt TA, Tai LJ, Fu W, Peralta R, Yu R, Hurh E, Paz E, McEvoy BW, et al. . Cardiovascular and metabolic effects of ANGPTL3 antisense oligonucleotides. N Engl J Med. 2017;377:222–232. doi: 10.1056/NEJMoa1701329
    1. Musunuru K, Pirruccello JP, Do R, Peloso GM, Guiducci C, Sougnez C, Garimella KV, Fisher S, Abreu J, Barry AJ, et al. . Exome sequencing, ANGPTL3 mutations, and familial combined hypolipidemia. N Engl J Med. 2010;363:2220–2227. doi: 10.1056/NEJMoa1002926
    1. Gaudet D, Karwatowska-Prokopczuk E, Baum SJ, Hurh E, Kingsbury J, Bartlett VJ, Figueroa AL, Piscitelli P, Singleton W, Witztum JL, et al. ; Vupanorsen Study Investigators. Vupanorsen, an N-acetyl galactosamine-conjugated antisense drug to ANGPTL3 mRNA, lowers triglycerides and atherogenic lipoproteins in patients with diabetes, hepatic steatosis, and hypertriglyceridaemia. Eur Heart J. 2020;41:3936–3945. doi: 10.1093/eurheartj/ehaa689
    1. Hegele RA, Tsimikas S. Lipid-lowering agents. Circ Res. 2019;124:386–404. doi: 10.1161/CIRCRESAHA.118.313171
    1. Stitziel NO, Khera AV, Wang X, Bierhals AJ, Vourakis AC, Sperry AE, Natarajan P, Klarin D, Emdin CA, Zekavat SM, et al. ; PROMIS and Myocardial Infarction Genetics Consortium Investigators. ANGPTL3 deficiency and protection against coronary artery disease. J Am Coll Cardiol. 2017;69:2054–2063. doi: 10.1016/j.jacc.2017.02.030
    1. Minicocci I, Montali A, Robciuc MR, Quagliarini F, Censi V, Labbadia G, Gabiati C, Pigna G, Sepe ML, Pannozzo F, et al. . Mutations in the ANGPTL3 gene and familial combined hypolipidemia: a clinical and biochemical characterization. J Clin Endocrinol Metab. 2012;97:E1266–E1275. doi: 10.1210/jc.2012-1298
    1. Raal FJ, Rosenson RS, Reeskamp LF, Hovingh GK, Kastelein JJP, Rubba P, Ali S, Banerjee P, Chan KC, Gipe DA, et al. ; ELIPSE HoFH Investigators. Evinacumab for homozygous familial hypercholesterolemia. N Engl J Med. 2020;383:711–720. doi: 10.1056/NEJMoa2004215
    1. Rosenson RS, Burgess LJ, Ebenbichler CF, Baum SJ, Stroes ESG, Ali S, Khilla N, Hamlin R, Pordy R, Dong Y, et al. . Evinacumab in patients with refractory hypercholesterolemia. N Engl J Med. 2020;383:2307–2319. doi: 10.1056/NEJMoa2031049
    1. Crooke ST, Baker BF, Witztum JL, Kwoh TJ, Pham NC, Salgado N, McEvoy BW, Cheng W, Hughes SG, Bhanot S, Geary RS. The effects of 2’-O-methoxyethyl containing antisense oligonucleotides on platelets in human clinical trials. Nucleic Acid Ther. 2017;27:121–129. doi: 10.1089/nat.2016.0650
    1. Crooke ST, Baker BF, Xia S, Yu RZ, Viney NJ, Wang Y, Tsimikas S, Geary RS. Integrated assessment of the clinical performance of GalNAc3-conjugated 2’-O-methoxyethyl chimeric antisense oligonucleotides: I. human volunteer experience. Nucleic Acid Ther. 2019;29:16–32. doi: 10.1089/nat.2018.0753
    1. van Meer L, Moerland M, Gallagher J, van Doorn MB, Prens EP, Cohen AF, Rissmann R, Burggraaf J. Injection site reactions after subcutaneous oligonucleotide therapy. Br J Clin Pharmacol. 2016;82:340–351. doi: 10.1111/bcp.12961
    1. Staels B, Dallongeville J, Auwerx J, Schoonjans K, Leitersdorf E, Fruchart JC. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation. 1998;98:2088–2093. doi: 10.1161/01.cir.98.19.2088
    1. Oscarsson J, Önnerhag K, Risérus U, Sundén M, Johansson L, Jansson PA, Moris L, Nilsson PM, Eriksson JW, Lind L. Effects of free omega-3 carboxylic acids and fenofibrate on liver fat content in patients with hypertriglyceridemia and non-alcoholic fatty liver disease: a double-blind, randomized, placebo-controlled study. J Clin Lipidol. 2018;12:1390–1403.e4. doi: 10.1016/j.jacl.2018.08.003
    1. Ke Y, Liu S, Zhang Z, Hu J. Circulating angiopoietin-like proteins in metabolic-associated fatty liver disease: a systematic review and meta-analysis. Lipids Health Dis. 2021;20:55. doi: 10.1186/s12944-021-01481-1
    1. Alexander VJ, Xia S, Hurh E, Hughes SG, O’Dea L, Geary RS, Witztum JL, Tsimikas S. N-acetyl galactosamine-conjugated antisense drug to APOC3 mRNA, triglycerides and atherogenic lipoprotein levels. Eur Heart J. 2019;40:2785–2796. doi: 10.1093/eurheartj/ehz209
    1. Tardif JC, Karwatowska-Prokopczuk E, Amour ES, Ballantyne CM, Shapiro MD, Moriarty PM, Baum SJ, Hurh E, Bartlett VJ, Kingsbury J, et al. . Apolipoprotein C-III reduction in subjects with moderate hypertriglyceridaemia and at high cardiovascular risk. [published online January 13, 2022]. Eur Heart J. 2022. doi: 10.1093/eurheartj/ehab820.

Source: PubMed

3
Se inscrever