The Impact of Hotspot-Targeted Interventions on Malaria Transmission in Rachuonyo South District in the Western Kenyan Highlands: A Cluster-Randomized Controlled Trial

Teun Bousema, Gillian Stresman, Amrish Y Baidjoe, John Bradley, Philip Knight, William Stone, Victor Osoti, Euniah Makori, Chrispin Owaga, Wycliffe Odongo, Pauline China, Shehu Shagari, Ogobara K Doumbo, Robert W Sauerwein, Simon Kariuki, Chris Drakeley, Jennifer Stevenson, Jonathan Cox, Teun Bousema, Gillian Stresman, Amrish Y Baidjoe, John Bradley, Philip Knight, William Stone, Victor Osoti, Euniah Makori, Chrispin Owaga, Wycliffe Odongo, Pauline China, Shehu Shagari, Ogobara K Doumbo, Robert W Sauerwein, Simon Kariuki, Chris Drakeley, Jennifer Stevenson, Jonathan Cox

Abstract

Background: Malaria transmission is highly heterogeneous, generating malaria hotspots that can fuel malaria transmission across a wider area. Targeting hotspots may represent an efficacious strategy for reducing malaria transmission. We determined the impact of interventions targeted to serologically defined malaria hotspots on malaria transmission both inside hotspots and in surrounding communities.

Methods and findings: Twenty-seven serologically defined malaria hotspots were detected in a survey conducted from 24 June to 31 July 2011 that included 17,503 individuals from 3,213 compounds in a 100-km2 area in Rachuonyo South District, Kenya. In a cluster-randomized trial from 22 March to 15 April 2012, we randomly allocated five clusters to hotspot-targeted interventions with larviciding, distribution of long-lasting insecticide-treated nets, indoor residual spraying, and focal mass drug administration (2,082 individuals in 432 compounds); five control clusters received malaria control following Kenyan national policy (2,468 individuals in 512 compounds). Our primary outcome measure was parasite prevalence in evaluation zones up to 500 m outside hotspots, determined by nested PCR (nPCR) at baseline and 8 wk (16 June-6 July 2012) and 16 wk (21 August-10 September 2012) post-intervention by technicians blinded to the intervention arm. Secondary outcome measures were parasite prevalence inside hotpots, parasite prevalence in the evaluation zone as a function of distance from the hotspot boundary, Anopheles mosquito density, mosquito breeding site productivity, malaria incidence by passive case detection, and the safety and acceptability of the interventions. Intervention coverage exceeded 87% for all interventions. Hotspot-targeted interventions did not result in a change in nPCR parasite prevalence outside hotspot boundaries (p ≥ 0.187). We observed an average reduction in nPCR parasite prevalence of 10.2% (95% CI -1.3 to 21.7%) inside hotspots 8 wk post-intervention that was statistically significant after adjustment for covariates (p = 0.024), but not 16 wk post-intervention (p = 0.265). We observed no statistically significant trend in the effect of the intervention on nPCR parasite prevalence in the evaluation zone in relation to distance from the hotspot boundary 8 wk (p = 0.27) or 16 wk post-intervention (p = 0.75). Thirty-six patients with clinical malaria confirmed by rapid diagnostic test could be located to intervention or control clusters, with no apparent difference between the study arms. In intervention clusters we caught an average of 1.14 female anophelines inside hotspots and 0.47 in evaluation zones; in control clusters we caught an average of 0.90 female anophelines inside hotspots and 0.50 in evaluation zones, with no apparent difference between study arms. Our trial was not powered to detect subtle effects of hotspot-targeted interventions nor designed to detect effects of interventions over multiple transmission seasons.

Conclusions: Despite high coverage, the impact of interventions targeting malaria vectors and human infections on nPCR parasite prevalence was modest, transient, and restricted to the targeted hotspot areas. Our findings suggest that transmission may not primarily occur from hotspots to the surrounding areas and that areas with highly heterogeneous but widespread malaria transmission may currently benefit most from an untargeted community-wide approach. Hotspot-targeted approaches may have more validity in settings where human settlement is more nuclear.

Trial registration: ClinicalTrials.gov NCT01575613.

Conflict of interest statement

We acknowledge the donation of Permanet® 3.0 LLINs by Vestergaard Frandsen (Hanoi, Vietnam) and Bti Vectobac® by Valent BioSciences Corp (Libertyville, IL, US).

Figures

Fig 1. The study area in the…
Fig 1. The study area in the highlands of western Kenya.
The study area comprised a 5 × 20 km rectangle in Rachuonyo South District, Nyanza Province.
Fig 2. Spatial variation in malaria antibody…
Fig 2. Spatial variation in malaria antibody prevalence and nPCR parasite prevalence in the study area in Rachuonyo South District during a community survey conducted in June–July 2011.
(A) Distribution of sampled compounds and variations in altitude across the study site (contour interval = 25 m). (B) Combined seroprevalence (for AMA-1 or MSP-119) for individual 250 × 250 m sub-cells and the location of 27 significant hotspots derived from spatial scan analysis of compound-level data. (C) The ten hotspots that were selected for the cluster-randomized trail, presented with evaluation zones. (D) The 27 serological hotspot locations are overlaid on a map of nPCR-detected malaria parasite prevalence for compounds consisting of >3 individuals.
Fig 3. Malaria parasite prevalence by nPCR…
Fig 3. Malaria parasite prevalence by nPCR inside and outside serologically defined hotspots in the study area in Rachuonyo South District during a community survey conducted in June–July 2011.
nPCR-based parasite prevalence is plotted for individuals residing inside 27 serologically defined hotspots (black bars), 1–249 meters from the hotspot boundary (grey hatched bars), 250–500 m from the hotspot boundary (open hatched bars), and >500 meters from the hotspot boundary (open bars). Parasite prevalence by nPCR is shown per altitude band. Error bars indicate the upper limit of the 95% confidence interval; the p-value for the trend test is given, adjusting for correlations between observations from individuals living in the same compound. The number of individuals for whom samples were available for nPCR inside hotspot boundaries was 2,222 individuals (1,350–1,449 m), 2,494 (1,450–1,499 m), 1,348 (1,500–1,549 m), and 118 (1,550–1,650 m). The number of individuals for 1–249 m from hotspot boundaries was 698 (1,350–1,449 m), 1,248 (1,450–1,499 m), 1,113 (1,500–1,549 m), and 246 (1,550–1,650 m). The number of individuals for 250–500 m from hotspot boundaries was 544 (1,350–1,449 m), 681 (1,450–1,499 m), 661 (1,500–1,549 m), and 164 (1,550–1,650 m). The number of individuals for >500 m from hotspot boundaries was 544 (1,350–1,449 m), 176 (1,450–1,499 m), 405 (1,500–1,549 m), and 135 (1,550–1,650 m).
Fig 4. Overview of the cluster-randomized trial…
Fig 4. Overview of the cluster-randomized trial conducted in Rachuonyo South District in March–September 2012.
Clusters were serologically defined hotspots with a surrounding 500-m evaluation zone and were randomly allocated to the intervention (n = 5) or control arm (n = 5). Cross-sectional surveys were conducted at baseline (22 March–15 April 2012) and at 8 wk (16 June–6 July 2012) and 16 wk after the intervention (21 August–10 September 2012). In each survey, 25 compounds were randomly selected from within hotspots and 50 from the surrounding evaluation zone (25 compounds 1–249 m from the hotspot boundary and 25 compounds 250–500 m from the hotspot boundary). In intervention hotspots, data were available for all compounds at baseline and were therefore included in the analysis. If selected compounds were not inhabited or compound members were absent, the nearest non-selected inhabited compound was selected as a replacement. Compounds were not revisited before replacements were sought. fMDA, focal MDA.
Fig 5. Indoor densities of female anophelines…
Fig 5. Indoor densities of female anophelines by light trap in intervention and control clusters in Rachuonyo South District in March–August 2012.
Each symbol represents the number of female anophelines caught indoors by CDC light trap inside hotspots (filled circles) and in evaluation zones (open circles). Each trap night, four compounds were randomly selected within the hotspot and eight were selected in the evaluation zone per cluster. Findings are summarized for trapping rounds prior to roll-out of interventions in 22 March–30 April 2012 (one trapping night per compound) and post-intervention in 1 May–30 June 2012 (three trapping nights per compound) and 1 July–31 August 2012 (five trapping nights per compound). Findings are presented for three intervention clusters combined and for three control clusters combined.

References

    1. Oesterholt MJ, Bousema JT, Mwerinde OK, Harris C, Lushino P, et al. (2006) Spatial and temporal variation in malaria transmission in a low endemicity area in northern Tanzania. Malar J 5: 98
    1. Clark TD, Greenhouse B, Njama-Meya D, Nzarubara B, Maiteki-Sebuguzi C, et al. (2008) Factors determining the heterogeneity of malaria incidence in children in Kampala, Uganda. J Infect Dis 198: 393–400. 10.1086/589778
    1. Kreuels B, Kobbe R, Adjei S, Kreuzberg C, von Reden C, et al. (2008) Spatial variation of malaria incidence in young children from a geographically homogeneous area with high endemicity. J Infect Dis 197: 85–93. 10.1086/524066
    1. Bousema T, Drakeley C, Gesase S, Hashim R, Magesa S, et al. (2010) Identification of hot spots of malaria transmission for targeted malaria control. J Infect Dis 201: 1764–1774. 10.1086/652456
    1. Midega JT, Smith DL, Olotu A, Mwangangi JM, Nzovu JG, et al. (2012) Wind direction and proximity to larval sites determines malaria risk in Kilifi District in Kenya. Nat Commun 3: 674 10.1038/ncomms1672
    1. Bejon P, Williams TN, Liljander A, Noor AM, Wambua J, et al. (2010) Stable and unstable malaria hotspots in longitudinal cohort studies in Kenya. PLoS Med 7: e1000304 10.1371/journal.pmed.1000304
    1. Mackinnon MJ, Mwangi TW, Snow RW, Marsh K, Williams TN (2005) Heritability of malaria in Africa. PLoS Med 2: e340
    1. Shanks GD, Biomndo K, Guyatt HL, Snow RW (2005) Travel as a risk factor for uncomplicated Plasmodium falciparum malaria in the highlands of western Kenya. Trans R Soc Trop Med Hyg 99: 71–74.
    1. Bousema T, Griffin JT, Sauerwein RW, Smith DL, Churcher TS, et al. (2012) Hitting hotspots: spatial targeting of malaria for control and elimination. PLoS Med 9: e1001165 10.1371/journal.pmed.1001165
    1. Woolhouse ME, Dye C, Etard JF, Smith T, Charlwood JD, et al. (1997) Heterogeneities in the transmission of infectious agents: implications for the design of control programs. Proc Natl Acad Sci U S A 94: 338–342.
    1. Smith DL, McKenzie FE, Snow RW, Hay SI (2007) Revisiting the basic reproductive number for malaria and its implications for malaria control. PLoS Biol 5: e42
    1. Bejon P, Williams TN, Nyundo C, Hay SI, Benz D, et al. (2014) A micro-epidemiological analysis of febrile malaria in Coastal Kenya showing hotspots within hotspots. Elife 3: e02130 10.7554/eLife.02130
    1. World Health Organization (2010) Global malaria control and elimination: report of a technical review Geneva: World Health Organization.
    1. Bousema T, Stevenson J, Baidjoe A, Stresman G, Griffin JT, et al. (2013) The impact of hotspot-targeted interventions on malaria transmission: study protocol for a cluster-randomized controlled trial. Trials 14: 36 10.1186/1745-6215-14-36
    1. Stevenson JC, Stresman GH, Baidjoe A, Okoth A, Oriango R, et al. (2015) Use of different transmission metrics to describe malaria epidemiology in the highlands of western Kenya. Malar J 14: 418 10.1186/s12936-015-0944-4
    1. Stevenson J, St Laurent B, Lobo NF, Cooke MK, Kahindi SC, et al. (2012) Novel vectors of malaria parasites in the western highlands of Kenya. Emerg Infect Dis 18: 1547–1549. 10.3201/eid1809.120283
    1. Drakeley CJ, Corran PH, Coleman PG, Tongren JE, McDonald SL, et al. (2005) Estimating medium- and long-term trends in malaria transmission by using serological markers of malaria exposure. Proc Natl Acad Sci U S A 102: 5108–5113.
    1. Baidjoe A, Stone W, Ploemen I, Shagari S, Grignard L, et al. (2013) Combined DNA extraction and antibody elution from filter papers for the assessment of malaria transmission intensity in epidemiological studies. Malar J 12: 272 10.1186/1475-2875-12-272
    1. (2005) SaTScan: software for the spatial, temporal, and space-time scan statistics. Available: . Accessed 15 Jun 2015.
    1. Griffin JT, Hollingsworth TD, Okell LC, Churcher TS, White M, et al. (2010) Reducing Plasmodium falciparum malaria transmission in Africa: a model-based evaluation of intervention strategies. PLoS Med 7: e1000324 10.1371/journal.pmed.1000324
    1. Hawley WA, Phillips-Howard PA, ter Kuile FO, Terlouw DJ, Vulule JM, et al. (2003) Community-wide effects of permethrin-treated bed nets on child mortality and malaria morbidity in western Kenya. Am J Trop Med Hyg 68: 121–127.
    1. Fillinger U, Kannady K, William G, Vanek MJ, Dongus S, et al. (2008) A tool box for operational mosquito larval control: preliminary results and early lessons from the Urban Malaria Control Programme in Dar es Salaam, Tanzania. Malar J 7: 20 10.1186/1475-2875-7-20
    1. Stresman GH, Baidjoe AY, Stevenson J, Grignard L, Odongo W, et al. (2015) Focal screening to identify the subpatent parasite reservoir in an area of low and heterogeneous transmission in the Kenya highlands. J Infect Dis 212:1768–1777. 10.1093/infdis/jiv302
    1. Mueller I, Schoepflin S, Smith TA, Benton KL, Bretscher MT, et al. (2012) Force of infection is key to understanding the epidemiology of Plasmodium falciparum malaria in Papua New Guinean children. Proc Natl Acad Sci U S A 109: 10030–10035. 10.1073/pnas.1200841109
    1. Afrane YA, Zhou G, Githeko AK, Yan G (2013) Utility of health facility-based malaria data for malaria surveillance. PLoS ONE 8: e54305 10.1371/journal.pone.0054305
    1. Zurovac D, Githinji S, Memusi D, Kigen S, Machini B, et al. (2014) Major improvements in the quality of malaria case-management under the “test and treat” policy in Kenya. PLoS ONE 9: e92782 10.1371/journal.pone.0092782
    1. Mboera LE, Kihonda J, Braks MA, Knols BG (1998) Influence of centers for disease control light trap position, relative to a human-baited bed net, on catches of Anopheles gambiae and Culex quinquefasciatus in Tanzania. Am J Trop Med Hyg 59: 595–596.
    1. Barry AE, Schultz L, Senn N, Nale J, Kiniboro B, et al. (2013) High levels of genetic diversity of Plasmodium falciparum populations in Papua New Guinea despite variable infection prevalence. Am J Trop Med Hyg 88: 718–725. 10.4269/ajtmh.12-0056
    1. Hayes RJ, Moulton LH (2009) Cluster randomized trials London: Chapman and Hall/CRC.
    1. Bousema T, Stresman G, Baidjoe AY, Bradley J, Knight P, et al. (2016) Data from: The impact of hotspot-targeted interventions on malaria transmission in Rachuonyo South District in the western Kenyan highlands: a cluster-randomized controlled trial. Dryad Digital Repository. Available: 10.5061/dryad.nr8d8.
    1. Tusting LS, Thwing J, Sinclair D, Fillinger U, Gimnig J, et al. (2013) Mosquito larval source management for controlling malaria. Cochrane Database Syst Rev 8: CD008923 10.1002/14651858.CD008923.pub2
    1. Mosha JF, Sturrock HJ, Greenhouse B, Greenwood B, Sutherland CJ, et al. (2013) Epidemiology of subpatent Plasmodium falciparum infection: implications for detection of hotspots with imperfect diagnostics. Malar J 12: 221 10.1186/1475-2875-12-221
    1. Tusting LS, Bousema T, Smith DL, Drakeley C (2014) Measuring changes in Plasmodium falciparum transmission: precision, accuracy and costs of metrics. Adv Parasitol 84: 151–208. 10.1016/B978-0-12-800099-1.00003-X
    1. Tiono AB, Kangoye DT, Rehman AM, Kargougou DG, Kabore Y, et al. (2014) Malaria incidence in children in South-West Burkina Faso: comparison of active and passive case detection methods. PLoS ONE 9: e86936 10.1371/journal.pone.0086936
    1. Olotu A, Fegan G, Williams TN, Sasi P, Ogada E, et al. (2010) Defining clinical malaria: the specificity and incidence of endpoints from active and passive surveillance of children in rural Kenya. PLoS ONE 5: e15569 10.1371/journal.pone.0015569
    1. Okell LC, Bousema T, Griffin JT, Ouedraogo AL, Ghani AC, et al. (2012) Factors determining the occurrence of submicroscopic malaria infections and their relevance for control. Nat Commun 3: 1237 10.1038/ncomms2241
    1. Hay SI, Smith DL, Snow RW (2008) Measuring malaria endemicity from intense to interrupted transmission. Lancet Infect Dis 8: 369–378. 10.1016/S1473-3099(08)70069-0
    1. Mulamba C, Riveron JM, Ibrahim SS, Irving H, Barnes KG, et al. (2014) Widespread pyrethroid and DDT resistance in the major malaria vector Anopheles funestus in East Africa is driven by metabolic resistance mechanisms. PLoS ONE 9: e110058 10.1371/journal.pone.0110058
    1. Ochomo E, Bayoh NM, Kamau L, Atieli F, Vulule J, et al. (2014) Pyrethroid susceptibility of malaria vectors in four districts of western Kenya. Parasit Vectors 7: 310 10.1186/1756-3305-7-310
    1. Strode C, Donegan S, Garner P, Enayati AA, Hemingway J (2014) The impact of pyrethroid resistance on the efficacy of insecticide-treated bed nets against African anopheline mosquitoes: systematic review and meta-analysis. PLoS Med 11: e1001619 10.1371/journal.pmed.1001619
    1. Mathias DK, Ochomo E, Atieli F, Ombok M, Bayoh MN, et al. (2011) Spatial and temporal variation in the kdr allele L1014S in Anopheles gambiae s.s. and phenotypic variability in susceptibility to insecticides in Western Kenya. Malar J 10: 10 10.1186/1475-2875-10-10
    1. Lindblade KA, Mwandama D, Mzilahowa T, Steinhardt L, Gimnig J, et al. (2015) A cohort study of the effectiveness of insecticide-treated bed nets to prevent malaria in an area of moderate pyrethroid resistance, Malawi. Malar J 14: 31 10.1186/s12936-015-0554-1
    1. World Health Organization (2009) Report of the twelfth WHOPES working group meeting. WHO/HTM/NTD/20091. Geneva: World Health Organization.
    1. Russell TL, Govella NJ, Azizi S, Drakeley CJ, Kachur SP, et al. (2011) Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania. Malar J 10: 80 10.1186/1475-2875-10-80
    1. Olanga EA, Okombo L, Irungu LW, Mukabana WR (2015) Parasites and vectors of malaria on Rusinga Island, Western Kenya. Parasit Vectors 8: 250 10.1186/s13071-015-0860-z
    1. Cook J, Xu W, Msellem M, Vonk M, Bergstrom B, et al. (2015) Mass screening and treatment on the basis of results of a Plasmodium falciparum-specific rapid diagnostic test did not teduce malaria incidence in Zanzibar. J Infect Dis 211: 1476–1483. 10.1093/infdis/jiu655
    1. Ouedraogo AL, Goncalves BP, Gneme A, Wenger EA, Guelbeogo MW, et al. (2015) Dynamics of the human infectious reservoir for malaria determined by mosquito feeding assays and ultrasensitive malaria diagnosis in Burkina Faso. J Infect Dis 213: 90–99. 10.1093/infdis/jiv370
    1. Desai M, Buff AM, Khagayi S, Byass P, Amek N, et al. (2014) Age-specific malaria mortality rates in the KEMRI/CDC health and demographic surveillance system in western Kenya, 2003–2010. PLoS ONE 9: e106197 10.1371/journal.pone.0106197
    1. Wesolowski A, Stresman G, Eagle N, Stevenson J, Owaga C, et al. (2014) Quantifying travel behavior for infectious disease research: a comparison of data from surveys and mobile phones. Sci Rep 4: 5678 10.1038/srep05678
    1. Midega JT, Mbogo CM, Mwnambi H, Wilson MD, Ojwang G, et al. (2007) Estimating dispersal and survival of Anopheles gambiae and Anopheles funestus along the Kenyan coast by using mark-release-recapture methods. J Med Entomol 44: 923–929.
    1. Perkins TA, Scott TW, Le Menach A, Smith DL (2013) Heterogeneity, mixing, and the spatial scales of mosquito-borne pathogen transmission. PLoS Comput Biol 9: e1003327 10.1371/journal.pcbi.1003327

Source: PubMed

3
Se inscrever