Recombinant vaccines for COVID-19

Tushar Yadav, Nishant Srivastava, Gourav Mishra, Kuldeep Dhama, Swatantra Kumar, Bipin Puri, Shailendra K Saxena, Tushar Yadav, Nishant Srivastava, Gourav Mishra, Kuldeep Dhama, Swatantra Kumar, Bipin Puri, Shailendra K Saxena

Abstract

SARS-CoV-2, the causative agent of COVID-19, has imposed a major public health threat, which needs effective therapeutics and vaccination strategies. Several potential candidate vaccines being rapidly developed are in clinical evaluation. Considering the crucial role of SARS-CoV-2 spike (S) glycoprotein in virus attachment, entry, and induction of neutralizing antibodies, S protein is being widely used as a target for vaccine development. Based on advances in techniques for vaccine design, inactivated, live-vectored, nucleic acid, and recombinant COVID-19 vaccines are being developed and tested for their efficacy. Phase3 clinical trials are underway or will soon begin for several of these vaccines. Assuming that clinical efficacy is shown for one or more vaccines, safety is a major aspect to be considered before deploying such vaccines to the public. The current review focuses on the recent advances in recombinant COVID-19 vaccine research and development and associated issues.

Keywords: COVID-19; SARS-CoV-2; efficacy and safety; recombinant vaccine; vaccine.

Conflict of interest statement

The authors declare no competing financial interest. The research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Figures

Figure 1.
Figure 1.
Various strategies for recombinant vaccine development. (a) DNA-based vaccine developed by cloning SARS-CoV-2 S-protein; (b) Development of vaccine using DNA plasmid containing SARS-CoV-2 S gene; (c) Vaccine development by S protein mRNA; (d) Use of recombinant S-protein mimicking SARS-Cov-2 S protein as a vaccine; (e) Use of vector without self-replicating machinery containing SARS-CoV-2 S protein gene as vaccine; (f) Virus-Like Particle equivalent to SARS-CoV-2 without genetic material as a vaccine. Most of the vaccines target S protein that is expected to sensitize the host cellular and humoral immune response leading to immunization

References

    1. Gorbalenya AE, Baker SC, Baric RS, de Groot RJ, Drosten C, Gulyaeva AA, Haagmans BL, Lauber C, Leontovich AM, Neuman BW, et al. Coronaviridae study group of the international committee on taxonomy of viruses. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020;5: 536–44.
    1. Phelan AL, Katz R, Gostin LO.. The novel coronavirus originating in Wuhan, China: challenges for global health governance. JAMA. 2020;323:709–10. doi:10.1001/jama.2020.1097.
    1. WHO . World-health-organization coronavirus disease (COVID-19) outbreak; 2020. [accessed 2020 Jan 31 .
    1. Srivastava N, Baxi P, Ratho RK, Saxena SK.. Global trends in epidemiology of coronavirus disease 2019 (COVID-19). In: Saxena SK, editor. Coronavirus disease 2019 (COVID-19): epidemiology, pathogenesis, diagnosis, and therapeutics. Singapore: Springer Singapore; 2020. p. 9–21.
    1. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KSM, Lau EHY, Wong JY, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. N Engl J Med. 2020;382(13):1199–207. doi:10.1056/NEJMoa2001316.
    1. Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) outbreak. J Autoimmun. 2020;109:102433. doi:10.1016/j.jaut.2020.102433.
    1. Ji W, Wang W, Zhao X, Zai J, Li X. Cross-species transmission of the newly identified coronavirus 2019-nCoV. J Med Virol. 2020;92:433–40. doi:10.1002/jmv.25682.
    1. Lam TT, Jia N, Zhang YW, Shum MH, Jiang JF, Zhu HC, Tong YG, Shi YX, Ni XB, Liao YS, et al. Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins. Nature. 2020;583:282–85. doi:10.1038/s41586-020-2169-0.
    1. Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, Si H-R, Zhu Y, Li B, Huang C-L, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–73. doi:10.1038/s41586-020-2012-7.
    1. Kumar S, Maurya VK, Prasad AK, Bhatt MLB, Saxena SK. Structural, glycosylation and antigenic variation between 2019 novel coronavirus (2019-nCoV) and SARS coronavirus (SARS-CoV). VirusDisease. 2020;31:13–21. doi:10.1007/s13337-020-00571-5.
    1. Xu J, Zhao S, Teng T, Abdalla AE, Zhu W, Xie L, Wang Y, Guo X. Systematic Comparison of Two Animal-to-Human Transmitted Human Coronaviruses: SARS-CoV-2 and SARS-CoV. Viruses. 2020;12:244. doi:10.3390/v12020244.
    1. Shang W, Yang Y, Rao Y, Rao X. The outbreak of SARS-CoV-2 pneumonia calls for viral vaccines. NPJ Vaccines. 2020;5:18. doi:10.1038/s41541-020-0170-0.
    1. Drexler JF, Corman VM, Drosten C. Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS. Antiviral Res. 2014;101:45–56. doi:10.1016/j.antiviral.2013.10.013.
    1. Chen Y, Liu Q, Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol. 2020;92:418–23. doi:10.1002/jmv.25681.
    1. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395:565–74. doi:10.1016/S0140-6736(20)30251-8.
    1. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL., Abiona O, Graham BS, McLellan JS. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367:1260–63. doi:10.1126/science.abb2507.
    1. Amanat F, Krammer F. SARS-CoV-2 vaccines: status report. Immunity. 2020;52:583–89. doi:10.1016/j.immuni.2020.03.007.
    1. Tai W, He L, Zhang X, Pu J, Voronin D, Jiang S, Zhou Y, Du L. Characterization of the receptor-binding domain (RBD) of 2019 novel coronavirus: implication for development of RBD protein as a viral attachment inhibitor and vaccine. Cell Mol Immunol. 2020;17:613–20. doi:10.1038/s41423-020-0400-4
    1. Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Structure VD. Function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181(281–292.e6). doi:10.1016/j.cell.2020.02.058.
    1. Dhama K, Sharun K, Tiwari R, Dadar M, Malik YS, Singh KP, Chaicumpa W. COVID-19, an emerging coronavirus infection: advances and prospects in designing and developing vaccines, immunotherapeutics, and therapeutics. Hum Vaccin Immunother. 2020;16:1232–38. doi:10.1080/21645515.2020.1735227.
    1. Song W, Gui M, Wang X, Xiang Y. Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS Pathog. 2018;14:e1007236. doi:10.1371/journal.ppat.1007236.
    1. Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020;38:1–9.
    1. Srivastava N, Saxena SK. Prevention and control strategies for SARS-CoV-2 infection. In: Saxena SK, editor. Coronavirus disease 2019 (COVID-19): epidemiology, pathogenesis, diagnosis, and therapeutics. Singapore: Springer Singapore; 2020. p. 127–40.
    1. Zhou J, Wang W, Zhong Q, Hou W, Yang Z, Xiao S-Y, Zhu R, Tang Z, Wang Y, Xian Q, et al. Immunogenicity, safety, and protective efficacy of an inactivated SARS-associated coronavirus vaccine in rhesus monkeys. Vaccine. 2005;23(24):3202. doi:10.1016/j.vaccine.2004.11.075.
    1. Spruth M, Kistner O, Savidis-Dacho H, Hitter E, Crowe B, Gerencer M, Brühl P, Grillberger L, Reiter M, Tauer C, et al. A double-inactivated whole virus candidate SARS coronavirus vaccine stimulates neutralising and protective antibody responses. Vaccine. 2006;24(5):652–61. doi:10.1016/j.vaccine.2005.08.055.
    1. Gao Q, Bao L, Mao H, Wang L, Xu K, Yang M, Li Y, Zhu L, Wang N, Lv Z, et al. Development of an inactivated vaccine candidate for SARS-CoV-2. Science. 2020;369(6499):77–81. doi:10.1126/science.abc1932.
    1. Pharmaceutical Business Review . 2020. Apr 18. [Accessed 2020 Aug 31]. .
    1. WHO . DRAFT landscape of COVID-19 candidate vaccines; 2020. Jul 02. [Accessed 2020 Aug 31]. .
    1. Yang Z-Y, Kong W-P, Huang Y, Roberts A, Murphy BR, Subbarao K, Nabel GJ. A DNA vaccine induces SARS coronavirus neutralization and protective immunity in mice. Nature. 2004;428(6982):561–64. doi:10.1038/nature02463.
    1. Yu J, Tostanoski LH, Peter L, Mercado NB, McMahan K, Mahrokhian SH, Nkolola JP, Liu J, Li Z, Chandrashekar A, et al. DNA vaccine protection against SARS-CoV-2 in rhesus macaques. Science. 2020;369(6505):806–11. doi:10.1126/science.abc6284.
    1. Smith TRF, Patel A, Ramos S, Elwood D, Zhu X, Yan J, Gary EN, Walker SN, Schultheis K, Purwar M, et al. Immunogenicity of a DNA vaccine candidate for COVID-19. Nat Commun. 2020;11(1):2601. doi:10.1038/s41467-020-16505-0.
    1. Oncosec . 2020. Apr 18. [Accessed 2020 Aug 31]. .
    1. NIH . 2020. [Accessed 2020 Aug 31]. .
    1. Moderna . 2020. Jul 06. [Accessed 2020 Aug 31]. .
    1. Tazehkand MN, Hajipour O. Evaluating the vaccine potential of a tetravalent fusion protein against coronavirus (COVID-19). J Vaccines Vaccin. 2020;11:411.
    1. Glaxo . GlaxoSmithKline press release on 2/24/20; 2020. Apr 11. [Accessed 2020 Aug 31]. .
    1. Liu C, Zhou Q, Li Y, Garner LV, Watkins SP, Carter LJ, Smoot J, Gregg AC, Daniels AD, Jervey S, et al. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Cent Sci. 2020;6(3):315–31. doi:10.1021/acscentsci.0c00272.
    1. Generex . press release on 2/27/2020; 2020. [Accessed 2020 Aug 31]. .
    1. Novavax ; 2020. [Accessed 2020 Aug 31]. .
    1. Abdelmageed MI, Abdelmoneim AH, Mustafa MI, Elfadol NM, Murshed NS, Shantier SW, Makhawi AM. Design of a multiepitope-based peptide vaccine against the E protein of human COVID-19: an Immunoinformatics approach. Biomed Res Int. 2020;2020:1–12. Article ID 2683286. doi:10.1155/2020/2683286.
    1. Ura T, Okuda K, Shimada M. Developments in viral vector-based vaccines. Vaccines. 2014;2(3):624–41. doi:10.3390/vaccines2030624.
    1. Zhu FC, Li YH, Guan XH, Hou LH, Wang WJ, Li JX, Wu SP, Wang BS, Wang Z, Wang L, et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet. 2020;395:1845–54. doi:10.1016/S0140-6736(20)31208-3.
    1. Kim E, Erdos G, Huang S, Kenniston TW, Balmert SC, Carey CD, Raj VS, Epperly MW, Klimstra WB, Haagmans BL, et al. Microneedle array delivered recombinant coronavirus vaccines: immunogenicity and rapid translational development. EBioMedicine. 2020;55:102743. doi:10.1016/j.ebiom.2020.102743.
    1. Kushnir N, Streatfield SJ, Virus-like YV. Particles as a highly efficient vaccine platform: diversity of targets and production systems and advances in clinical development. Vaccine. 2012;31(1):58–83. doi:10.1016/j.vaccine.2012.10.083.
    1. Mohsen MO, Zha L, Cabral-Miranda G, Bachmann MF. Major findings and recent advances in virus-like particle (VLP)-based vaccines. Semin Immunol. 2017;34:123–32. doi:10.1016/j.smim.2017.08.014.
    1. Rosales-Mendoza S, Márquez-Escobar VA, González-Ortega O, Nieto-Gómez R, Arévalo-Villalobos JI. What does plant-based vaccine technology offer to the fight against COVID-19. Vaccines. 2020;8:183. doi:10.3390/vaccines8020183.
    1. Lythgoe MP, Middleton P. Ongoing clinical trials for the management of the COVID-19 pandemic. Trends Pharmacol Sci. 2020;41:363. doi:10.1016/j.tips.2020.03.006.
    1. Jiang S. Don’t rush to deploy COVID-19 vaccines and drugs without sufficient safety guarantees. Nature. 2020;579:321. doi:10.1038/d41586-020-00751-9.
    1. Tetro JA. Is COVID-19 receiving ADE from other coronaviruses? Microbes Infect. 2020;22:72–73. doi:10.1016/j.micinf.2020.02.006.
    1. Wang J, Zand MS. The potential for antibody-dependent enhancement of SARS-CoV-2 infection: translational implications for vaccine development. J Clin Transl Sci. 2020;1–4. doi:10.1017/cts.2020.39.
    1. Weingartl H, Czub M, Czub S, Neufeld J, Marszal P, Gren J, Smith G, Jones S, Proulx R, Deschambault Y, et al. Immunization with modified vaccinia virus Ankara-based recombinant vaccine against severe acute respiratory syndrome is associated with enhanced hepatitis in ferrets. J Virol. 2004;78:1267–6. doi:10.1128/JVI.78.22.12672-12676.2004.

Source: PubMed

3
Se inscrever