Overview of the Main Anti-SARS-CoV-2 Vaccines: Mechanism of Action, Efficacy and Safety

Maria Teresa Mascellino, Federica Di Timoteo, Massimiliano De Angelis, Alessandra Oliva, Maria Teresa Mascellino, Federica Di Timoteo, Massimiliano De Angelis, Alessandra Oliva

Abstract

This review takes into consideration the principal vaccines developed against the SARS-CoV-2 in this unprecedented period of Covid-19 pandemic. We evaluated the mechanism of action of each vaccine as well as the efficacy, the safety and the storage temperature. In addition, the problem of the dose units, the vaccinal strategy, the activity of alternative compounds such as the monoclonal antibodies and especially the issue of the virus variants were also described in detail. Four vaccines are currently used in Italy: Pfizer-BioNTech mRNA BNT162b2 (Comirnaty) (USA), Moderna mRNA 1273 (USA), Astra-Zeneca ChAdOx1-S (recombinant) viral vector adenovirus belonging to Oxford (UK) and Pomezia (Italy), Janssen (two recombinant viral vector adenoviruses) belonging to Johnson & Johnson (USA). The efficacy of Pfizer and Moderna for preventing disease or severe disease results 95-87.5% and 94.5-100%, respectively. The efficacy of Astra-Zeneca and Janssen is about 70% and 65%, respectively; in the case of Janssen, it depends on the geographical area ranging from 72% to 57%. The problem of the administrated doses (one dose, two doses from the same vaccine or from different vaccines, half dose) is also discussed. The vaccination strategy based on the age group remains the simplest, most transparent and fair criterion. This strategy is also based on accelerating the administration of the vaccines, so that as many subjects as possible can be vaccinated quickly for achieving the "herd immunity". The monoclonal antibodies appeared to be a valid solution for the treatment of Covid-19 disease. Two antibodies (bamlanivimab and etesevimab) have just been approved by the FDA. They could also be used for the infection by virus variants which represent a big problem due to their higher transmissibility and virulence and to their lower response to the vaccines.

Keywords: Covid-19 vaccines; dose units; monoclonal antibodies; vaccinal platforms; vaccinal strategy; virus variants.

Conflict of interest statement

The authors declare no conflict of interest.

© 2021 Mascellino et al.

Figures

Figure 1
Figure 1
Scheme of mechanism of action of vaccines Pfizer-BioNTech and Moderna. Created with BioRender.com.
Figure 2
Figure 2
Scheme of mechanism of action of vaccine Astra-Zeneca. Created with BioRender.com.

References

    1. Kumar S, Nyodu R, Maurya VK, Saxena SK.Morphology, genome organization, replication, and pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). coronavirus disease 2019 (COVID-19). Coronavirus Dis. 2020:23–31. doi:10.1007/978-981-15-4814-7_3
    1. Chen Y, Liu Q, Guo D. Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol. 2020;92(4):418–423. doi:10.1002/jmv.25681
    1. Ho D, Tsuji M. Infectious diseases: breakthroughs in developing vaccines, immune protective monitoring and measuring toxicity with functional proteomics. Isoplexis e-Book. 2020;3. Available from: .
    1. Ball P. The lightning-fast quest for COVID vaccines – and what it means for other disease. Nature. 2021;508:16–18. doi:10.1038/d41586-020-03626-1
    1. Ravichandran S, Coyle E, Klenow L, Tang J, Grubbs G, Liu S. Antibody signature induced by SARS-CoV-2 spike protein immunogens in rabbits. Sci Transl Med. 2020;12(550):eabc3539. doi:10.1126/scitranslmed.abc3539
    1. Tsuji M, Akkina R. Development of humanized mouse models for infectious diseases and cancer. Front Immunol. 2020. 10:3051. doi:10.3389/fimmu.2019.03051
    1. Le TT, Andreadakis Z, Kumar A, et al. The COVID-19 vaccine development landscape. Nat Rev Drug Discovery. 2020;19:305–306. doi:10.1038/d41573-020-00151-8
    1. Pardi N, Hogan MJ, Porter FW, Weissman D. mRNA vaccines — a new era in vaccinology. Nat Rev Drug Discovery. 2018;17:261–279. doi:10.1038/nrd.2017.243
    1. Zhou X, Jiang X, Qu M, et al. Engineering antiviral vaccines ACS nano. ACS nano. 2020;1(14):12370–12389.
    1. How mRNA vaccine works; 2021. Available from:. Accessed July29, 2021.
    1. Cox RJ, Brokstad KA. Not just antibodies: b cells and T cells mediate immunity to COVID-19. Nat Rev Immunol. 2020;20(10):581–582. doi:10.1038/s41577-020-00436-4
    1. Ninja Nerd lectures; 2020. Covid-19 vaccines: Moderna and Pfizer-BioNTech Available from: Accessed July29, 2021.
    1. Dan JM, Mateus J, Yu K, Hastie K, Faliti CM, Ramirez S. Immunological memory to SARS-CoV-2 assessed for greater than six months after infection. bioRxiv. 2021;371:6529. doi:10.1101/2020.11.15.383323;
    1. Zhenyu H, Ren L, Yang J, et al. Seroprevalence and humoral immune durability of anti-SARS-CoV-2 antibodies in Wuhan, China: a longitudinal, population-level, cross-sectional study. Lancet. 2021;397(10279):1075–1084. doi:10.1016/S0140-6736(21)00238-5
    1. McNeill MM, De Stefano F. Vaccine-associated hypersensitivity. J Allergy Clin Immunol. 2018;141(2):463–472. doi:10.1016/j.jaci.2017.12.971
    1. Shimabukuro T, Nair N. Allergic reactions including anaphylaxis after receipt of the first dose of pfizer-BioNTech COVID-19 vaccine. JAMA. 2021;325(8):780–781. doi:10.1001/jama.2021.0600
    1. Walsh E, Frenck RW, Falsey AR, et al. Safety and Immunogenicity of two RNA-based covid-19 vaccine candidates. N Engl J Med. 2020;383:2439–2450. doi:10.1056/NEJMoa2027906
    1. Vaccine Pfizer data sheet; 2021.Fact sheet for healthcare providers administreting vaccines (vaccination providers) emergency use authorization (EUA) of Pfizer/BioNTech Covid 19 vaccine to prevent Coronavirus disease 2019 (Covid-19). Available from:. Accessed July29, 2021.
    1. Vaccine Moderna data sheet; 2020. Fact sheet for healthcare prividers administreting (EUA) of vaccines (vaccination providers) emergency use authorization of Moderna Covid-19 vaccine to prevent Coronavirus disease 2019 (Covid-19). Available from:. Accessed July29, 2021.
    1. Sette A, Crotty S.. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell. 2021;184(4):861–880. doi:10.1016/j.cell.2021.01.007
    1. Pai M, Schull M, Razak F, et al. Vaccine – induced prothrombotic immune thrombocytopenia (VIPIT) following AstraZeneca COVID-19 vaccination. Sci Briefs. 2020. .
    1. Greinacher A, Thiele T, Warkentin T, Weisser K, Kyrle P, Eichinger S. A prothrombotic thrombocytopenic disorder resembling heparin-induced thrombocytopenia following coronavirus-19 vaccination research square. Preprint April 7, 2021
    1. Vilches TN, Zhang K, Van ER, Langley JM, Moghadas SM. Projecting the impact of a two- dose COVID-19 vaccination campaign in Ontario, Canada. Vaccine. 2021;39(17):2360–2365. doi:10.1016/j.vaccine.2021.03.058
    1. Emary K, Golubchik T, Aley P, et al. Efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine against SARS-CoV-2 variant of concern 202012/01 (B.1.1.7): an exploratory analysis of a randomised controlled trial. Lancet. 2021;397(10282):1351–1362. doi:10.1016/S0140-6736(21)00628-0
    1. The Oxford/AstraZeneca COVID-19 vaccine: what you need to know; Updated March 17, 2021.from World Health Organization (WHO) Available from: . Accessed July29, 2021.
    1. Suschak J, Williams JA, Schmaljohn CS. Advancements in DNA vaccine vectors, non-mechanical delivery methods, and molecular adjuvants to increase immunogenicity. Hum Vaccines Immunother. 2017;13:2837–2848. doi:10.1080/21645515.2017.1330236
    1. Seheult R. (UC Riverside School of Medicine, University of California). Coronavirus update 121;Johnson and Johnson vaccine vs Pfizer and Moderna 2021. Available from: . Accessed July29, 2021.
    1. Grifoni A, Weiskopf D, Ramirez S, et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell. 2020;181(7):1489–1501.
    1. National Institute of Allergy and Infectious disease (NIAID) and Pharmaceutical Janssen Companies from the U.S. Department of Health and Human Services’:2021, February 29: Janssen investigational COVID-19 vaccine: interim analysis of phase 3 clinical data released. Available from:. Accessed July29, 2021.
    1. Vaccine Janssen data sheet)2021. John Galloway (King's College London) Available from: . Accessed July29, 2021.
    1. Jones I, Roy P, Sputnik V. COVID-19 vaccine candidate appears safe and effective. Lancet. 2021;397(10275):642–643. doi:10.1016/S0140-6736(21)00191-4
    1. Logunov D, Dolzhikova I, ShcheblyaKov D, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologos prime-boost COVID-19 vaccine: interim analysis of a randomised controlled phase 3 trial in Russia. Lancet. 2021;397(10275):671–681. doi:10.1016/S0140-6736(21)00234-8
    1. Vaccine Novavax; 2021. Available from: . Accessed July29, 2021.
    1. Heath PT, Galiza EP, Baxter DN, Boffito M, Browne D, Burns F. Safety and efficacy of NVX-CoV2373 Covid-19 vaccine. New Engl J Med. 2021. doi:10.1056/NEJMoa2107659
    1. Vaccine Reithera; March 18, 2021. Folgori A from INMI Spallanzani, Rome (Italy). Available from: . Accessed July29, 2021.
    1. Vaccine Sinovac. 2021. from BBC news Avaialble from: . Accessed July29, 2021.
    1. Jara A, Undurraga EA, González C, et al. Effectiveness of an inactivated SARS-CoV-2 vaccine in chile. New Engl J Med. 2021. doi:10.1056/NEJMoa2107715
    1. Buonaguro FM, Ascierto P, Morse G, et al. Covid-19: time for a paradigm change. Rev Med Virol. 2020;30(5):e2134. doi:10.1002/rmv.2134
    1. E-Vax Italian vaccine. Available from:. Accessed July29, 2021.
    1. Wodi AP, Ault K, Hunter P, McNally V, Szilagyi PG, Henry Bernstein H. Advisory committee on immunization practices recommended immunization schedule for children and adolescents aged 18 years or younger — United States, 2021.-. MMWR Morb Mortal Wkly Rep. 2021;70(6):189–192. doi:10.15585/mmwr.mm7006a1
    1. Covid EU approves : Pfizer–BioNTech jab for 12-15 years old fromBBC news published May 28. 2021. Available from: .
    1. Kim HW, Jenista ER, Wendell DC, et al. Patients with acute myocarditis following mRNA COVID-19 vaccination. JAMA Cardiol. 2021. doi:10.1001/jamacardio.2021.2828
    1. Dagan N, Barda N, Kepten E, Miron O, Perchik S. BNT162b2 mRNA covid-19 vaccine in a nationwide mass vaccination setting. N England J M Ed. 2021;384:1412–1423. doi:10.1056/NEJMoa2101765ex51
    1. European Centre for Disease Prevention and Control. Risk related to the spread of new SARS-CoV-2 variants of concern in the EU/EEA – first update. Stockholm: ECDC; 2021. Available from:. Accessed July29, 2021.
    1. Rambaut A, Loman N, Pybus O, et al. Preliminary genomic characterization of an emergent SARS-CoV-2 lineage in the UK defined by a novel set of spike mutations. 12, Report Superior sanity Institute (ISS). Bruno Kessler Foundation and Health Ministry; 2021.
    1. Xie X, Zou J, FontesGarfias C, Hongjie X, Kena AS, Cutler M et al. Neutralization of N501Y mutant SARS-CoV-2 by BNT162b2 vaccine-elicited serra. BioRxiv. 2021. doi:10.1101/2021.01.07.425740
    1. Liu Y, Liu J, Xia H, Xianwen Z, Fontes-Garfias C. Neutralizing activity of BNT162b2-elicted serum. N Engl J Med. 2021;384:1466–1468. doi:10.1056/NEJMc2102017
    1. NGS-SA Group Wits-VIDA COVID Group. Efficacy of the ChAdOx1 nCoV-19 vaccine against the B.1.351 variant. N Engl J Med. 2021. doi:10.1056/NEJMoa2102214
    1. Rubin R. COVID-19 vaccines vs variants-determining how much immunity is enough. JAMA. 2021;325(13):1241–1243. doi:10.1001/jama.2021.3370
    1. Lipsitch M, Grad Y H, Sette A, Crotty S. Cross-reactivity memory T cell and herd immunity to SARS-CoV-2. Nat Rev Immunol. 2020;20:709–713. doi:10.1038/s41577-020-00460-4
    1. Jalkanen P, Kolehmainen P, Häkkinen HK, et al. COVID-19 mRNA vaccine induced antibody responses against three SARS-CoV-2 variants. Nat Commun. 2021;12:1. doi:10.1038/s41467-021-24285-4
    1. Anthes E. The delta variant: what scientists know. in the New York Times; 2021.
    1. Venkata-Viswanadh E, Pinsky BA, Suthar M, et al. Infection and vaccine-induced neutralizing-antibody responses to the SARS-CoV-2 B.1.617 variants. N Engl J Med. 2021. doi:10.1056/NEJMc2107799
    1. EPR: UK launches clinical trial to study alternating COVID-19 vaccines for different doses; February 4, 2021. Rees V. from National Institute for Health Research (NIHR) in the UK Available from: . Accessed July29, 2021.
    1. Oxford COVID Vaccine Trial Group. Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials. Lancet. 2021;397(10277):881–891.
    1. Berkeley L. One dose of Pfizer or Moderna vaccines was 80% effective in preventing Covid in CDC study of health workers. Health Sci. March 29, 2021. Available from: .
    1. Manisty C, Otter Ashley D, Triebel T, et al. Antibody response to first BNT162b2 dose in previously SARS-CoV-2-infected individuals. Lancet. 2021;397(10279):1057–1058. doi:10.1016/S0140-6736(21)00501-8
    1. Krammer F, Srivastava K, Alshammary H, et al. Antibody responses in seropositive person after a single dose of SARS-CoV-2 mRNA vaccines. N Engl J Med. 2021;384:1372–1374. doi:10.1056/NEJMc2101667
    1. Salim S, Abdool K, De Oliveira T. New SARS-CoV-2 variants-clinical, public health, and vaccine implications. N Engl J Med. 2021. doi:10.1056/NEJMc2100362
    1. GlaxoSmithKline clinical trial COMET-ICE (Covid-19 monoclonal antibody efficacy trial – intent to care early) study for the evaluation of VIR-7831; 2020.Landazabal F. from GSK S.p.A Available from:. Accessed July29, 2021.
    1. Silveira MM, Moreira GMSG, Mendonça M. DNA vaccines against COVID-19: perspectives and challenges. Life Sci. 2021;267:118919. doi:10.1016/j.lfs.2020.118919
    1. Pfizer, BioNTech study 3rd booster of vaccine to protect against variants [dissertation] By The Science Advisory Board staff writers, February 25,2021. Available from: . Accessed July29, 2021.
    1. Pfizer initiates phase 1 study of novel oral antiviral therapeutic agent against SARS-CoV-2; March 23, 2021. Elsele P. from Pfzer S p A Available from: . Accessed July29, 2021.
    1. Blakney A, McKay P. Next generation COVID-19 vaccines: here come the proteins. Lancet. 2021;39:643–644. doi:10.1016/S0140-6736(21)00258-0
    1. Lavine S, Bjornstad O. Immunological characteristics govern the transition of COVID-19 endemicity. Science. 2021;371(6530):741–745. doi:10.1126/science.abe6522

Source: PubMed

3
Se inscrever