Masticatory deficiency as a risk factor for cognitive dysfunction

Francisco Bruno Teixeira, Luanna de Melo Pereira Fernandes, Patrycy Assis Tavares Noronha, Marcio Antonio Raiol dos Santos, Walace Gomes-Leal, Cristiane do Socorro Ferraz Maia, Rafael Rodrigues Lima, Francisco Bruno Teixeira, Luanna de Melo Pereira Fernandes, Patrycy Assis Tavares Noronha, Marcio Antonio Raiol dos Santos, Walace Gomes-Leal, Cristiane do Socorro Ferraz Maia, Rafael Rodrigues Lima

Abstract

Several studies have demonstrated that chewing helps to maintain cognitive functions in brain regions including the hippocampus, a central nervous system (CNS) region vital for memory and learning. Epidemiological studies suggest that masticatory deficiency is associated with development of dementia, which is related to spatial memory deficits especially in older animals. The purpose of this paper is to review recent work on the effects of masticatory impairment on cognitive functions both in experimental animals and humans. We show that several mechanisms may be involved in the cognitive deficits associated with masticatory deficiency. The epidemiological data suggest a positive correlation between masticatory deficit and Alzheimer's disease. It may be concluded that chewing has important implications for the mechanisms underlying certain cognitive abilities.

Keywords: Chewing; Cognition; Hippocampus.; Learning; Masticatory; Memory.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interest exists.

References

    1. United Nations. World population ageing 1950-2050. New York: United Nations; 2007.
    1. Instituto Brasileiro de Geografia e Estatística. Projeção da população do Brasil por sexo e idade para o período 1980-2050: revisão 2004. .
    1. Sequeira E, Neves DM, Brunetti RF, Luz DT, Brunetti FL. Odontogeriatria: a especialidade do futuro. Rev ABO Nac. 2001;9:72–78.
    1. United Nations Population Division. World population prospects: the 2002 revision. New York: United Nations; 2003.
    1. Nakata M. Masticatory function and its effects on general health. Int Dent J. 1998;48:540–548.
    1. Miura H, Miura K, Mizugai H, Arai Y, Umenai T, Isogai E. Chewing ability and quality of life among the elderly residing in a rural community in Japan. J Oral Rehabil. 2000;27:731–734.
    1. Miura H, Yamasaki K, Kariyasu M, Miura K, Sumi Y. Relationship between cognitive function and mastication in elderly females. J Oral Rehabil. 2003;30:808–811.
    1. Scherder E, Posthuma W, Bakker T, Vuijk PJ, Lobbezoo F. Functional status of masticatory system, executive function and episodic memory in older persons. J Oral Rehabil. 2008;35:324–336.
    1. Ono Y, Yamamoto T, Kubo K, Onozuka M. Occlusion and brain function: mastication as a prevention of cognitive dysfunction. J Oral Rehabil. 2010;1:1–17.
    1. Kato T, Usami T, Noda Y, Hasegawa M, Ueda M, Nabeshima T. The effect of the loss of molar teeth on spatial memory and acetylcholine release from the parietal cortex in aged rats. Behav Brain Res. 1997;83:239–242.
    1. Momose I, Nishikawa J, Watanabe T. et al. Effect of mastication on regional cerebral blood flow in humans examined by positron-emission tomography with 15O-labelled water and magnetic resonance imaging. Arch Oral Biol. 1997;42:57–61.
    1. Onozuka M, Fujita M, Watanabe K. et al. Mapping brain region activity during chewing: a functional magnetic resonance imaging study. J Dent Res. 2002;81:743–746.
    1. Onozuka M, Fujita M, Watanabe K. et al. Age-related changes in brain regional activity during chewing: a functional magnetic resonance imaging study. J Dent Res. 2003;82:657–660.
    1. Nakamura Y, Katakura N. Generation of masticatory rhythm in the brainstem. Neurosci Res. 1995;23:1–19.
    1. Onozuka M, Hirano Y, Tachibana A, et al. Interactions between chewing and brain activities in humans. In: Onozuka M, Yen CT, editors. Novel trends in brain science; Tokyo: Springer 2007; 99-113.
    1. Hirano Y, Obata T, Kashikura K. et al. Effects of chewing in working memory processing. Neurosci Lett. 2008;436:189–192.
    1. Milner B, Squire LR, Kandel ER. Cognitive neuroscience and the study of memory. Neuron. 1998;20:445–468.
    1. Packard MG, McGaugh JL. Double dissociation of fornix and caudate nucleus lesions on acquisition of two water maze tasks: further evidence for multiple memory systems. Behav Neurosci. 1992;106:439–446.
    1. McDonald RJ, White NM. A triple dissociation of memory systems: hippocampus, amygdala, and dorsal striatum. Behav Neurosci. 1993;107:3–22.
    1. Yin HH, Knowlton BJ. The role of the basal ganglia in habit formation. Nat Rev Neurosci. 2006;7:464–476.
    1. Middleton FA, Strick PL. Basal-ganglia 'projections' to the prefrontal cortex of the primate. Cereb Cortex. 2002;12:926–935.
    1. Packard MG, Knowlton BJ. Learning and memory functions of the basal ganglia. Annu Rev Neurosci. 2002;25:563–593.
    1. Graybiel AM. The basal ganglia and chunking of action repertoires. Neurobiol Learn Mem. 1998;70:119–136.
    1. Bar-Gad I, Morris G, Bergman H. Information processing, dimensionality reduction and reinforcement learning in the basal ganglia. Prog Neurobiol. 2003;71:439–473.
    1. Pasupathy A, Miller EK. Different time courses oflearning-related activity in the prefrontal cortex and striatum. Nature. 2005;433:873–875.
    1. Moser E, Moser MB, Andersen P. Spatial learning impairment parallels the magnitude of dorsal hippocampal lesions, but is hardly present following ventral lesions. J Neurosci. 1993;13:3916–3925.
    1. Bannerman DM, Rawlins JN, McHugh SB. et al. Regional dissociations within the hippocampus: memory and anxiety. Neurosci Biobehav Rev. 2004;28:273–283.
    1. Alexander GE, Crutcher MD, DeLong MR. Basal ganglia-thalamocortical circuits: parallel substrates for motor, oculomotor, 'prefrontal' and 'limbic' functions. Prog Brain Res. 1990;85:119–146.
    1. Nambu A. Seven problems on the basal ganglia. Curr Opin Neurobiol. 2008;18:595–604.
    1. Kopell BH, Greenberg BD. Anatomy and physiology of the basal ganglia: implications for DBS in psychiatry. Neurosci Biobehav Rev. 2008;32:408–422.
    1. Grassi G, Setavalle G, Dell'Oro R, Mancia G. Sympathetic mechanisms, organ damage, and antihypertensive treatment. Curr Hypertens Rep. 2011;13:303–308.
    1. Stephens R, Tunney RJ. Role of glucose in chewing gum related facilitation of cognitive function. Appetite. 2004;43:211–213.
    1. Wilkinson L, Scholey A, Wesnes K. Chewing gum selectively improves aspects of memory in healthy volunteers. Appetite. 2002;38:235–236.
    1. Ono Y, Dowaki K, Ishiyama A, Onozuka M. Gum chewing maintains working memory acquisition. Int J Bioelectromagnetism. 2009;11:130–134.
    1. Squire LR. Memory and the hippocampus: a synthesis of findings with rats, monkeys and humans. Psychol Rev. 1992;99:195–221.
    1. Cherkin A. Kinetics of memory consolidation: role of amnesic treatment parameters. Proc Natl Acad Sci USA. 1968;63:1094–1101.
    1. Izquierdo I, Medina JH. Memory formation: the sequence of biochemical events in the hippocampus and its connection to activity in other brain structures. Neurobiol Learn Mem. 1997;68:285–316.
    1. McGaugh JL. Time-dependent processes in memory storage. Science. 1966;153:1351–1359.
    1. McGaugh JL. A multi-trace view of memory storage processes. Accademia Nazionale dei Lincei. 1968;109:13–28.
    1. Gold PE, McGaugh JL. A single-trace, two process view of memory storage processes. In Short-Term Memory. Edited by Deutsch D, Deutsch JA. 1975;140:197–216.
    1. Hirano Y, Obata T, Takahashi H, Tachibana A, Kuroiwa D, Takahashi T, Ikehira H, Onozuka M. Effects of chewing on cognitive processing speed. Brain Cogn. 2013;8:376–81.
    1. Baker JR, Bezance JB, Zellaby E, Aggleton JP. Chewing gum can produce context-dependent effects upon memory. Appetite. 2004;43:207–210.
    1. Onyper SV, Carr TL, Farrar JS, Floyd BR. Cognitive advantages of chewing gum. Now you see them, now you don't. Appetite. 2011;57:321–8.
    1. Kushida S, Kimoto K, Hori N. et al. Soft-diet feeding decreases dopamine release and impairs aversion learning in Alzheimer model rats. Neurosci Lett. 2008;439:208–211.
    1. Ekuni D, Tomofuji T, Irie K. et al. Occlusal disharmony increases amyloid-β in the rat hippocampus. Neuromolecular Med. 2011;13:197–203.
    1. Yamamoto T, Hirayama A. Effects of soft-diet feeding on synaptic density in the hippocampus and parietal cortex of senescence-accelerated mice. Brain Res. 2001;902:255–263.
    1. Stein PS, Desrosiers M, Donegan SJ, Yepes JF, Kryscio RJ. Tooth loss, dementia and neuropathology in the Nun study. J Am Dent Assoc. 2007;138:1314–1322.
    1. Yamamoto T, Kondo K, Hirai H, Nakade M, Aida J, Hirata Y. Association between self-reported dental health status and onset of dementia: a 4-year prospective cohort study of older Japanese adults from the Aichi Gerontological Evaluation Study (AGES) Project. Psychosom Med. 2012;74:241–8.
    1. Lexomboon D, Trulsson M, Wårdh I, Parker MG. Chewing ability and tooth loss: association with cognitive impairment in an elderly population study. J Am Geriatr Soc. 2012;60:1951–1956.
    1. Shimazaki Y, Soh I, Yamashita T, Koga T, Miyazaki H, Takehara T. Influence of dentition status on physical disability, mental impairment, and mortality in institutionalized elderly. J Dent Res. 2001;80:340–345.
    1. Miura H, Araki Y, Hirai T, Isogai E, Hirose K, Umanai T. Evaluation of chewing activity in the elderly person. J Oral Rehabil. 1998;25:190.
    1. Kondo K, Niino M, Shido K. A case-control study of Alzheimer's disease in Japan-significance of life-styles. Dementia. 1994;5:314–326.
    1. Gatz M, Mortimer JA, Fratiglioni L. et al. Potentially modifiable risk factors for dementia in identical twins. Alzheimer's & Dementia. 2006;2:110–117.
    1. Muramoto T, Takano Y, Soma K. Time-related changes in periodontal mechanoreceptors in rat molars after the loss of occlusal stimuli. Arch Histol Cytol. 2000;63:369–380.
    1. Onozuka M, Watanabe K, Mirbod SM. et al. Reduced mastication stimulates impairment of spatial memory and degeneration of hippocampal neurons in aged SAMP8 mice. Brain Res. 1999;826:148–153.
    1. Onozuka M, Watanabe K, Nagasaki S. et al. Impairment of spatial memory and changes in astroglial responsiveness following loss of molar teeth in aged SAMP8 mice. Behav Brain Res. 2000;108:145–155.
    1. Watanabe K, Tonosaki K, Kawase T. et al. Evidence for involvement of dysfunctional teeth in the senile process in the hippocampus of SAMP8 mice. ExpGerontol. 2001;36:283–295.
    1. Onozuka M, Watanabe K, Fujita M, Tonosaki K, Saito S. Evidence for involvement of glucocorticoid response in the hippocampal changes in aged molarless SAMP8 mice. Behav Brain Res. 2002;131:125–129.
    1. Watanabe K, Ozono S, Nishiyama K. et al. The molarless condition in aged SAMP8 mice attenuates hippocampal Fos induction linked to water maze performance. Behav Brain Res. 2002;128:19–25.
    1. Kubo KY, Iwaku F, Watanabe K, Fujita M, Onozuka M. Molarless-induced changes of spines in hippocampal region of SAMP8 mice. Brain Res. 2005;1057:191–195.
    1. Squire LR, Stark CE, Clark RE. The medial temporal lobe. Annual Review Neuroscience. 2004;27:279–306.
    1. Adams MM, Shi L, Linville MC. et al. Caloric restriction and age affect synaptic proteins in hippocampal CA3 and spatial learning ability. ExpNeurol. 2008;211:141–149.
    1. Schipper HM, Bennett DA, Liberman A. et al. Glial heme oxygenase-1 expression in Alzheimer disease and mild cognitive impairment. Neurobiol Aging. 2006;27:252–261.
    1. Moore AH, Wu M, Shaftel SS, Graham KA, O'Banion MK. Sustained expression of interleukin-1beta in mouse hippocampus impairs spatial memory. Neuroscience. 2009;164:1484–1495.
    1. Slezak M, Pfrieger FW, Soltys Z. Synaptic plasticity, astrocytes and morphological homeostasis. J Physiol Paris. 2006;99:84–91.
    1. Makiura T, Ikeda Y, Hirai T, Terasawa H, Hamaue N, Minami M. Influence of diet and occlusal support on learning memory in rats behavioral and biochemical studies. Res Commun Mol Pathol Pharmacol. 2000;107:269–277.
    1. Terasawa H, Hirai T, Ninomiya T. et al. Influence of tooth-loss and concomitant masticatory alterations on cholinergic neurons in rats: immunohistochemical and biochemical studies. Neurosci Res. 2002;43:373–379.
    1. Onozuka M, Watanabe K, Fujita M, Tomida M, Ozono S. Changes in the septohippocampal cholinergic system following removal of molar teeth in the aged SAMP8 mouse. Behav Brain Res. 2002;133:197–204.
    1. Winblad B, Engedal K, Soininen H. et al. A 1-year, randomized, placebocontrolled study of donepezil in patients with mild to moderate AD. Neurology. 2001;57:489–495.
    1. Decamp E, Tinker JP, Schneider JS. Attentional cueing reverses deficits in spatial working memory task performance in chronic low dose MPTP-treated monkeys. Behav Brain Res. 2004;152:259–62.
    1. Bosboom JL, Stoffers D, Wolters EC. The role of acetylcholine and dopamine in dementia and psychosis in Parkinson's disease. J Neural Transm Suppl. 2003;65:185–95.
    1. Spalding KL, Bergmann O, Alkass K. et al. Dynamics of hippocampal neurogenesis in adult humans. Cell. 2013;153:1219–1227.
    1. Aoki H, Kimoto K, Hori N, Toyoda M. Cell proliferation in the dentate gyrus of rat hippocampus is inhibited by soft diet feeding. Gerontology. 2005;51:369–374.
    1. Mitome M, Hasegawa T, Shirakawa T. Mastication influences the survival of newly generated cells in mouse dentate gyrus. Neuroreport. 2005;16:249–252.
    1. Zhao C, Deng W, Gage FH. Mechanisms and functional implications of adult neurogenesis. Cell. 2008;132:645–660.
    1. Abrous DN, Koehl M, Le Moal M. Adult neurogenesis: from precursors to network and physiology. Physiol Rev. 2005;85:523–569.
    1. Lanfumey L, Mongeau R, Cohen-Salmon C, Hamon M. Corticosteroid-serotonin interactions in the neurobiological mechanisms of stress-related disorders. Neurosci Bio behav Rev. 2008;32:1174–1184.
    1. Yoshihara T, Matsumoto Y, Ogura T. Occlusal disharmony affects plasma corticosterone and hypothalamic noradrenaline release in rats. J Dent Res. 2001;80:2089–2092.
    1. Kubo KY, Yamada Y, Iinuma M. et al. Occlusal disharmony induces spatial memory impairment and hippocampal neuron degeneration via stress in SAMP8 mice. Neurosci Lett. 2007;414:188–191.
    1. Ichihashi Y, Arakawa Y, Iinuma M. et al. Occlusal disharmony attenuates glucocorticoid negative feedback in aged SAMP8 mice. Neurosci Lett. 2007;427:71–76.
    1. Quintero A, Ichesco E, Schutt R, Myers C, Peltier S, Gerstner GE. Functional connectivity of human chewing: An fcMRI study. J Dent Res. 2013;92:272–278.
    1. Manto M, Bower JM, Conforto AB. et al. Consensus paper: roles of the cerebellum in motor control--the diversity of ideas on cerebellar involvement in movement. Cerebellum. 2012;11:457–87.
    1. Byrd KE, Luschei ES. Cerebellar ablation and mastication in the guinea pig (Cavia porcellus) Brain Res. 1980;197:577–81.
    1. Takahashi T, Miyamoto T, Terao A, Yokoyama A. Cerebral activation related to the control of mastication during changes in food hardness. Neuroscience. 2007;145:791–794.

Source: PubMed

3
Se inscrever