Zinc in Infection and Inflammation

Nour Zahi Gammoh, Lothar Rink, Nour Zahi Gammoh, Lothar Rink

Abstract

Micronutrient homeostasis is a key factor in maintaining a healthy immune system. Zinc is an essential micronutrient that is involved in the regulation of the innate and adaptive immune responses. The main cause of zinc deficiency is malnutrition. Zinc deficiency leads to cell-mediated immune dysfunctions among other manifestations. Consequently, such dysfunctions lead to a worse outcome in the response towards bacterial infection and sepsis. For instance, zinc is an essential component of the pathogen-eliminating signal transduction pathways leading to neutrophil extracellular traps (NET) formation, as well as inducing cell-mediated immunity over humoral immunity by regulating specific factors of differentiation. Additionally, zinc deficiency plays a role in inflammation, mainly elevating inflammatory response as well as damage to host tissue. Zinc is involved in the modulation of the proinflammatory response by targeting Nuclear Factor Kappa B (NF-κB), a transcription factor that is the master regulator of proinflammatory responses. It is also involved in controlling oxidative stress and regulating inflammatory cytokines. Zinc plays an intricate function during an immune response and its homeostasis is critical for sustaining proper immune function. This review will summarize the latest findings concerning the role of this micronutrient during the course of infections and inflammatory response and how the immune system modulates zinc depending on different stimuli.

Keywords: homeostasis; infection; inflammation; zinc.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Activation of Toll-like receptor (TLR) signaling pathways is mediated by a complex array of proteins. When TLRs bind ligands, dimerization of the ectodomain of TLRs is induced, bringing their cytoplasmic Toll/IL-1R domains together, resulting in the recruitment of intracellular adapter proteins and initiation of downstream signaling events. Following this, the Toll–IL-1-resistence (TIR) domains of TLRs engage TIR domain-containing adaptor proteins (either myeloid differentiation primary-response protein 88 (MYD88) or TIR domain-containing adaptor protein inducing IFNβ (TRIF) and TRIF-related adaptor molecule (TRAM)). This in turn stimulates downstream signaling pathways that involve interactions between IL-1R-associated kinases (IRAKs) and the adaptor molecules TNF receptor-associated factors (TRAFs), and that lead to the activation of the mitogen-activated protein kinases (MAPKs) JUN N-terminal kinase (JNK) and p38, and to the activation of transcription factors. Two groups of transcription factors are activated downstream of TLR signaling; nuclear factor-κB (NF-κB) and interferon-regulatory factors (IRFs). This TLR signaling pathway leads to the induction of proinflammatory cytokines. Zinc influences this pathway on multiple levels. It augments MyD88-dependent signaling whereas inhibiting TRIF-mediated activation of IRF3/7. It has been shown that zinc inhibits IRAK thereby inhibiting further signal transductions. In vitro, zinc also directly impaired LPS-induced IKK activity [45].
Figure 2
Figure 2
Pro-inflammatory signaling pathway influences by zinc. Similar to TLR signaling, IL-1, and TNF-R signaling pathways converge on a common IκB kinase complex that phosphorylates the NF-κB inhibitory protein, resulting in the release of NF-κB and its translocation to the nucleus. Zinc prevents the dissociation of NF-κB from its corresponding inhibitory protein, thus preventing the nuclear translocation of NF-κB and inhibiting subsequent inflammation. Zinc also inhibits IL-6-mediated activation of STAT3. Zinc acts as anti-inflammatory element influencing major pro-inflammatory signaling pathways.
Figure 3
Figure 3
Anti-inflammatory signaling pathways influenced by free zinc. (a) TGFβ signaling is dependent on a dynamic on and off switch in Smad activity. Free zinc is a cofactor in Smad proteins and promote Smad 2/3 nuclear translocation and transcriptional activity. (b) zinc regulates IL-2 signaling pathway via blocking MAP kinase phosphatase (MKP) in extracellular signal-regulated kinases (ERK) 1/2 pathways and Phosphatase and tensin homologue (PTEN) which opposes phosphoinositide 3-kinase (PI3K) function in PI3k/Akt pathway. (c) free zinc phosphorylates STAT6 and promotes translocation of STAT dimers into the nucleus, hence promote the anti-inflammatory effects of Il-4.

References

    1. Prasad A.S., Miale A., Jr., Farid Z., Sandstead H.H., Schulert A.R. Zinc metabolism in patients with the syndrome of iron deficiency anemia, hepatosplenomegaly, dwarfism, and hypogonadism. J. Lab. Clin. Med. 1963;61:537–549.
    1. Rink L., Gabriel P. Zinc and the immune system. Proc. Nutr. Soc. 2000;59:541–552. doi: 10.1017/S0029665100000781.
    1. Vallee B.L., Falchuk K.H. The biochemical basis of zinc physiology. Physiol. Rev. 1993;73:79–118.
    1. Maret W., Li Y. Coordination dynamics of zinc in proteins. Chem. Rev. 2009;109:4682–4707. doi: 10.1021/cr800556u.
    1. Haase H., Rink L. Multiple impacts of zinc on immune function. Metall. Integr. Biometal Sci. 2014;6:1175–1180. doi: 10.1039/c3mt00353a.
    1. Maret W. Zinc and Human Disease. In: Sigel A., Sigel H., Sigel R.K., editors. Interrelations between Essential Metal Ions and Human Diseases. Springer; Dordrecht, The Netherlands: 2013. pp. 389–414.
    1. . Zinc in Human Biology. In: Mills C.F., editor. Physiology of Zinc: General Aspects. Springer; London, UK: 2013.
    1. Favier A., Favier M. Effects of zinc deficiency in pregnancy on the mother and the newborn infant. Rev. Fr. Gynecol. Obstet. 1990;85:13–27.
    1. . In: Dietary Reference Intakes: The Essential Guide to Nutrient Requirements. Otten J.J., Pitzi Hellwig J., Meyers L.D., editors. The National Academies Press; Washington, DC, USA: 2006.
    1. Deutsche Gesellschaft für Ernährung . Österreichische Gesellschaft für Ernährung. Referenzwerte für die Nährstoffzufuhr; Bonn, Germany: 2016. Schweizerische Gesellschaft für Ernährungsforschung; Schweizerische Vereinigung für Ernährung. (In German)
    1. World Health Organization (WHO) Trace Elements in Human Nutrition and Health. World Health Organization; Geneva, Switzerland: 1996.
    1. EFSA Panel on Dietetic Products Nutrition and Allergies Scientific Opinion on Dietary Reference Values for zinc. EFSA J. 2014;12 doi: 10.2903/j.efsa.2014.3844.
    1. King J.C., Brown K.H., Gibson R.S., Krebs N.F., Lowe N.M., Siekmann J.H., Raiten D.J. Biomarkers of Nutrition for Development (BOND)—Zinc Review. J. Nutr. 2016;146:858S–885S. doi: 10.3945/jn.115.220079.
    1. Brieger A., Rink L. Zink und Immunfunktionen. Ernährung Medizin. 2010;25:156–160. doi: 10.1055/s-0030-1255322.
    1. Sandstead H.H. Zinc Deficiency. Am. J. Dis. Child. 1991;145:853–859. doi: 10.1001/archpedi.1991.02160080029016.
    1. World Health Organisation . The World Health Report. World Health Organization; Geneva, Switzerland: 2002.
    1. Wellenreuther G., Cianci M., Tucoulou R., Meyer-Klaucke W., Haase H. The ligand environment of zinc stored in vesicles. Biochem. Biophys. Res. Commun. 2009;380:198–203. doi: 10.1016/j.bbrc.2009.01.074.
    1. Kambe T., Hashimoto A., Fujimoto S. Current understanding of ZIP and ZnT zinc transporters in human health and diseases. Cell. Mol. Life Sci. 2014;71:3281–3295. doi: 10.1007/s00018-014-1617-0.
    1. Haase H., Rink L. Functional significance of zinc-related signaling pathways in immune cells. Annu. Rev. Nutr. 2009;29:133–152. doi: 10.1146/annurev-nutr-080508-141119.
    1. Kimura T., Kambe T. The Functions of Metallothionein and ZIP and ZnT Transporters: An Overview and Perspective. Int. J. Mol. Sci. 2016;17 doi: 10.3390/ijms17030336.
    1. Prasad A.S. Discovery of human zinc deficiency: Its impact on human health and disease. Adv. Nutr. 2013;4:176–190. doi: 10.3945/an.112.003210.
    1. Jeong J., Eide D.J. The SLC39 family of zinc transporters. Mol. Asp. Med. 2013;34:612–619. doi: 10.1016/j.mam.2012.05.011.
    1. Huang L., Tepaamorndech S. The SLC30 family of zinc transporters—A review of current understanding of their biological and pathophysiological roles. Mol. Asp. Med. 2013;34:548–560. doi: 10.1016/j.mam.2012.05.008.
    1. Lang C., Murgia C., Leong M., Tan L.-W., Perozzi G., Knight D., Ruffin R., Zalewski P. Anti-inflammatory effects of zinc and alterations in zinc transporter mRNA in mouse models of allergic inflammation. Am. J. Physiol. Lung Cell. Mol. Physiol. 2007;292:L577–L584. doi: 10.1152/ajplung.00280.2006.
    1. Subramanian Vignesh K., Landero Figueroa J.A., Porollo A., Caruso J.A., Deepe G.S., Jr. Granulocyte macrophage-colony stimulating factor induced Zn sequestration enhances macrophage superoxide and limits intracellular pathogen survival. Immunity. 2013;39:697–710. doi: 10.1016/j.immuni.2013.09.006.
    1. Maret W. The function of zinc metallothionein: A link between cellular zinc and redox state. J. Nutr. 2000;130:1455S–1458S.
    1. King J.C. Zinc: An essential but elusive nutrient. Am. J. Clin. Nutr. 2011;94:679–684. doi: 10.3945/ajcn.110.005744.
    1. Lu J., Stewart A.J., Sadler P.J., Pinheiro T.J., Blindauer C.A. Albumin as a zinc carrier: Properties of its high-affinity zinc-binding site. Biochem. Soc. Trans. 2008;36:1317–1321. doi: 10.1042/BST0361317.
    1. Heizmann C.W., Cox J.A. New perspectives on S100 proteins: A multi-functional Ca(2+)-, Zn(2+)- and Cu(2+)-binding protein family. Biometals. 1998;11:383–397. doi: 10.1023/A:1009212521172.
    1. Gilston B.A., Skaar E.P., Chazin W.J. Binding of transition metals to S100 proteins. Sci. China Life Sci. 2016;59:792–801. doi: 10.1007/s11427-016-5088-4.
    1. Mocchegiani E., Costarelli L., Giacconi R., Cipriano C., Muti E., Malavolta M. Zinc-binding proteins (metallothionein and alpha-2 macroglobulin) and immunosenescence. Exp. Gerontol. 2006;41:1094–1107. doi: 10.1016/j.exger.2006.08.010.
    1. Nuttall J.R., Oteiza P.I. Zinc and the aging brain. Genes Nutr. 2014;9 doi: 10.1007/s12263-013-0379-x.
    1. DeCoursey T.E., Morgan D., Cherny V.V. The voltage dependence of NADPH oxidase reveals why phagocytes need proton channels. Nature. 2003;422:531–534. doi: 10.1038/nature01523.
    1. Hasegawa H., Suzuki K., Nakaji S., Sugawara K. Effects of zinc on the reactive oxygen species generating capacity of human neutrophils and on the serum opsonic activity in vitro. Luminescence. 2000;15:321–327. doi: 10.1002/1522-7243(200009/10)15:5<321::AID-BIO605>;2-O.
    1. Brinkmann V., Reichard U., Goosmann C., Fauler B., Uhlemann Y., Weiss D.S., Weinrauch Y., Zychlinsky A. Neutrophil Extracellular Traps Kill Bacteria. Science. 2004;303:1532–1535. doi: 10.1126/science.1092385.
    1. Haase H., Rink L. Zinc signals and immune function. BioFactors. 2014;40:27–40. doi: 10.1002/biof.1114.
    1. Gaetke L.M., Frederich R.C., Oz H.S., McClain C.J. Decreased food intake rather than zinc deficiency is associated with changes in plasma leptin, metabolic rate, and activity levels in zinc deficient rats. J. Nutr. Biochem. 2002;13:237–244. doi: 10.1016/S0955-2863(01)00220-0.
    1. Nathan C., Ding A. Nonresolving Inflammation. Cell. 2010;140:871–882. doi: 10.1016/j.cell.2010.02.029.
    1. Jarosz M., Olbert M., Wyszogrodzka G., Młyniec K., Librowski T. Antioxidant and anti-inflammatory effects of zinc. Zinc-dependent NF-κB signaling. Inflammopharmacology. 2017;25:11–24. doi: 10.1007/s10787-017-0309-4.
    1. Perkins N.D. Integrating cell-signalling pathways with NF-κB and IKK function. Nat. Rev. Mol. Cell Biol. 2007;8:49–62. doi: 10.1038/nrm2083.
    1. Foster M., Samman S. Zinc and Regulation of Inflammatory Cytokines: Implications for Cardiometabolic Disease. Nutrients. 2012;4:676–694. doi: 10.3390/nu4070676.
    1. Haase H., Ober-Blöbaum J.L., Engelhardt G., Hebel S., Heit A., Heine H., Rink L. Zinc Signals Are Essential for Lipopolysaccharide-Induced Signal Transduction in Monocytes. J. Immunol. 2008;181:6491–6502. doi: 10.4049/jimmunol.181.9.6491.
    1. Prasad A.S., Bao B., Beck F.W., Sarkar F.H. Zinc-suppressed inflammatory cytokines by induction of A20-mediated inhibition of nuclear factor-κB. Nutrition. 2011;27:816–823. doi: 10.1016/j.nut.2010.08.010.
    1. Prasad A.S., Bao B., Beck F.W., Kucuk O., Sarkar F.H. Antioxidant effect of zinc in humans. Free Radic. Biol. Med. 2004;37:1182–1190. doi: 10.1016/j.freeradbiomed.2004.07.007.
    1. Brieger A., Rink L., Haase H. Differential Regulation of TLR-Dependent MyD88 and TRIF Signaling Pathways by Free Zinc Ions. J. Immunol. 2013;191:1808–1817. doi: 10.4049/jimmunol.1301261.
    1. Yan Y.-W., Fan J., Bai S.-L., Hou W.-J., Li X., Tong H. Zinc Prevents Abdominal Aortic Aneurysm Formation by Induction of A20-Mediated Suppression of NF-κB Pathway. PLoS ONE. 2016;11:e0148536. doi: 10.1371/journal.pone.0148536.
    1. Li C., Guo S., Gao J., Guo Y., Du E., Lv Z., Zhang B. Maternal high-zinc diet attenuates intestinal inflammation by reducing DNA methylation and elevating H3K9 acetylation in the A20 promoter of offspring chicks. J. Nutr. Biochem. 2015;26:173–183. doi: 10.1016/j.jnutbio.2014.10.005.
    1. Bao B., Prasad A.S., Beck F.W.J., Fitzgerald J.T., Snell D., Bao G.W., Singh T., Cardozo L.J. Zinc decreases C-reactive protein, lipid peroxidation, and inflammatory cytokines in elderly subjects: A potential implication of zinc as an atheroprotective agent. Am. J. Clin. Nutr. 2010;91:1634–1641. doi: 10.3945/ajcn.2009.28836.
    1. Von Bulow V., Dubben S., Engelhardt G., Hebel S., Plumakers B., Heine H., Rink L., Haase H. Zinc-dependent suppression of TNF-alpha production is mediated by protein kinase A-induced inhibition of Raf-1, I kappa B kinase beta, and NF-kappa B. J. Immunol. 2007;179:4180–4186. doi: 10.4049/jimmunol.179.6.4180.
    1. Nishida K., Hasegawa A., Nakae S., Oboki K., Saito H., Yamasaki S., Hirano T. Zinc transporter Znt5/Slc30a5 is required for the mast cell-mediated delayed-type allergic reaction but not the immediate-type reaction. J. Exp. Med. 2009;206:1351–1364. doi: 10.1084/jem.20082533.
    1. Brieger A., Rink L., Haase H. Differential Regulation of TLR-Dependent MyD88 and TRIF Signaling Pathways by Free Zinc Ions. J. Immunol. 2013;191:1808–1817. doi: 10.4049/jimmunol.1301261.
    1. Truong-Tran A.Q., Carter J., Ruffin R.E., Zalewski P.D. The role of zinc in caspase activation and apoptotic cell death. Biometals. 2001;14:315–330. doi: 10.1023/A:1012993017026.
    1. Plum L.M., Rink L., Haase H. The essential toxin: Impact of zinc on human health. Int. J. Environ. Res. Public Health. 2010;7:1342–1365. doi: 10.3390/ijerph7041342.
    1. Stennicke H.R., Salvesen G.S. Biochemical Characteristics of Caspases-3, -6, -7, and -8. J. Biol. Chem. 1997;272:25719–25723. doi: 10.1074/jbc.272.41.25719.
    1. Huber K.L., Hardy J.A. Mechanism of zinc-mediated inhibition of caspase-9. Protein Sci. 2012;21:1056–1065. doi: 10.1002/pro.2090.
    1. Velazquez-Delgado E.M., Hardy J.A. Zinc-mediated allosteric inhibition of caspase-6. J. Biol. Chem. 2012;287:36000–36011. doi: 10.1074/jbc.M112.397752.
    1. Maret W., Jacob C., Vallee B.L., Fischer E.H. Inhibitory sites in enzymes: Zinc removal and reactivation by thionein. Proc. Natl. Acad. Sci. USA. 1999;96:1936–1940. doi: 10.1073/pnas.96.5.1936.
    1. Muroi M., Tanamoto K.-I. Zinc- and oxidative property-dependent degradation of pro-caspase-1 and NLRP3 by ziram in mouse macrophages. Toxicol. Lett. 2015;235:199–205. doi: 10.1016/j.toxlet.2015.04.012.
    1. Ting J.P.-Y., Willingham S.B., Bergstralh D.T. NLRs at the intersection of cell death and immunity. Nat. Rev. Immunol. 2008;8:372–379. doi: 10.1038/nri2296.
    1. Liu M.-J., Bao S., Galvez-Peralta M., Pyle C.J., Rudawsky A.C., Pavlovicz R.E., Killilea D.W., Li C., Nebert D.W., Wewers M.D., et al. ZIP8 regulates host defense through zinc-mediated inhibition of NF-kappaB. Cell Rep. 2013;3:386–400. doi: 10.1016/j.celrep.2013.01.009.
    1. Marreiro D.D.N., Cruz K.J.C., Morais J.B.S., Beserra J.B., Severo J.S., de Oliveira A.R.S. Zinc and Oxidative Stress: Current Mechanisms. Antioxidants. 2017;6:24. doi: 10.3390/antiox6020024.
    1. Valko M., Leibfritz D., Moncol J., Cronin M.T., Mazur M., Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007;39:44–84. doi: 10.1016/j.biocel.2006.07.001.
    1. Bhattacharyya A., Chattopadhyay R., Mitra S., Crowe S.E. Oxidative Stress: An Essential Factor in the Pathogenesis of Gastrointestinal Mucosal Diseases. Physiol. Rev. 2014;94:329–354. doi: 10.1152/physrev.00040.2012.
    1. Sharma B., Singh S., Siddiqi N.J. Biomedical Implications of Heavy Metals Induced Imbalances in Redox Systems. BioMed Res. Int. 2014;2014 doi: 10.1155/2014/640754.
    1. Rahman K. Studies on free radicals, antioxidants, and co-factors. Clin. Interv. Aging. 2007;2:219–236.
    1. Prasad A.S. Zinc: An antioxidant and anti-inflammatory agent: Role of zinc in degenerative disorders of aging. J. Trace Elem. Med. Biol. 2014;28:364–371. doi: 10.1016/j.jtemb.2014.07.019.
    1. Gibbs P.N., Gore M.G., Jordan P.M. Investigation of the effect of metal ions on the reactivity of thiol groups in human 5-aminolaevulinate dehydratase. Biochem. J. 1985;225:573–580. doi: 10.1042/bj2250573.
    1. Powell S.R. The antioxidant properties of zinc. J. Nutr. 2000;130:1447S–1454S.
    1. Prasad A.S., Beck F.W.J., Bao B., Fitzgerald J.T., Snell D.C., Steinberg J.D., Cardozo L.J. Zinc supplementation decreases incidence of infections in the elderly: Effect of zinc on generation of cytokines and oxidative stress. Am. J. Clin. Nutr. 2007;85:837–844.
    1. Kloubert V., Rink L. Zinc as a micronutrient and its preventive role of oxidative damage in cells. Food Funct. 2015;6:3195–3204. doi: 10.1039/C5FO00630A.
    1. Young B., Ott L., Kasarskis E., Rapp R., Moles K., Dempsey R.J., Tibbs P.A., Kryscio R., McClain C. Zinc supplementation is associated with improved neurologic recovery rate and visceral protein levels of patients with severe closed head injury. J. Neurotrauma. 1996;13:25–34. doi: 10.1089/neu.1996.13.25.
    1. Besecker B.Y., Exline M.C., Hollyfield J., Phillips G., DiSilvestro R.A., Wewers M.D., Knoell D.L. A comparison of zinc metabolism, inflammation, and disease severity in critically ill infected and noninfected adults early after intensive care unit admission. Am. J. Clin. Nutr. 2011;93:1356–1364. doi: 10.3945/ajcn.110.008417.
    1. Costarelli L., Muti E., Malavolta M., Cipriano C., Giacconi R., Tesei S., Piacenza F., Pierpaoli S., Gasparini N., Faloia E., et al. Distinctive modulation of inflammatory and metabolic parameters in relation to zinc nutritional status in adult overweight/obese subjects. J. Nutr. Biochem. 2010;21:432–437. doi: 10.1016/j.jnutbio.2009.02.001.
    1. Chang K.-L., Hung T.-C., Hsieh B.-S., Chen Y.-H., Chen T.-F., Cheng H.-L. Zinc at pharmacologic concentrations affects cytokine expression and induces apoptosis of human peripheral blood mononuclear cells. Nutrition. 2006;22:465–474. doi: 10.1016/j.nut.2005.11.009.
    1. Tsou T.-C., Chao H.-R., Yeh S.-C., Tsai F.-Y., Lin H.-J. Zinc induces chemokine and inflammatory cytokine release from human promonocytes. J. Hazard. Mater. 2011;196:335–341. doi: 10.1016/j.jhazmat.2011.09.035.
    1. Beck F.W.J., Li Y., Bao B., Prasad A.S., Sarkar F.H. Evidence for reprogramming global gene expression during zinc deficiency in the HUT-78 cell line. Nutrition. 2006;22:1045–1056. doi: 10.1016/j.nut.2006.08.001.
    1. Wessels I., Haase H., Engelhardt G., Rink L., Uciechowski P. Zinc deficiency induces production of the proinflammatory cytokines IL-1beta and TNFalpha in promyeloid cells via epigenetic and redox-dependent mechanisms. J. Nutr. Biochem. 2013;24:289–297. doi: 10.1016/j.jnutbio.2012.06.007.
    1. Prasad A.S., Beck F.W., Grabowski S.M., Kaplan J., Mathog R.H. Zinc deficiency: Changes in cytokine production and T-cell subpopulations in patients with head and neck cancer and in noncancer subjects. Proc. Assoc. Am. Physicians. 1997;109:68–77.
    1. Prasad A.S., Bao B., Beck F.W.J., Sarkar F.H. Correction of interleukin-2 gene expression by in vitro zinc addition to mononuclear cells from zinc-deficient human subjects: A specific test for zinc deficiency in humans. Transl. Res. J. Lab. Clin. Med. 2006;148:325–333. doi: 10.1016/j.trsl.2006.07.008.
    1. Pinna K., Kelley D.S., Taylor P.C., King J.C. Immune functions are maintained in healthy men with low zinc intake. J. Nutr. 2002;132:2033–2036.
    1. Kahmann L., Uciechowski P., Warmuth S., Plumakers B., Gressner A.M., Malavolta M., Mocchegiani E., Rink L. Zinc supplementation in the elderly reduces spontaneous inflammatory cytokine release and restores T cell functions. Rejuvenation Res. 2008;11:227–237. doi: 10.1089/rej.2007.0613.
    1. Wong C.P., Rinaldi N.A., Ho E. Zinc deficiency enhanced inflammatory response by increasing immune cell activation and inducing IL6 promoter demethylation. Mol. Nutr. Food Res. 2015;59:991–999. doi: 10.1002/mnfr.201400761.
    1. Prasad A.S. Zinc: Mechanisms of Host Defense. J. Nutr. 2007;137:1345–1349.
    1. Beck F.W., Prasad A.S., Kaplan J., Fitzgerald J.T., Brewer G.J. Changes in cytokine production and T cell subpopulations in experimentally induced zinc-deficient humans. Am. J. Physiol. 1997;272:E1002–E1007.
    1. Tapazoglou E., Prasad A.S., Hill G., Brewer G.J., Kaplan J. Decreased natural killer cell activity in patients with zinc deficiency with sickle cell disease. J. Lab. Clin. Med. 1985;105:19–22.
    1. Honscheid A., Rink L., Haase H. T-lymphocytes: A target for stimulatory and inhibitory effects of zinc ions. Endocr. Metab. Immune Disord. Drug Targets. 2009;9:132–144. doi: 10.2174/187153009788452390.
    1. Wellinghausen N., Martin M., Rink L. Zinc inhibits interleukin-1-dependent T cell stimulation. Eur. J. Immunol. 1997;27:2529–2535. doi: 10.1002/eji.1830271010.
    1. Rosenkranz E., Hilgers R.-D., Uciechowski P., Petersen A., Plumakers B., Rink L. Zinc enhances the number of regulatory T cells in allergen-stimulated cells from atopic subjects. Eur. J. Nutr. 2017;56:557–567. doi: 10.1007/s00394-015-1100-1.
    1. Rosenkranz E., Maywald M., Hilgers R.-D., Brieger A., Clarner T., Kipp M., Plümäkers B., Meyer S., Schwerdtle T., Rink L. Induction of regulatory T cells in Th1-/Th17-driven experimental autoimmune encephalomyelitis by zinc administration. J. Nutr. Biochem. 2016;29:116–123. doi: 10.1016/j.jnutbio.2015.11.010.
    1. Maywald M., Meurer S.K., Weiskirchen R., Rink L. Zinc supplementation augments TGF-β1-dependent regulatory T cell induction. Mol. Nutr. Food Res. 2017;61 doi: 10.1002/mnfr.201600493.
    1. Rosenkranz E., Metz C.H., Maywald M., Hilgers R., Weßels I., Senff T., Haase H., Jäger M., Ott M., Aspinall R., et al. Zinc supplementation induces regulatory T cells by inhibition of Sirt-1 deacetylase in mixed lymphocyte cultures. Mol. Nutr. Food Res. 2016;60 doi: 10.1002/mnfr.201500524.
    1. Hennigar S.R., McClung J.P. Nutritional Immunity. Am. J. Lifestyle Med. 2016;10:170–173. doi: 10.1177/1559827616629117.
    1. Aydemir T.B., Chang S.-M., Guthrie G.J., Maki A.B., Ryu M.-S., Karabiyik A., Cousins R.J. Zinc transporter ZIP14 functions in hepatic zinc, iron and glucose homeostasis during the innate immune response (endotoxemia) PLoS ONE. 2012;7:e48679. doi: 10.1371/journal.pone.0048679.
    1. Glaser R., Harder J., Lange H., Bartels J., Christophers E., Schroder J.-M. Antimicrobial psoriasin (S100A7) protects human skin from Escherichia coli infection. Nat. Immunol. 2005;6:57–64. doi: 10.1038/ni1142.
    1. Corbin B.D., Seeley E.H., Raab A., Feldmann J., Miller M.R., Torres V.J., Anderson K.L., Dattilo B.M., Dunman P.M., Gerads R., et al. Metal chelation and inhibition of bacterial growth in tissue abscesses. Science. 2008;319:962–965. doi: 10.1126/science.1152449.
    1. Botella H., Stadthagen G., Lugo-Villarino G., Chastellier C., de Neyrolles O. Metallobiology of host-pathogen interactions: An intoxicating new insight. Trends Microbiol. 2012;20:106–112. doi: 10.1016/j.tim.2012.01.005.
    1. Lappann M., Danhof S., Guenther F., Olivares-Florez S., Mordhorst I.L., Vogel U. In vitro resistance mechanisms of Neisseria meningitidis against neutrophil extracellular traps. Mol. Microbiol. 2013;89:433–449. doi: 10.1111/mmi.12288.
    1. Stork M., Grijpstra J., Bos M.P., Manas Torres C., Devos N., Poolman J.T., Chazin W.J., Tommassen J. Zinc piracy as a mechanism of Neisseria meningitidis for evasion of nutritional immunity. PLoS Pathog. 2013;9:e1003733. doi: 10.1371/journal.ppat.1003733.
    1. Bobrov A.G., Kirillina O., Fetherston J.D., Miller M.C., Burlison J.A., Perry R.D. The Yersinia pestis siderophore, yersiniabactin, and the ZnuABC system both contribute to zinc acquisition and the development of lethal septicaemic plague in mice. Mol. Microbiol. 2014;93:759–775. doi: 10.1111/mmi.12693.
    1. Liu J.Z., Jellbauer S., Poe A.J., Ton V., Pesciaroli M., Kehl-Fie T.E., Restrepo N.A., Hosking M.P., Edwards R.A., Battistoni A., et al. Zinc sequestration by the neutrophil protein calprotectin enhances Salmonella growth in the inflamed gut. Cell Host Microbe. 2012;11:227–239. doi: 10.1016/j.chom.2012.01.017.
    1. Nowak J.E., Harmon K., Caldwell C.C., Wong H.R. Prophylactic zinc supplementation reduces bacterial load and improves survival in a murine model of sepsis. Pediatr. Crit. Care Med. 2012;13:e323–e329. doi: 10.1097/PCC.0b013e31824fbd90.
    1. Singh M., Das R.R. Zinc for the common cold. Cochrane Database Syst. Rev. 2013:CD001364. doi: 10.1002/14651858.CD001364.pub4.
    1. Mezzetti A., Pierdomenico S.D., Costantini F., Romano F., de Cesare D., Cuccurullo F., Imbastaro T., Riario-Sforza G., Di Giacomo F., Zuliani G., et al. Copper/zinc ratio and systemic oxidant load: Effect of aging and aging-related degenerative diseases. Free Radic. Biol. Med. 1998;25:676–681. doi: 10.1016/S0891-5849(98)00109-9.
    1. Kozlowski H., Luczkowski M., Remelli M., Valensin D. Copper, zinc and iron in neurodegenerative diseases (Alzheimer’s, Parkinson’s and prion diseases) Coord. Chem. Rev. 2012;256:2129–2141. doi: 10.1016/j.ccr.2012.03.013.
    1. Malavolta M., Giacconi R., Piacenza F., Santarelli L., Cipriano C., Costarelli L., Tesei S., Pierpaoli S., Basso A., Galeazzi R., et al. Plasma copper/zinc ratio: An inflammatory/nutritional biomarker as predictor of all-cause mortality in elderly population. Biogerontology. 2010;11:309–319. doi: 10.1007/s10522-009-9251-1.
    1. Overbeck S., Rink L., Haase H. Modulating the immune response by oral zinc supplementation: A single approach for multiple diseases. Arch. Immunol. Ther. Exp. 2008;56:15–30. doi: 10.1007/s00005-008-0003-8.
    1. Hulisz D. Efficacy of zinc against common cold viruses: An overview. J. Am. Pharm. Assoc. 2004;44:594–603. doi: 10.1331/1544-3191.44.5.594.Hulisz.
    1. Kurugol Z., Akilli M., Bayram N., Koturoglu G. The prophylactic and therapeutic effectiveness of zinc sulphate on common cold in children. Acta Paediatr. 2006;95:1175–1181. doi: 10.1080/08035250600603024.
    1. Baum M.K., Lai S., Sales S., Page J.B., Campa A. Randomized Controlled Clinical Trial of Zinc Supplementation to Prevent Immunological Failure in HIV-Positive Adults1,2. Clin. Infect. Dis. 2010;50:1653–1660. doi: 10.1086/652864.
    1. Asdamongkol N., Phanachet P., Sungkanuparph S. Low Plasma Zinc Levels and Immunological Responses to Zinc Supplementation in HIV-Infected Patients with Immunological Discordance after Antiretroviral Therapy. Jpn. J. Infect. Dis. 2013;66:469–474. doi: 10.7883/yoken.66.469.
    1. Lodha R., Shah N., Mohari N., Mukherjee A., Vajpayee M., Singh R., Singla M., Saini S., Bhatnagar S., Kabra S.K. Immunologic effect of zinc supplementation in HIV-infected children receiving highly active antiretroviral therapy: A randomized, double-blind, placebo-controlled trial. J. Acquir. Immune Defic. Syndr. 2014;66:386–392. doi: 10.1097/QAI.0000000000000191.
    1. Mocchegiani E., Veccia S., Ancarani F., Scalise G., Fabris N. Benefit of oral zinc supplementation as an adjunct to zidovudine (AZT) therapy against opportunistic infections in AIDS. Int. J. Immunopharmacol. 1995;17:719–727. doi: 10.1016/0192-0561(95)00060-F.
    1. Zazzo J.F., Rouveix B., Rajagopalon P., Levacher M., Girard P.M. Effect of zinc on the immune status of zinc-depleted AIDS related complex patients. Clin. Nutr. 1989;8:259–261. doi: 10.1016/0261-5614(89)90036-8.
    1. Bobat R., Coovadia H., Stephen C., Naidoo K.L., McKerrow N., Black R.E., Moss W.J. Safety and efficacy of zinc supplementation for children with HIV-1 infection in South Africa: A randomised double-blind placebo-controlled trial. Lancet. 2005;366:1862–1867. doi: 10.1016/S0140-6736(05)67756-2.
    1. Green J.A., Lewin S.R., Wightman F., Lee M., Ravindran T.S., Paton N.I. A randomised controlled trial of oral zinc on the immune response to tuberculosis in HIV-infected patients. Int. J. Tuberc. Lung Dis. 2005;9:1378–1384.
    1. Fawzi W.W., Villamor E., Msamanga G.I., Antelman G., Aboud S., Urassa W., Hunter D. Trial of zinc supplements in relation to pregnancy outcomes, hematologic indicators, and T cell counts among HIV-1-infected women in Tanzania. Am. J. Clin. Nutr. 2005;81:161–167.
    1. Villamor E., Aboud S., Koulinska I.N., Kupka R., Urassa W., Chaplin B., Msamanga G., Fawzi W.W. Zinc supplementation to HIV-1-infected pregnant women: Effects on maternal anthropometry, viral load, and early mother-to-child transmission. Eur. J. Clin. Nutr. 2006;60:862–869. doi: 10.1038/sj.ejcn.1602391.
    1. Deloria-Knoll M., Steinhoff M., Semba R.D., Nelson K., Vlahov D., Meinert C.L. Effect of zinc and vitamin A supplementation on antibody responses to a pneumococcal conjugate vaccine in HIV-positive injection drug users: A randomized trial. Vaccine. 2006;24:1670–1679. doi: 10.1016/j.vaccine.2005.09.047.
    1. Kawaguchi T., Nagao Y., Abe K., Imazeki F., Honda K., Yamasaki K., Miyanishi K., Taniguchi E., Kakuma T., Kato J., et al. Effects of branched-chain amino acids and zinc-enriched nutrients on prognosticators in HCV-infected patients: A multicenter randomized controlled trial. Mol. Med. Rep. 2015;11:2159–2166. doi: 10.3892/mmr.2014.2943.
    1. Murakami Y., Koyabu T., Kawashima A., Kakibuchi N., Kawakami T., Takaguchi K., Kita K., Okita M. Zinc supplementation prevents the increase of transaminase in chronic hepatitis C patients during combination therapy with pegylated interferon alpha-2b and ribavirin. J. Nutr. Sci. Vitaminol. 2007;53:213–218. doi: 10.3177/jnsv.53.213.
    1. Takagi H., Nagamine T., Abe T., Takayama H., Sato K., Otsuka T., Kakizaki S., Hashimoto Y., Matsumoto T., Kojima A., et al. Zinc supplementation enhances the response to interferon therapy in patients with chronic hepatitis C. J. Viral Hepat. 2001;8:367–371. doi: 10.1046/j.1365-2893.2001.00311.x.
    1. Ko W.-S., Guo C.-H., Hsu G.-S.W., Chiou Y.-L., Yeh M.-S., Yaun S.-R. The effect of zinc supplementation on the treatment of chronic hepatitis C patients with interferon and ribavirin. Clin. Biochem. 2005;38:614–620. doi: 10.1016/j.clinbiochem.2005.04.003.
    1. Hoque K.M., Binder H.J. Zinc in the treatment of acute diarrhea: Current status and assessment. Gastroenterology. 2006;130:2201–2205. doi: 10.1053/j.gastro.2006.02.062.
    1. Dutta P., Mitra U., Dutta S., Naik T.N., Rajendran K., Chatterjee M.K. Zinc, vitamin A, and micronutrient supplementation in children with diarrhea: A randomized controlled clinical trial of combination therapy versus monotherapy. J. Pediatr. 2011;159:633–637. doi: 10.1016/j.jpeds.2011.03.028.
    1. Malik A., Taneja D.K., Devasenapathy N., Rajeshwari K. Zinc supplementation for prevention of acute respiratory infections in infants: A randomized controlled trial. Indian Pediatr. 2014;51:780–784. doi: 10.1007/s13312-014-0503-z.
    1. Shah U.H., Abu-Shaheen A.K., Malik M.A., Alam S., Riaz M., AL-Tannir M.A. The efficacy of zinc supplementation in young children with acute lower respiratory infections: A randomized double-blind controlled trial. Clin. Nutr. 2013;32:193–199. doi: 10.1016/j.clnu.2012.08.018.
    1. Martinez-Estevez N.S., Alvarez-Guevara A.N., Rodriguez-Martinez C.E. Effects of zinc supplementation in the prevention of respiratory tract infections and diarrheal disease in Colombian children: A 12-month randomised controlled trial. Allergol. Immunopathol. 2016;44:368–375. doi: 10.1016/j.aller.2015.12.006.
    1. Sazawal S., Black R.E., Jalla S., Mazumdar S., Sinha A., Bhan M.K. Zinc supplementation reduces the incidence of acute lower respiratory infections in infants and preschool children: A double-blind, controlled trial. Pediatrics. 1998;102:1–5. doi: 10.1542/peds.102.1.1.
    1. Mahalanabis D., Lahiri M., Paul D., Gupta S., Gupta A., Wahed M.A., Khaled M.A. Randomized, double-blind, placebo-controlled clinical trial of the efficacy of treatment with zinc or vitamin A in infants and young children with severe acute lower respiratory infection. Am. J. Clin. Nutr. 2004;79:430–436.
    1. Karyadi E., West C.E., Schultink W., Nelwan R.H.H., Gross R., Amin Z., Dolmans W.M.V., Schlebusch H., van der Meer J.W.M. A double-blind, placebo-controlled study of vitamin A and zinc supplementation in persons with tuberculosis in Indonesia: Effects on clinical response and nutritional status. Am. J. Clin. Nutr. 2002;75:720–727.
    1. Mathur N.K., Bumb R.A., Mangal H.N. Oral zinc in recurrent Erythema Nodosum Leprosum reaction. Lepr. India. 1983;55:547–552.
    1. Mathur N.K., Bumb R.A., Mangal H.N., Sharma M.L. Oral zinc as an adjunct to dapsone in lepromatous leprosy. Int. J. Lepr. Other Mycobact. Dis. Off. Org. Int. Lepr. Assoc. 1984;52:331–338.
    1. El-Shafei M.M., Kamal A.A., Soliman H., el-Shayeb F., Abdel Baqui M.S., Faragalla S., Sabry M.K. Effect of oral zinc supplementation on the cell mediated immunity in lepromatous leprosy. J. Egypt. Public Health Assoc. 1988;63:311–336.
    1. Mahajan P.M., Jadhav V.H., Patki A.H., Jogaikar D.G., Mehta J.M. Oral zinc therapy in recurrent erythema nodosum leprosum: A clinical study. Indian J. Lepr. 1994;66:51–57.
    1. Alam A.N., Sarker S.A., Wahed M.A., Khatun M., Rahaman M.M. Enteric protein loss and intestinal permeability changes in children during acute shigellosis and after recovery: Effect of zinc supplementation. Gut. 1994;35:1707–1711. doi: 10.1136/gut.35.12.1707.
    1. Raqib R., Roy S.K., Rahman M.J., Azim T., Ameer S.S., Chisti J., Andersson J. Effect of zinc supplementation on immune and inflammatory responses in pediatric patients with shigellosis. Am. J. Clin. Nutr. 2004;79:444–450.
    1. Rahman M.J., Sarker P., Roy S.K., Ahmad S.M., Chisti J., Azim T., Mathan M., Sack D., Andersson J., Raqib R. Effects of zinc supplementation as adjunct therapy on the systemic immune responses in shigellosis. Am. J. Clin. Nutr. 2005;81:495–502.
    1. Roy S.K., Raqib R., Khatun W., Azim T., Chowdhury R., Fuchs G.J., Sack D.A. Zinc supplementation in the management of shigellosis in malnourished children in Bangladesh. Eur. J. Clin. Nutr. 2008;62:849–855. doi: 10.1038/sj.ejcn.1602795.
    1. Kashimura H., Suzuki K., Hassan M., Ikezawa K., Sawahata T., Watanabe T., Nakahara A., Mutoh H., Tanaka N. Polaprezinc, a mucosal protective agent, in combination with lansoprazole, amoxycillin and clarithromycin increases the cure rate of Helicobacter pylori infection. Aliment. Pharmacol. Ther. 1999;13:483–487. doi: 10.1046/j.1365-2036.1999.00510.x.
    1. Zeba A.N., Sorgho H., Rouamba N., Zongo I., Rouamba J., Guiguemdé R.T., Hamer D.H., Mokhtar N., Ouedraogo J.-B. Major reduction of malaria morbidity with combined vitamin A and zinc supplementation in young children in Burkina Faso: A randomized double blind trial. Nutr. J. 2008;7:7. doi: 10.1186/1475-2891-7-7.
    1. Shankar A.H., Genton B., Baisor M., Paino J., Tamja S., Adiguma T., Wu L., Rare L., Bannon D., Tielsch J.M., et al. The influence of zinc supplementation on morbidity due to Plasmodium falciparum: A randomized trial in preschool children in Papua New Guinea. Am. J. Trop. Med. Hyg. 2000;62:663–669. doi: 10.4269/ajtmh.2000.62.663.
    1. Bates C.J., Evans P.H., Dardenne M., Prentice A., Lunn P.G., Northrop-Clewes C.A., Hoare S., Cole T.J., Horan S.J., Longman S.C. A trial of zinc supplementation in young rural Gambian children. Br. J. Nutr. 1993;69:243–255. doi: 10.1079/BJN19930026.
    1. Muller O., Becher H., van Zweeden A.B., Ye Y., Diallo D.A., Konate A.T., Gbangou A., Kouyate B., Garenne M. Effect of zinc supplementation on malaria and other causes of morbidity in west African children: Randomised double blind placebo controlled trial. BMJ Clin. Res. 2001;322:1567. doi: 10.1136/bmj.322.7302.1567.
    1. Zinc Against Plasmodium Study Group Effect of zinc on the treatment of Plasmodium falciparum malaria in children: A randomized controlled trial. Am. J. Clin. Nutr. 2002;76:805–812.
    1. Richard S.A., Zavaleta N., Caulfield L.E., Black R.E., Witzig R.S., Shankar A.H. Zinc and iron supplementation and malaria, diarrhea, and respiratory infections in children in the Peruvian Amazon. Am. J. Trop. Med. Hyg. 2006;75:126–132.
    1. Lazzerini M., Wanzira H. Oral zinc for treating diarrhoea in children. Cochrane Database Syst. Rev. :2016. doi: 10.1002/14651858.CD005436.pub5.
    1. World Health Organisation . Zinc Supplementation in the Management of Diarrhoea. World Health Organisation; Geneva, Switzerland: 2017.
    1. Finamore A., Massimi M., Conti Devirgiliis L., Mengheri E. Zinc deficiency induces membrane barrier damage and increases neutrophil transmigration in Caco-2 cells. J. Nutr. 2008;138:1664–1670.
    1. Bao S., Knoell D.L. Zinc modulates cytokine-induced lung epithelial cell barrier permeability. Am. J. Physiol. Lung Cell. Mol. Physiol. 2006;291:L1132-41. doi: 10.1152/ajplung.00207.2006.
    1. Lansdown A.B.G., Mirastschijski U., Stubbs N., Scanlon E., Agren M.S. Zinc in wound healing: Theoretical, experimental, and clinical aspects. Wound Repair Regen. 2007;15:2–16. doi: 10.1111/j.1524-475X.2006.00179.x.
    1. Gosain A., DiPietro L.A. Aging and Wound Healing. World J. Surg. 2004;28:321–326. doi: 10.1007/s00268-003-7397-6.
    1. Lu X., Wang M., Qi J., Wang H., Li X., Gupta D., Dziarski R. Peptidoglycan Recognition Proteins Are a New Class of Human Bactericidal Proteins. J. Biol. Chem. 2006;281:5895–5907. doi: 10.1074/jbc.M511631200.
    1. Wang M., Liu L.-H., Wang S., Li X., Lu X., Gupta D., Dziarski R. Human Peptidoglycan Recognition Proteins Require Zinc to Kill Both Gram-Positive and Gram-Negative Bacteria and Are Synergistic with Antibacterial Peptides. J. Immunol. 2007;178:3116–3125. doi: 10.4049/jimmunol.178.5.3116.

Source: PubMed

3
Se inscrever