Dihydroartemisinin-piperaquine for treating uncomplicated Plasmodium falciparum malaria

Babalwa Zani, Michael Gathu, Sarah Donegan, Piero L Olliaro, David Sinclair, Babalwa Zani, Michael Gathu, Sarah Donegan, Piero L Olliaro, David Sinclair

Abstract

Background: The World Health Organization (WHO) recommends Artemisinin-based Combination Therapy (ACT) for treating uncomplicated Plasmodium falciparum malaria. This review aims to assist the decision-making of malaria control programmes by providing an overview of the relative effects of dihydroartemisinin-piperaquine (DHA-P) versus other recommended ACTs.

Objectives: To evaluate the effectiveness and safety of DHA-P compared to other ACTs for treating uncomplicated P. falciparum malaria in adults and children.

Search methods: We searched the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL) published in The Cochrane Library; MEDLINE; EMBASE; LILACS, and the metaRegister of Controlled Trials (mRCT) up to July 2013.

Selection criteria: Randomized controlled trials comparing a three-day course of DHA-P to a three-day course of an alternative WHO recommended ACT in uncomplicated P. falciparum malaria.

Data collection and analysis: Two authors independently assessed trials for eligibility and risk of bias, and extracted data. We analysed primary outcomes in line with the WHO 'Protocol for assessing and monitoring antimalarial drug efficacy' and compared drugs using risk ratios (RR) and 95% confidence intervals (CI). Secondary outcomes were effects on gametocytes, haemoglobin, and adverse events. We assessed the quality of evidence using the GRADE approach.

Main results: We included 27 trials, enrolling 16,382 adults and children, and conducted between 2002 and 2010. Most trials excluded infants aged less than six months and pregnant women. DHA-P versus artemether-lumefantrineIn Africa, over 28 days follow-up, DHA-P is superior to artemether-lumefantrine at preventing further parasitaemia (PCR-unadjusted treatment failure: RR 0.34, 95% CI 0.30 to 0.39, nine trials, 6200 participants, high quality evidence), and although PCR-adjusted treatment failure was below 5% for both ACTs, it was consistently lower with DHA-P (PCR-adjusted treatment failure: RR 0.42, 95% CI 0.29 to 0.62, nine trials, 5417 participants, high quality evidence). DHA-P has a longer prophylactic effect on new infections which may last for up to 63 days (PCR-unadjusted treatment failure: RR 0.71, 95% CI 0.65 to 0.78, two trials, 3200 participants, high quality evidence).In Asia and Oceania, no differences have been shown at day 28 (four trials, 1143 participants, moderate quality evidence), or day 63 (one trial, 323 participants, low quality evidence).Compared to artemether-lumefantrine, no difference was seen in prolonged QTc (low quality evidence), and no cardiac arrhythmias were reported. The frequency of other adverse events is probably similar with both combinations (moderate quality evidence). DHA-P versus artesunate plus mefloquineIn Asia, over 28 days follow-up, DHA-P is as effective as artesunate plus mefloquine at preventing further parasitaemia (PCR-unadjusted treatment failure: eight trials, 3487 participants, high quality evidence). Once adjusted by PCR to exclude new infections, treatment failure at day 28 was below 5% for both ACTs in all eight trials, but lower with DHA-P in two trials (PCR-adjusted treatment failure: RR 0.41 95% CI 0.21 to 0.80, eight trials, 3482 participants, high quality evidence). Both combinations contain partner drugs with very long half-lives and no consistent benefit in preventing new infections has been seen over 63 days follow-up (PCR-unadjusted treatment failure: five trials, 2715 participants, moderate quality evidence).In the only trial from South America, there were fewer recurrent parastaemias over 63 days with artesunate plus mefloquine (PCR-unadjusted treatment failure: RR 6.19, 95% CI 1.40 to 27.35, one trial, 445 participants, low quality evidence), but no differences were seen once adjusted for new infections (PCR-adjusted treatment failure: one trial, 435 participants, low quality evidence).DHA-P is associated with less nausea, vomiting, dizziness, sleeplessness, and palpitations compared to artesunate plus mefloquine (moderate quality evidence). DHA-P was associated with more frequent prolongation of the QTc interval (low quality evidence), but no cardiac arrhythmias were reported.

Authors' conclusions: In Africa, dihydroartemisinin-piperaquine reduces overall treatment failure compared to artemether-lumefantrine, although both drugs have PCR-adjusted failure rates of less than 5%. In Asia, dihydroartemisinin-piperaquine is as effective as artesunate plus mefloquine, and is better tolerated.

Conflict of interest statement

None known.

Figures

Figure 1
Figure 1
Study flow diagram.
Figure 2
Figure 2
Risk of bias summary: review authors' judgements about each risk of bias item for each included trial.
Analysis 1.1
Analysis 1.1
Comparison 1 Dihydroartemisinin‐piperaquine versus Artesunate plus mefloquine, Outcome 1 Total failure (P. falciparum) Day 28 PCR‐unadjusted.
Analysis 1.2
Analysis 1.2
Comparison 1 Dihydroartemisinin‐piperaquine versus Artesunate plus mefloquine, Outcome 2 Total failure (P. falciparum) Day 28 PCR‐adjusted.
Analysis 1.3
Analysis 1.3
Comparison 1 Dihydroartemisinin‐piperaquine versus Artesunate plus mefloquine, Outcome 3 Total failure (P. falciparum) Day 42 PCR‐unadjusted.
Analysis 1.4
Analysis 1.4
Comparison 1 Dihydroartemisinin‐piperaquine versus Artesunate plus mefloquine, Outcome 4 Total failure (P. falciparum) Day 42 PCR‐adjusted.
Analysis 1.5
Analysis 1.5
Comparison 1 Dihydroartemisinin‐piperaquine versus Artesunate plus mefloquine, Outcome 5 Total failure (P. falciparum) Day 63 PCR‐unadjusted.
Analysis 1.6
Analysis 1.6
Comparison 1 Dihydroartemisinin‐piperaquine versus Artesunate plus mefloquine, Outcome 6 Total failure (P. falciparum) Day 63 PCR‐adjusted.
Analysis 1.7
Analysis 1.7
Comparison 1 Dihydroartemisinin‐piperaquine versus Artesunate plus mefloquine, Outcome 7 Gametocyte carriage.
Analysis 1.8
Analysis 1.8
Comparison 1 Dihydroartemisinin‐piperaquine versus Artesunate plus mefloquine, Outcome 8 Gametocyte development (in those negative at baseline).
Analysis 1.9
Analysis 1.9
Comparison 1 Dihydroartemisinin‐piperaquine versus Artesunate plus mefloquine, Outcome 9 Serious adverse events (including deaths).
Analysis 1.10
Analysis 1.10
Comparison 1 Dihydroartemisinin‐piperaquine versus Artesunate plus mefloquine, Outcome 10 Other adverse events: Gastrointestinal.
Analysis 1.11
Analysis 1.11
Comparison 1 Dihydroartemisinin‐piperaquine versus Artesunate plus mefloquine, Outcome 11 Other adverse events: Neuro‐psychiatric.
Analysis 1.12
Analysis 1.12
Comparison 1 Dihydroartemisinin‐piperaquine versus Artesunate plus mefloquine, Outcome 12 Other adverse events: Cardio‐respiratory.
Analysis 1.13
Analysis 1.13
Comparison 1 Dihydroartemisinin‐piperaquine versus Artesunate plus mefloquine, Outcome 13 Other adverse events: Musculoskeletal/dermatological.
Analysis 1.14
Analysis 1.14
Comparison 1 Dihydroartemisinin‐piperaquine versus Artesunate plus mefloquine, Outcome 14 Sensitivity analysis: Total failure Day 63 PCR‐unadjusted.
Analysis 1.15
Analysis 1.15
Comparison 1 Dihydroartemisinin‐piperaquine versus Artesunate plus mefloquine, Outcome 15 Sensitivity analysis: Total failure Day 63 PCR‐adjusted.
Analysis 2.1
Analysis 2.1
Comparison 2 Dihydroartemisinin‐piperaquine dose analysis: 3 dose versus 4 dose regimen, Outcome 1 Total failure PCR‐unadjusted.
Analysis 2.2
Analysis 2.2
Comparison 2 Dihydroartemisinin‐piperaquine dose analysis: 3 dose versus 4 dose regimen, Outcome 2 Total failure PCR‐adjusted.
Analysis 3.1
Analysis 3.1
Comparison 3 Dihydroartemisinin‐piperaquine dose analysis (versus Artesunate plus mefloquine), Outcome 1 Total failure Day 28 PCR‐unadjusted.
Analysis 3.2
Analysis 3.2
Comparison 3 Dihydroartemisinin‐piperaquine dose analysis (versus Artesunate plus mefloquine), Outcome 2 Total failure Day 28 PCR‐adjusted.
Analysis 3.3
Analysis 3.3
Comparison 3 Dihydroartemisinin‐piperaquine dose analysis (versus Artesunate plus mefloquine), Outcome 3 Total failure Day 42 PCR‐unadjusted.
Analysis 3.4
Analysis 3.4
Comparison 3 Dihydroartemisinin‐piperaquine dose analysis (versus Artesunate plus mefloquine), Outcome 4 Total failure Day 42 PCR‐adjusted.
Analysis 3.5
Analysis 3.5
Comparison 3 Dihydroartemisinin‐piperaquine dose analysis (versus Artesunate plus mefloquine), Outcome 5 Total failure Day 63 PCR‐unadjusted.
Analysis 3.6
Analysis 3.6
Comparison 3 Dihydroartemisinin‐piperaquine dose analysis (versus Artesunate plus mefloquine), Outcome 6 Total failure Day 63 PCR‐adjusted.
Analysis 4.1
Analysis 4.1
Comparison 4 Dihydroartemisinin‐piperaquine versus Artemether‐lumefantrine, Outcome 1 Total failure (P. falciparum) Day 28 PCR‐unadjusted.
Analysis 4.2
Analysis 4.2
Comparison 4 Dihydroartemisinin‐piperaquine versus Artemether‐lumefantrine, Outcome 2 Total failure (P. falciparum) Day 28 PCR‐adjusted.
Analysis 4.3
Analysis 4.3
Comparison 4 Dihydroartemisinin‐piperaquine versus Artemether‐lumefantrine, Outcome 3 Total failure (P. falciparum) Day 42 PCR‐unadjusted.
Analysis 4.4
Analysis 4.4
Comparison 4 Dihydroartemisinin‐piperaquine versus Artemether‐lumefantrine, Outcome 4 Total failure (P. falciparum) Day 42 PCR‐adjusted.
Analysis 4.5
Analysis 4.5
Comparison 4 Dihydroartemisinin‐piperaquine versus Artemether‐lumefantrine, Outcome 5 Total failure (P. falciparum) Day 63 PCR‐unadjusted.
Analysis 4.6
Analysis 4.6
Comparison 4 Dihydroartemisinin‐piperaquine versus Artemether‐lumefantrine, Outcome 6 Total failure (P. falciparum) Day 63 PCR‐adjusted.
Analysis 4.7
Analysis 4.7
Comparison 4 Dihydroartemisinin‐piperaquine versus Artemether‐lumefantrine, Outcome 7 Gametocyte development (in those negative at baseline).
Analysis 4.8
Analysis 4.8
Comparison 4 Dihydroartemisinin‐piperaquine versus Artemether‐lumefantrine, Outcome 8 Gametocyte carriage.
Analysis 4.9
Analysis 4.9
Comparison 4 Dihydroartemisinin‐piperaquine versus Artemether‐lumefantrine, Outcome 9 Anaemia.
Analysis 4.10
Analysis 4.10
Comparison 4 Dihydroartemisinin‐piperaquine versus Artemether‐lumefantrine, Outcome 10 Serious adverse events (including deaths).
Analysis 4.11
Analysis 4.11
Comparison 4 Dihydroartemisinin‐piperaquine versus Artemether‐lumefantrine, Outcome 11 Other adverse events: Gastrointestinal.
Analysis 4.12
Analysis 4.12
Comparison 4 Dihydroartemisinin‐piperaquine versus Artemether‐lumefantrine, Outcome 12 Other adverse events: Neuro‐psychiatric.
Analysis 4.13
Analysis 4.13
Comparison 4 Dihydroartemisinin‐piperaquine versus Artemether‐lumefantrine, Outcome 13 Other adverse events: Cardio‐respiratory.
Analysis 4.14
Analysis 4.14
Comparison 4 Dihydroartemisinin‐piperaquine versus Artemether‐lumefantrine, Outcome 14 Other adverse events: Musculoskeletal/dermatological.
Analysis 5.1
Analysis 5.1
Comparison 5 Dihydroartemisinin‐piperaquine versus Artesunate plus amodiaquine, Outcome 1 Total failure (P. falciparum) Day 28 PCR‐unadjusted.
Analysis 5.2
Analysis 5.2
Comparison 5 Dihydroartemisinin‐piperaquine versus Artesunate plus amodiaquine, Outcome 2 Total failure (P. falciparum) Day 28 PCR‐adjusted.
Analysis 5.3
Analysis 5.3
Comparison 5 Dihydroartemisinin‐piperaquine versus Artesunate plus amodiaquine, Outcome 3 Total failure (P. falciparum) Day 42 PCR‐unadjusted.
Analysis 5.4
Analysis 5.4
Comparison 5 Dihydroartemisinin‐piperaquine versus Artesunate plus amodiaquine, Outcome 4 Total failure (P. falciparum) Day 42 PCR‐adjusted.
Analysis 5.5
Analysis 5.5
Comparison 5 Dihydroartemisinin‐piperaquine versus Artesunate plus amodiaquine, Outcome 5 Total failure (P. falciparum) Day 63 PCR‐unadjusted.
Analysis 5.6
Analysis 5.6
Comparison 5 Dihydroartemisinin‐piperaquine versus Artesunate plus amodiaquine, Outcome 6 Total failure (P. falciparum) Day 63 PCR‐adjusted.
Analysis 5.7
Analysis 5.7
Comparison 5 Dihydroartemisinin‐piperaquine versus Artesunate plus amodiaquine, Outcome 7 Serious adverse events (including deaths).
Analysis 5.8
Analysis 5.8
Comparison 5 Dihydroartemisinin‐piperaquine versus Artesunate plus amodiaquine, Outcome 8 Other adverse events: Gastrointestinal.
Analysis 5.9
Analysis 5.9
Comparison 5 Dihydroartemisinin‐piperaquine versus Artesunate plus amodiaquine, Outcome 9 Other adverse events: Neuro‐psychiatric.
Analysis 5.10
Analysis 5.10
Comparison 5 Dihydroartemisinin‐piperaquine versus Artesunate plus amodiaquine, Outcome 10 Other adverse events: Cardio‐respiratory.
Analysis 6.1
Analysis 6.1
Comparison 6 Dihydroartemisinin‐piperaquine versus Artesunate plus sulfadoxine‐pyrimethamine, Outcome 1 Total failure (P. falciparum) Day 28 PCR‐unadjusted.
Analysis 6.2
Analysis 6.2
Comparison 6 Dihydroartemisinin‐piperaquine versus Artesunate plus sulfadoxine‐pyrimethamine, Outcome 2 Total failure (P. falciparum) Day 28 PCR‐adjusted.
Analysis 6.3
Analysis 6.3
Comparison 6 Dihydroartemisinin‐piperaquine versus Artesunate plus sulfadoxine‐pyrimethamine, Outcome 3 Total failure (P. falciparum) Day 42 PCR‐unadjusted.
Analysis 6.4
Analysis 6.4
Comparison 6 Dihydroartemisinin‐piperaquine versus Artesunate plus sulfadoxine‐pyrimethamine, Outcome 4 Total failure (P. falciparum) Day 42 PCR‐adjusted.

References

References to studies included in this review

    1. Adam I, Salah MT, Eltahir HG, Elhassan AH, Elmardi KA, Malik EM. Dihydroartemisinin‐piperaquine versus artemether‐lumefantrine, in the treatment of uncomplicated Plasmodium falciparum malaria in central Sudan. Annals of Tropical Medicine and Parasitology 2010;104(4):319‐26.
    1. Agarwal A, McMorrow M, Onyango P, Otieno K, Odero C, Williamson J, et al. A randomized trial of artemether‐lumefantrine and dihydroartemisinin‐piperaquine in the treatment of uncomplicated malaria among children in western Kenya. Malaria Journal 2013;12(254):1‐8.
    1. Arinaitwe E, Sandison TG, Wanzira H, Kakuru A, Homsy J, Kalamya J, et al. Artemether‐lumefantrine versus dihydroartemisinin‐piperaquine for falciparum malaria: a longitudinal, randomized trial in young Ugandan children. Clinical Infectious Diseases 2009;49(11):1629‐37.
    2. Creek D, Bigira V, Arinaitwe E, Wanzira H, Kakuru A, Tappero J, et al. Increased risk of early vomiting among infants and young children treated with dihydroartemisinin‐piperaquine compared with artemether‐lumefantrine for uncomplicated malaria. American Journal of Tropical Medicine and Hygiene 2010;83(4):873‐5.
    3. Kakuru A, Jagannathan P, Arinaitwe E, Wanzira H, Muhindo M, Bigira V, et al. The effects of ACT treatment and TS prophylaxis on Plasmodium falciparum gametocytemia in a cohort of young Ugandan children. American Journal of Tropical Medicine and Hygiene 2013;88(4):736‐43.
    4. Katrak S, Gasasira A, Arinaitwe E, Kakuru A, Wanzira H, Bigira V, et al. Safety and tolerability of artemether‐lumefantrine versus dihydroartemisinin‐piperaquine for malaria in young HIV‐infected and uninfected children. Malaria Journal 2009;8(272):1‐8.
    1. Ashley EA, Krudsood S, Phaiphun L, Srivilairit S, McGready R, Leowattana W, et al. Randomized, controlled dose‐optimization studies of dihydroartemisinin‐piperaquine for the treatment of uncomplicated multidrug‐resistant falciparum malaria in Thailand. Journal of Infectious Diseases 2004;190(10):1773‐82.
    1. Ashley EA, Krudsood S, Phaiphun L, Srivilairit S, McGready R, Leowattana W, et al. Randomized, controlled dose‐optimization studies of dihydroartemisinin‐piperaquine for the treatment of uncomplicated multidrug‐resistant falciparum malaria in Thailand. Journal of Infectious Diseases 2004;190(10):1773‐82.
    1. Ashley EA, McGready R, Hutagalung R, Phaiphun L, Slight T, Proux S, et al. A randomized, controlled study of a simple, once‐daily regimen of dihydroartemisinin‐piperaquine for the treatment of uncomplicated, multidrug‐resistant falciparum malaria. 2005; Vol. 41, issue 4:425‐32.
    1. Bassat Q, Mulenga M, Tinto H, Piola P, Borrmann S, Menéndez C, et al. Dihydroartemisinin‐piperaquine and artemether‐lumefantrine for treating uncomplicated malaria in African children: a randomised, non‐inferiority trial. PLoS One 2009;4(11):e7871.
    2. Borrmann S, Sasi P, Mwai L, Bashraheil M, Abdallah A, Muriithi S, et al. Declining responsiveness of Plasmodium falciparum infections to artemisinin‐based combination treatments on the Kenyan coast. PloS One 2011;6(11):e26005.
    3. Nambozi M, Geertruyden JP, Hachizovu S, Chaponda M, Mukwamataba D, Mulenga M, et al. Safety and efficacy of dihydroartemisininpiperaquine versus artemether‐lumefantrine in the treatment of uncomplicated Plasmodium falciparum malaria in Zambian children. Malaria Journal 2011;10(50):1‐9.
    1. Grande T, Bernasconi A, Erhart A, Gamboa D, Casapia M, Delgado C, et al. A randomised controlled trial to assess the efficacy of dihydroartemisinin‐piperaquine for the treatment of uncomplicated falciparum malaria in Peru. PLoS One 2007;2(10):e1101.
    1. Hasugian AR, Purba HL, Kenangalem E, Wuwung RM, Ebsworth EP, Maristela R, et al. Dihydroartemisinin‐piperaquine versus artesunate‐amodiaquine: superior efficacy and posttreatment prophylaxis against multidrug‐resistant Plasmodium falciparum and Plasmodium vivax malaria. Clinical Infectious Diseases 2007;44(8):1067‐74.
    1. Janssens B, Herp M, Goubert L, Chan S, Uong S, Nong S, et al. A randomized open study to assess the efficacy and tolerability of dihydroartemisinin‐piperaquine for the treatment of uncomplicated falciparum malaria in Cambodia. Tropical Medicine and International Health 2007;12(2):251‐9.
    1. Kamya MR, Yeka A, Bukirwa H, Lugemwa M, Rwakimari JB, Staedke SG, et al. Artemether‐lumefantrine versus dihydroartemisinin‐piperaquine for treatment of malaria: a randomized trial. PLoS Clinical Trials 2007;2(5):e20.
    1. Karema C, Fanello CI, Overmeir C, Geertruyden JP, Doren W, Ngamije D, et al. Safety and efficacy of dihydroartemisinin/piperaquine (Artekin) for the treatment of uncomplicated Plasmodium falciparum malaria in Rwandan children. 2006; Vol. 100, issue 12:1105‐11.
    1. Davis WA, Clarke PM, Siba PM, Karunajeewa HA, Davy C, Mueller I, et al. Cost‐effectiveness of artemisinin combination therapy for uncomplicated malaria in children: data from Papua New Guinea. Bulletin of the World Health Organization 2011;89(3):211‐20.
    2. Karunajeewa HA, Mueller I, Senn M, Lin E, Law I, Gomorrai PS, et al. A trial of combination antimalarial therapies in children from Papua New Guinea. New England Journal of Medicine 2008;359(24):2545‐57.
    1. Krudsood S, Tangpukdee N, Thanchatwet V, Wilairatana P, Srivilairit S, Pothipak N, et al. Dose ranging studies of new artemisinin‐piperaquine fixed combinations compared to standard regimens of artemisinin combination therapies for acute uncomplicated falciparum malaria. Southeast Asian Journal of Tropical Medicine and Public Health 2007;38(6):971‐8.
    1. Mayxay M, Thongpraseuth V, Khanthavong M, Lindegårdh N, Barends M, Keola S, et al. An open, randomized comparison of artesunate plus mefloquine vs. dihydroartemisinin‐piperaquine for the treatment of uncomplicated Plasmodium falciparum malaria in the Lao People's Democratic Republic (Laos). Tropical Medicine and International Health 2006;11(8):1157‐65.
    1. Mens PF, Sawa P, Amsterdam SM, Versteeg I, Omar SA, Schallig HD, et al. A randomized trial to monitor the efficacy and effectiveness by QT‐NASBA of artemether‐lumefantrine versus dihydroartemisinin‐piperaquine for treatment and transmission control of uncomplicated Plasmodium falciparum malaria in western Kenya. Malaria Journal 2008;7(237):1‐8.
    1. Ratcliff A, Siswantoro H, Kenangalem E, Maristela R, Wuwung RM, Laihad F, et al. Two fixed‐dose artemisinin combinations for drug‐resistant falciparum and vivax malaria in Papua, Indonesia: an open‐label randomised comparison. The Lancet 2007;369(9563):757‐65.
    1. Sawa P, Shekalaghe SA, Drakeley CJ, Sutherland CJ, Mweresa CK, Baidjoe AY, et al. Malaria transmission after artemether‐lumefantrine and dihydroartemisinin‐piperaquine: a randomized trial. Journal of Infectious Diseases 2013;207(11):1637‐45.
    1. Smithuis F, Kyaw MK, Phe O, Aye KZ, Htet L, Barends M, et al. Efficacy and effectiveness of dihydroartemisinin‐piperaquine versus artesunate‐mefloquine in falciparum malaria: an open‐label randomised comparison. The Lancet 2006;367(9528):2075‐85.
    1. Smithuis F, Kyaw MK, Phe O, Win T, Aung PP, Oo AP, et al. Effectiveness of five artemisinin combination regimens with or without primaquine in uncomplicated falciparum malaria: an open‐label randomised trial. Lancet Infectious Diseases 2010;10(10):673‐81.
    1. Tangpukdee N, Krudsood S, Thanachartwet W, Chalermrut K, Pengruksa C, Srivilairit S, et al. An open randomized clinical trial of Artekin vs artesunate‐mefloquine in the treatment of acute uncomplicated falciparum malaria. Southeast Asian Journal of Tropical Medicine and Public Health 2005;36(5):1085‐91.
    1. The Four Artemisinin‐Based Combinations (4ABC) Study Group. A head‐to‐head comparison of four artemisinin‐based combinations for treating uncomplicated malaria in African children: a randomized trial. PLoS Medicine 2011;8(11):e1001119.
    1. Tran TH, Dolecek C, Pham PM, Nguyen TD, Nguyen TT, Le HT, et al. Dihydroartemisinin‐piperaquine against multidrug‐resistant Plasmodium falciparum malaria in Vietnam: randomised clinical trial. 2004; Vol. 363, issue 9402:18‐22.
    1. Gargano N, Ubben D, Tommasini S, Bacchieri A, Corsi M, Bhattacharyya PC, et al. Therapeutic efficacy and safety of dihydroartemisinin‐piperaquine versus artesunate‐mefloquine in uncomplicated Plasmodium falciparum malaria in India. Malaria Journal 2012;11(233):1‐12.
    2. Mayxay M, Keomany S, Khanthavong M, Souvannasing P, Stepniewska K, Khomthilath T, et al. A phase III, randomized, non‐inferiority trial to assess the efficacy and safety of dihydroartemisinin‐piperaquine in comparison with artesunate‐mefloquine in patients with uncomplicated Plasmodium falciparum malaria in southern Laos. American Journal of Tropical Medicine and Hygiene 2010;83(6):1221‐9.
    3. Valecha N, Phyo A P, Mayxay M, Newton P N, Krudsood S, Keomany S, et al. An open‐label, randomised study of dihydroartemisinin‐piperaquine versus artesunate‐mefloquine for falciparum malaria in Asia. PLoS One 2010;5(7):e11880.
    1. Yavo W, Faye B, Kuete T, Djohan V, Oga SA, Kassi RR, et al. Multicentric assessment of the efficacy and tolerability of dihydroartemisinin‐piperaquine compared to artemether‐lumefantrine in the treatment of uncomplicated Plasmodium falciparum malaria in sub‐Saharan Africa. Malaria Journal 2011;10(198):1‐8.
    1. Yeka A, Dorsey G, Kamya MR, Talisuna A, Lugemwa M, Rwakimari JB, et al. Artemether‐lumefantrine versus dihydroartemisinin‐piperaquine for treating uncomplicated malaria: a randomized trial to guide policy in Uganda. PLoS One 2008;3(6):e2390.
    1. Zongo I, Dorsey G, Rouamba N, Dokomajilar C, Séré Y, Rosenthal PJ, et al. Randomized comparison of amodiaquine plus sulfadoxine‐pyrimethamine, artemether‐lumefantrine, and dihydroartemisinin‐piperaquine for the treatment of uncomplicated Plasmodium falciparum malaria in Burkina Faso. 2007; Vol. 45, issue 11:1453‐61.
References to studies excluded from this review
    1. Chinh NT, Quang NN, Thanh NX, Dai B, Geue JP, Addison RS, et al. Pharmacokinetics and bioequivalence evaluation of two fixed‐dose tablet formulations of dihydroartemisinin and piperaquine in Vietnamese subjects. Antimicrobial Agents and Chemotherapy 2009;53(2):828‐31.
    1. Guo XB, Fu YX, Chen PJ. A randomised comparative study on the treatment of falciparum malaria with artesunate tablets and piperaquine [Chinese]. Clinical Trials on Qinghaosu and its Derivatives. Guangzhou, China, 1990:39‐42.
    1. Gupta V, Dorsey G, Hubbard AE, Rosenthal PJ, Greenhouse B. Gel versus capillary electrophoresis genotyping for categorizing treatment outcomes in two anti‐malarial trials in Uganda. Malaria Journal 2010;9(19):1‐8.
    1. Karema C, Fanello C, Doren W, Rwagacondo C, Overmeir C, Dujardin J, et al. Safety and efficacy of dihydroartemisinin‐piperaquine in Rwandan children with uncomplicated P. falciparum malaria. 4th MIM Malaria Conference: November, 2005. Yaounde, Cameroon, 2005.
    1. Somé A F, Séré YY, Dokomajilar C, Zongo I, Rouamba N, Greenhouse B, et al. Selection of known Plasmodium falciparum resistance‐mediating polymorphisms by artemether‐lumefantrine and amodiaquine‐sulfadoxine‐pyrimethamine but not dihydroartemisinin‐piperaquine in Burkina Faso. Antimicrobial Agents and Chemotherapy 2010;54(5):1949‐54.
    1. Song J, Socheat D, Tan B, Seila S, Xu Y, Ou F, et al. Randomized trials of artemisinin‐piperaquine, dihydroartemisinin‐piperaquine phosphate and artemether‐lumefantrine for the treatment of multi‐drug resistant falciparum malaria in Cambodia‐Thailand border area. Malaria Journal 2011;10(231):1‐7.
    1. Sutanto I, Suprijanto S, Kosasih A, Dahlan MS, Syafruddin D, Kusriastuti R, et al. The effect of primaquine on gametocyte development and clearance in the treatment of uncomplicated falciparum malaria with dihydroartemisinin‐piperaquine in South Sumatra, Western Indonesia: an open‐label, randomized, controlled trial. Clinical Infectious Diseases 2013;56(5):685‐93.
    1. Tarning J, Ashley EA, Lindegardh N, Stepniewska K, Phaiphun L, Day NP, et al. Population pharmacokinetics of piperaquine after two different treatment regimens with dihydroartemisinin‐piperaquine in patients with Plasmodium falciparum malaria in Thailand. Antimicrobial Agents and Chemotherapy 2008;52(3):1052‐61.
    1. Thanh NX, Trung TN, Phong NC, Thien NX, Dai B, Shanks GD, et al. Open label randomized comparison of dihydroartemisinin‐piperaquine and artesunate‐amodiaquine for the treatment of uncomplicated Plasmodium falciparum malaria in central Vietnam. Tropical Medicine and International Health 2009;14(5):504‐11.
    1. Tjitra E, Hasugian AR, Siswantoro H, Prasetyorini B, Ekowatiningsih R, Yusnita EA, et al. Efficacy and safety of artemisinin‐naphthoquine versus dihydroartemisinin‐piperaquine in adult patients with uncomplicated malaria: a multi‐centre study in Indonesia. Malaria Journal 2012;11(153):1‐10.
    1. Tran TH, Nguyen TT, Nguyen HP, Boni MF, Ngo VT, Nguyen TN, et al. In vivo susceptibility of Plasmodium falciparum to artesunate in Binh Phuoc Province, Vietnam. Malaria Journal 2012;11(355):1‐11.
    1. Verret WJ, Arinaitwe E, Wanzira H, Bigira V, Kakuru A, Kamya M, et al. Effect of nutritional status on response to treatment with artemisinin‐based combination therapy in young Ugandan children with malaria. Antimicrobial Agents and Chemotherapy 2011;55(6):2629‐35.
    1. Wang SQ, Christophel E, Lin SG, Meng F, Hu XM, Wang GZ, et al. [Efficacy of dihydroartemisinin‐piperaquine and artemether‐lumefantrine in the treatment of uncomplicated falciparum malaria in Hainan, China]. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi 2008;26(1):50‐2.
    1. Yeka A, Tibenderana J, Achan J, D'Alessandro U, Talisuna AO. Efficacy of quinine, artemether‐lumefantrine and dihydroartemisinin‐piperaquine as rescue treatment for uncomplicated malaria in Ugandan children. PloS One 2013;8(1):e53772.
References to studies awaiting assessment
    1. Borrmann S, Sasi P, Mwai L, Bashraheil M, Abdallah A, Muriithi S, et al. Declining responsiveness of Plasmodium falciparum infections to artemisinin‐based combination treatments on the Kenyan coast. PloS One 2011;6(11):e26005.
References to ongoing studies
    1. Tekete M, Djimde A, Borrmann S. A phase IIIb/IV comparative, randomised, multi‐centre, open label, parallel 3‐arm clinical study to assess the safety and efficacy of repeated administration of four artemisinin‐based combination therapy (ACT) over a two‐year period in children and adult patients with acute uncomplicated Plasmodium sp. malaria. Chemotherapie Journal. 2012; Vol. Conference: 9.
Additional references
    1. Abba K, Deeks JJ, Olliaro P, Naing CM, Jackson SM, Takwoingi Y, et al. Rapid diagnostic tests for diagnosing uncomplicated P. falciparum malaria in endemic countries. Cochrane Database of Systematic Reviews 2011, Issue 7. [DOI: 10.1002/14651858.CD008122.pub2]
    1. Adjuik M, Babiker A, Garner P, Olliaro P, Taylor W, White N, et al. Artesunate combinations for treatment of malaria: meta‐analysis. The Lancet 2004;363(9402):9‐17.
    1. Bloland PB. Assessment and monitoring of antimalarial drug efficacy for the treatment of uncomplicated falciparum malaria [WHO/HTM/RBM/2003.50]. Geneva: World Health Organization, 2003.
    1. Cattamanchi A, Kyabayinze D, Hubbard A, Rosenthal PJ, Dorsey G. Distinguishing recrudescence from reinfection in a longitudinal antimalarial drug efficacy study: comparison of results based on genotyping of msp‐1, msp‐2, and glurp. American Journal of Tropical Medicine and Hygiene 2003;68(2):133‐9.
    1. Davis TM, Hung TY, Sim IK, Karunajeewa HA, Ilett KF. Piperaquine: a resurgent antimalarial drug. Drugs 2005;65(1):75‐87.
    1. European Medicines Agency. Eurartesim: Assessment report. 2011:1‐129.
    1. Guyatt GH, Oxman AD, Kunz R, Vist GE, Falck‐Ytter Y, Schünemann HJ, et al. What is "quality of evidence" and why is it important to clinicians?. BMJ 2008;336(7651):995‐8.
    1. Higgins JPT, Altman DG (editors). Chapter 8: Assessing risk of bias in included studies. In: Higgins JPT, Green S (editors), Cochrane Handbook of Systematic Reviews of Interventions. Version 5.0.0 [updated February 2008]. The Cochrane Collaboration, 2008. . Chichester: John Wiley & Sons Ltd.
    1. Jansen FH. The pharmaceutical death‐ride of dihydroartemisinin. Malaria Journal 2010;9(212):1‐4.
    1. Karunajeewa H, Lim C, Hung TY, Ilett KF, Denis MB, Socheat D, et al. Safety evaluation of fixed combination piperaquine plus dihydroartemisinin (Artekin) in Cambodian children and adults with malaria. British Journal of Clinical Pharmacology 2004;57(1):93‐9.
    1. Keating GM. Dihydroartemisinin/Piperaquine: a review of its use in the treatment of uncomplicated Plasmodium falciparum malaria. Drugs 2012;72(7):937‐61.
    1. Lefebvre C, Manheimer E, Glanville J. Chapter 6: Searching for studies. In: Higgins JPT, Green S (editors). Cochrane Handbook for Systematic Review of Interventions. Version 5.0.1 [updated September 2008]. The Cochrane Collaboration, 2008. .
    1. McIntosh HM, Olliaro P. Artemisinin derivatives for treating uncomplicated malaria. Cochrane Database of Systematic Reviews 2000, Issue 2. [DOI: 10.1002/14651858.CD000256]
    1. Meshnick SR, Taylor TE, Kamchonwongpaisan S. Artemisinin and the antimalarial endoperoxides: from herbal remedy to targeted chemotherapy. Microbiological Reviews 1996;60(2):301‐15.
    1. Myint HY, Ashley EA, Day NP, Nosten F, White NJ. Efficacy and safety of dihydroartemisinin‐piperaquine. Transactions of the Royal Society of Tropical Medicine and Hygiene 2007;101(9):858‐66.
    1. Naing C, Mak JW, Aung K, Wong JY. Efficacy and safety of dihydroartemisinin‐piperaquine for treatment of uncomplicated Plasmodium falciparum malaria in endemic countries: meta‐analysis of randomised controlled studies. Transactions of the Royal Society of Tropical Medicine and Hygiene 2013;107(2):65‐73.
    1. Nosten F, White NJ. Artemisinin‐based combination treatment of falciparum malaria. American Journal of Tropical Medicine and Hygiene 2007;77(6 Suppl):181‐92.
    1. Price RN, Nosten F, Luxemburger C, ter Kuile FO, Paiphun L, Chongsuphajaisiddhi T, et al. Effects of artemisinin derivatives on malaria transmissibility. The Lancet 1996;347(9016):1654‐8.
    1. Price R, Vugt M, Phaipun L, Luxemburger C, Simpson J, McGready R, et al. Adverse effects in patients with acute falciparum malaria treated with artemisinin derivatives. American Journal of Tropical Medicine and Hygiene 1999;60(4):547‐55.
    1. The Nordic Cochrane Centre, The Cochrane Collaboration. Review Manager (RevMan). Version 5.2. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2013.
    1. Schmatz D. Dihydroartemisinin: more life‐boat than death‐ride. Malaria Journal 2010;9(212):1‐2.
    1. Sinclair D, Zani B, Donegan S, Olliaro PL, Garner P. Artemisinin‐based combination therapy for treating uncomplicated malaria. Cochrane Database of Systematic Reviews 2009, Issue 3. [DOI: 10.1002/14651858.CD007483.pub2]
    1. Sinclair D, Donegan S, Isba R, Lalloo DG. Artesunate versus quinine for treating severe malaria. Cochrane Database of Systematic Reviews 2012, Issue 6. [DOI: 10.1002/14651858.CD005967.pub4]
    1. Targett G, Drakeley C, Jawara M, Seidlein L, Coleman R, Deen J, et al. Artesunate reduces but does not prevent posttreatment transmission of Plasmodium falciparum to Anopheles gambiae. Journal of Infectious Diseases 2001;183(8):1254‐9.
    1. White NJ, Olliaro PL. Strategies for the prevention of antimalarial drug resistance: rationale for combination chemotherapy for malaria. Parasitology Today 1996;12(10):399‐401.
    1. White NJ, Nosten F, Looareesuwan S, Watkins WM, Marsh K, Snow RW, et al. Averting a malaria disaster. The Lancet 1999;353(9168):1965‐7.
    1. White NJ. The assessment of antimalarial drug efficacy. Trends in Parasitology 2002;18(10):458‐64.
    1. WHO Global Malaria Programme. Guidelines for the treatment of malaria. Geneva: World Health Organization, 2010.
    1. WHO Global Malaria Programme. World Malaria Report 2012. World Malaria Report 2012. Geneva: World Health Organization, 2012.
    1. WorldWide Antimalarial Resistance Network (WWARN). WWARN. 2013.
    1. WWARN DP Study Group. The effect of Dosing Regimens on the Antimalarial Efficacy of Dihydroartemisinin‐Piperaquine: A pooled analysis of Individual Patient Data. PLoS Medicine 2013;10(12):e1001564.

Source: PubMed

3
Se inscrever