Protein Consumption and the Elderly: What Is the Optimal Level of Intake?

Jamie I Baum, Il-Young Kim, Robert R Wolfe, Jamie I Baum, Il-Young Kim, Robert R Wolfe

Abstract

Maintaining independence, quality of life, and health is crucial for elderly adults. One of the major threats to living independently is the loss of muscle mass, strength, and function that progressively occurs with aging, known as sarcopenia. Several studies have identified protein (especially the essential amino acids) as a key nutrient for muscle health in elderly adults. Elderly adults are less responsive to the anabolic stimulus of low doses of amino acid intake compared to younger individuals. However, this lack of responsiveness in elderly adults can be overcome with higher levels of protein (or essential amino acid) consumption. The requirement for a larger dose of protein to generate responses in elderly adults similar to the responses in younger adults provides the support for a beneficial effect of increased protein in older populations. The purpose of this review is to present the current evidence related to dietary protein intake and muscle health in elderly adults.

Keywords: aging; anabolic response; elderly; muscle; protein; protein synthesis; requirements.

References

    1. Ortman J.M., Velkoff V.A., Hogan H. In: An Aging Nation: The Older Population in the United States. U.S. Census Bureau, editor. U.S. Census Bureau; Washington, DC, USA: 2014.
    1. Goisser S., Kemmler W., Porzel S., Volkert D., Sieber C.C., Bollheimer L.C., Freiberger E. Sarcopenic obesity and complex interventions with nutrition and exercise in community-dwelling older persons—A narrative review. Clin. Interv. Aging. 2015;10:1267–1282.
    1. Wolfe R.R. The role of dietary protein in optimizing muscle mass, function and health outcomes in older individuals. Br. J. Nutr. 2012;108:88–93. doi: 10.1017/S0007114512002590.
    1. Arthur S.T., Cooley I.D. The effect of physiological stimuli on sarcopenia; Impact of notch and Wnt signaling on impaired aged skeletal muscle repair. Int. J. Biol. Sci. 2012;8:731–760. doi: 10.7150/ijbs.4262.
    1. Centers for Disease Control and Prevention (CDC) In: The State of Aging and Health in America 2013. Centers for Disease Control and Prevention, editor. US Department of Health and Human Services; Atlanta, GA, USA: 2013.
    1. Chumlea W.C., Baumgartner R.N., Vellas B.P. Anthropometry and body composition in the perspective of nutritional status in the elderly. Nutrition. 1991;7:57–60.
    1. Baum J.I., Wolfe R.R. The link between dietary protein intake, skeletal muscle function and health in older adults. Healthcare. 2015;3:529–543. doi: 10.3390/healthcare3030529.
    1. Wolfe R.R., Miller S.L., Miller K.B. Optimal protein intake in the elderly. Clin. Nutr. 2008;27:675–684. doi: 10.1016/j.clnu.2008.06.008.
    1. Morais J.A., Chevalier S., Gougeon R. Protein turnover and requirements in the healthy and frail elderly. J. Nutr. Health Aging. 2006;10:272–283.
    1. Wilson M.M., Purushothaman R., Morley J.E. Effect of liquid dietary supplements on energy intake in the elderly. Am. J. Clin. Nutr. 2002;75:944–947.
    1. Hu F.B., Stampfer M.J., Manson J.E., Rimm E., Colditz G.A., Speizer F.E., Hennekens C.H., Willett W.C. Dietary protein and risk of ischemic heart disease in women. Am. J. Clin. Nutr. 1999;70:221–227.
    1. Obarzanek E., Velletri P.A., Cutler J.A. Dietary protein and blood pressure. JAMA. 1996;275:1598–1603. doi: 10.1001/jama.1996.03530440078040.
    1. Stamler J., Elliott P., Kesteloot H., Nichols R., Claeys G., Dyer A.R., Stamler R. Inverse relation of dietary protein markers with blood pressure. Findings for 10,020 men and women in the INTERSALT Study. Circulation. 1996;94:1629–1634. doi: 10.1161/01.CIR.94.7.1629.
    1. Trumbo P., Schlicker S., Yates A.A., Poos M. Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J. Am. Diet. Assoc. 2002;102:1621–1630. doi: 10.1016/S0002-8223(02)90346-9.
    1. Volpi E., Campbell W.W., Dwyer J.T., Johnson M.A., Jensen G.L., Morley J.E., Wolfe R.R. Is the optimal level of protein intake for older adults greater than the recommended dietary allowance? J. Gerontol. 2013;68:677–681. doi: 10.1093/gerona/gls229.
    1. Fulgoni V.L., III Current protein intake in America: Analysis of the National Health and Nutrition Examination Survey, 2003–2004. Am. J. Clin. Nutr. 2008;87:1554–1557.
    1. Pasiakos S.M., Agarwal S., Lieberman H.R., Fulgoni V.L., III Sources and amounts of animal, dairy, and plant protein intake of US adults in 2007–2010. Nutrients. 2015;7:7058–7069. doi: 10.3390/nu7085322.
    1. Katsanos C.S., Kobayashi H., Sheffield-Moore M., Aarsland A., Wolfe R.R. A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly. Am. J. Physiol. Endocrinol. Metab. 2006;291:381–387. doi: 10.1152/ajpendo.00488.2005.
    1. Moore D.R., Churchward-Venne T.A., Witard O., Breen L., Burd N.A., Tipton K.D., Phillips S.M. Protein ingestion to stimulate myofibrillar protein synthesis requires greater relative protein intakes in healthy older versus younger men. J. Gerontol. A. 2015;70:57–62. doi: 10.1093/gerona/glu103.
    1. Wolfe R.R. Regulation of muscle protein by amino acids. J. Nutr. 2002;132:3219–3224.
    1. Rasmussen B.B., Wolfe R.R., Volpi E. Oral and intravenously administered amino acids produce similar effects on muscle protein synthesis in the elderly. J. Nutr. Health Aging. 2002;6:358–362.
    1. Cuthbertson D., Smith K., Babraj J., Leese G., Waddell T., Atherton P., Wackerhage H., Taylor P.M., Rennie M.J. Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. FASEB J. 2005;19:422–424. doi: 10.1096/fj.04-2640fje.
    1. Symons T.B., Sheffield-Moore M., Wolfe R.R., Paddon-Jones D. A moderate serving of high-quality protein maximally stimulates skeletal muscle protein synthesis in young and elderly subjects. J. Am. Diet. Assoc. 2009;109:1582–1586. doi: 10.1016/j.jada.2009.06.369.
    1. Anthony J.C., Anthony T.G., Kimball S.R., Vary T.C., Jefferson L.S. Orally administered leucine stimulates protein synthesis in skeletal muscle of postabsorptive rats in association with increased eIF4F formation. J. Nutr. 2000;130:139–145.
    1. Anthony J.C., Yoshizawa F., Anthony T.G., Vary T.C., Jefferson L.S., Kimball S.R. Leucine stimulates translation initiation in skeletal muscle of postabsorptive rats via a rapamycin-sensitive pathway. J. Nutr. 2000;130:2413–2419.
    1. Gordon B.S., Kelleher A.R., Kimball S.R. Regulation of muscle protein synthesis and the effects of catabolic states. Int. J. Biochem. Cell Biol. 2013;45:2147–2157. doi: 10.1016/j.biocel.2013.05.039.
    1. Børsheim E., Tipton K.D., Wolf S.E., Wolfe R.R. Essential amino acids and muscle protein recovery from resistance exercise. Am. J. Physiol. Endocrinol. Metab. 2002;283:648–657. doi: 10.1152/ajpendo.00466.2001.
    1. Mitchell C.J., Gatta P.A.D., Petersen A.C., Cameron-Smith D., Markworth J.F. Soy protein ingestion results in less prolonged p70S6 kinase phosphorylation compared to whey protein after resistance exercise in older men. J. Int. Soc. Sports Nutr. 2015;12:6. doi: 10.1186/s12970-015-0070-2.
    1. Phillips S.M., Tang J.E., Moore D.R. The role of milk- and soy-based protein in support of muscle protein synthesis and muscle protein accretion in young and elderly persons. J. Am. Coll. Nutr. 2009;28:343–354. doi: 10.1080/07315724.2009.10718096.
    1. Tang J.E., Moore D.R., Kujbida G.W., Tarnopolsky M.A., Phillips S.M. Ingestion of whey hydrolysate, casein, or soy protein isolate: Effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J. Appl. Physiol. 2009;107:987–992. doi: 10.1152/japplphysiol.00076.2009.
    1. Houston D.K., Nicklas B.J., Ding J., Harris T.B., Tylavsky F.A., Newman A.B., Lee J.S., Sahyoun N.R., Visser M., Kritchevsky S.B. Dietary protein intake is associated with lean mass change in older, community-dwelling adults: The Health, Aging, and Body Composition (Health ABC) Study. Am. J. Clin. Nutr. 2008;87:150–155.
    1. Montero-Fernandez N., Serra-Rexach J.A. Role of exercise on sarcopenia in the elderly. Eur. J. Phys. Rehabil. Med. 2013;49:131–143.
    1. Nowson C., O‘Connell S. Protein requirements and recommendations for older people: A review. Nutrients. 2015;7:6874–6899. doi: 10.3390/nu7085311.
    1. Keys A., Taylor H.L., Grande F. Basal metabolism and age of adult man. Metabolism. 1973;22:579–587. doi: 10.1016/0026-0495(73)90071-1.
    1. Roberts S.B., Dallal G.E. Energy requirements and aging. Public Health Nutr. 2005;8:1028–1036. doi: 10.1079/PHN2005794.
    1. Pencharz P.B., Elango R., Wolfe R.R. Recent developments in understanding protein needs—How much and what kind should we eat? Appl. Physiol. Nutr. Metab. 2016;41:577–580. doi: 10.1139/apnm-2015-0549.
    1. Brown C.J., Flood K.L. Mobility limitation in the older patient: A clinical review. JAMA. 2013;310:1168–1177. doi: 10.1001/jama.2013.276566.
    1. Wolfe R.R. The underappreciated role of muscle in health and disease. Am. J. Clin. Nutr. 2006;84:475–482.
    1. Phillips S.M., Fulgoni V.L., III, Heaney R.P., Nicklas T.A., Slavin J.L., Weaver C.M. Commonly consumed protein foods contribute to nutrient intake, diet quality, and nutrient adequacy. Am. J. Clin. Nutr. 2015;106:1346–1352. doi: 10.3945/ajcn.114.084079.
    1. Paddon-Jones D., Rasmussen B.B. Dietary protein recommendations and the prevention of sarcopenia. Curr. Opin. Clin. Nutr. Metab. Care. 2009;12:86–90. doi: 10.1097/MCO.0b013e32831cef8b.
    1. Nair K.S., Garrow J.S., Ford C., Mahler R.F., Halliday D. Effect of poor diabetic control and obesity on whole body protein metabolism in man. Diabetologia. 1983;25:400–403. doi: 10.1007/BF00282518.
    1. Deutz N.E., Ten Have G.A.M., Soeters P.B., Moughan P.J. Increased intestinal amino-acid retention from the addition of carbohydrates to a meal. Clin. Nutr. 1995;14:354–364. doi: 10.1016/S0261-5614(95)80053-0.
    1. Volpi E., Mittendorfer B., Wolf S.E., Wolfe R.R. Oral amino acids stimulate muscle protein anabolism in the elderly despite higher first-pass splanchnic extraction. Am. J. Physiol. 1999;277:513–520.
    1. Kim I.-Y., Schutzler S., Schrader A., Spencer H.J., Azhar G., Ferrando A.A., Wolfe R.R. The anabolic response to a meal containing different amounts of protein is not limited by the maximal stimulation of protein synthesis in healthy young adults. Am. J. Physiol. Endocrinol. Metab. 2016;310:73–80. doi: 10.1152/ajpendo.00365.2015.
    1. Kim I.-Y., Schutzler S., Schrader A., Spencer H., Kortebein P., Deutz N.E.P., Wolfe R.R., Ferrando A.A. Quantity of dietary protein intake, but not pattern of intake, affects net protein balance primarily through differences in protein synthesis in older adults. Am. J. Physiol. Endocrinol. Metab. 2015;308:21–28. doi: 10.1152/ajpendo.00382.2014.
    1. Engelen M.P.K.J., Com G., Wolfe R.R., Deutza N.E.P. Dietary essential amino acids are highly anabolic in pediatric patients with cystic fibrosis. J. Cyst. Fibros. 2013;12:445–453. doi: 10.1016/j.jcf.2012.12.011.
    1. Jonker R., Deutz N.E.P., Erbland M.L., Anderson P.J., Engelen M.P.K.J. Hydrolyzed casein and whey protein meals comparably stimulate net whole-body protein synthesis in COPD patients with nutritional depletion without an additional effect of leucine co-ingestion. Clin. Nutr. 2014;33:211–220. doi: 10.1016/j.clnu.2013.06.014.
    1. Hegsted D.M. Assessment of nitrogen requirements. Am. J. Clin. Nutr. 1978;31:1669–1677.
    1. Sakuma K., Aoi W., Yamaguchi A. Current understanding of sarcopenia: Possible candidates modulating muscle mass. Pflugers Arch. 2015;467:213–229. doi: 10.1007/s00424-014-1527-x.
    1. Sakuma K., Aoi W., Yamaguchi A. The intriguing regulators of muscle mass in sarcopenia and muscular dystrophy. Front. Aging Neurosci. 2014;6:230. doi: 10.3389/fnagi.2014.00230.
    1. Kimball S.R., Jefferson L.S. Signaling pathways and molecular mechanisms through which branched-chain amino acids mediate translational control of protein synthesis. J. Nutr. 2006;136(Suppl. 1):227–231.
    1. Kimball S.R., Jefferson L.S. Role of amino acids in the translational control of protein synthesis in mammals. Semin. Cell Dev. Biol. 2005;16:21–27. doi: 10.1016/j.semcdb.2004.11.009.
    1. Kimball S.R., Jefferson L.S. Regulation of global and specific mRNA translation by oral administration of branched-chain amino acids. Biochem. Biophys. Res. Commun. 2004;313:423–427. doi: 10.1016/j.bbrc.2003.07.014.
    1. Wilkinson D.J., Hossain T., Hill D.S., Phillips B.E., Crossland H., Williams J., Loughna P., Churchward-Venne T.A., Breen L., Phillips S.M., et al. Effects of leucine and its metabolite β-hydroxy-β-methylbutyrate on human skeletal muscle protein metabolism. J. Physiol. 2013;591:2911–2923. doi: 10.1113/jphysiol.2013.253203.
    1. Katsanos C.S., Kobayashi H., Sheffield-Moore M., Aarsland A., Wolfe R.R. Aging is associated with diminished accretion of muscle proteins after the ingestion of a small bolus of essential amino acids. Am. J. Clin. Nutr. 2005;82:1065–1073.
    1. Paddon-Jones D., Sheffield-Moore M., Creson D.L., Sanford A.P., Wolf S.E., Wolfe R.R., Ferrando A.A. Hypercortisolemia alters muscle protein anabolism following ingestion of essential amino acids. Am. J. Physiol. Endocrinol. Metab. 2003;284:946–953. doi: 10.1152/ajpendo.00397.2002.
    1. Guillet C., Prod’Homme M., Balage M., Gachon P., Giraudet C., Morin L., Grizard J., Boirie Y. Impaired anabolic response of muscle protein synthesis is associated with S6K1 dysregulation in elderly humans. FASEB J. 2004;18:1586–1587. doi: 10.1096/fj.03-1341fje.
    1. Fry C.S., Drummond M.J., Glynn E.L., Dickinson J.M., Gundermann D.M., Timmerman K.L., Walker D.K., Volpi E., Rasmussen B.B. Skeletal muscle autophagy and protein breakdown following resistance exercise are similar in younger and older adults. J. Gerontol. A. 2013;68:599–607. doi: 10.1093/gerona/gls209.
    1. Drummond M.J., Miyazaki M., Dreyer H.C., Pennings B., Dhanani S., Volpi E., Esser K.A., Rasmussen B.B. Expression of growth-related genes in young and older human skeletal muscle following an acute stimulation of protein synthesis. J. Appl. Physiol. 2009;106:1403–1411. doi: 10.1152/japplphysiol.90842.2008.
    1. Drummond M.J., Dickinson J.M., Fry C.S., Walker D.K., Gundermann D.M., Reidy P.T., Timmerman K.L., Markofski M.M., Paddon-Jones D., Rasmussen B.B., et al. Bed rest impairs skeletal muscle amino acid transporter expression, mTORC1 signaling, and protein synthesis in response to essential amino acids in older adults. Am. J. Physiol. Endocrinol. Metab. 2012;302:1113–1122. doi: 10.1152/ajpendo.00603.2011.
    1. Tanner R.E., Brunker L.B., Agergaard J., Barrows K.M., Briggs R.A., Kwon O.S., Young L.M., Hopkins P.N., Volpi E., Marcus R.L. Age-related differences in lean mass, protein synthesis and skeletal muscle markers of proteolysis after bed rest and exercise rehabilitation. J. Physiol. 2015;593:4259–4273. doi: 10.1113/JP270699.
    1. Bukhari S.S., Phillips B.E., Wilkinson D.J., Limb M.C., Rankin D., Mitchell W.K., Kobayashi H., Greenhaff P.L., Smith K., Atherton P.J. Intake of low-dose leucine-rich essential amino acids stimulates muscle anabolism equivalently to bolus whey protein in older women at rest and after exercise. Am. J. Physiol. Endocrinol. Metab. 2015;308:1056–1065. doi: 10.1152/ajpendo.00481.2014.

Source: PubMed

3
Se inscrever