Impaired myocardial perfusion is associated with increasing end-systolic- and end-diastolic volumes in patients with non-ischemic systolic heart failure: a cross-sectional study using Rubidium-82 PET/CT

Christina Byrne, Philip Hasbak, Andreas Kjaer, Jens Jakob Thune, Lars Køber, Christina Byrne, Philip Hasbak, Andreas Kjaer, Jens Jakob Thune, Lars Køber

Abstract

Background: Myocardial flow reserve (MFR, stress/rest myocardial blood flow) is a strong marker of myocardial vasomotor function. MFR is a predictor of adverse cardiac events in patients with non-ischemic systolic heart failure and previous studies using different methods have found association between myocardial blood flow and left ventricular dilatation. The aim of this study was to investigate whether there is an association between increasing end-systolic- and end-diastolic volumes (ESV and EDV) and MFR in these patients measured with Rubidium-82 positron emission tomography computed tomography (82Rb-PET/CT) as a quantitative myocardial perfusion gold-standard.

Methods: We scanned 151 patients with non-ischemic heart failure with initial left ventricular ejection fraction ≤35% with 82Rb-PET/CT at rest and adenosine-induced stress to obtain MFR and volumes. To account for differences in body surface area (BSA), we used indexed ESV (ESVI): ESV/BSA (ml/m2) and EDV (EDVI). We identified factors associated with MFR using multiple regression analyses.

Results: Median age was 62 years (55-69 years) and 31% were women. Mean MFR was 2.38 (2.24-2.52). MFR decreased significantly with both increasing ESVI (estimate - 3.7%/10 ml/m2; 95% confidence interval [CI] -5.6 to - 1.8; P < 0.001) and increasing EDVI (estimate - 3.5%/10 ml/m2; 95% CI -5.3 to - 1.6; P < 0.001). Results remained significant after multivariable adjustment. Additionally, coronary vascular resistance during stress increased significantly with increasing ESVI (estimate: 3.1 mmHg/(ml/g/min) per (10 ml/m2); 95% CI 2.0 to 4.3; r = 0.41; P < 0.0001) and increasing EDVI (estimate: 2.7 mmHg/(ml/g/min) per (10 ml/m2); 95% CI 1.6 to 3.8; r = 0.37; P < 0.0001).

Conclusions: Impaired MFR assessed by 82Rb-PET/CT was significantly associated with linear increases in ESVI and EDVI in patients with non-ischemic systolic heart failure. Our findings support that impaired microvascular function may play a role in heart failure development. Clinical trials investigating MFR with regard to treatment responses may elucidate the clinical use of MFR in patients with non-ischemic systolic heart failure.

Trial registration: Sub study of the randomized clinical trial: A DANish randomized, controlled, multicenter study to assess the efficacy of Implantable cardioverter defibrillator in patients with non-ischemic Systolic Heart failure on mortality (DANISH), ClinicalTrials.gov Identifier: NCT00541268 .

Keywords: End diastolic volume; End systolic volume; Myocardial flow reserve; Myocardial perfusion imaging; Non-ischemic systolic heart failure.

Conflict of interest statement

Ethics approval and consent to participate

All patients had given informed oral and written consents, and the Scientific Ethics Committee of the Capital Region of Denmark and the Danish Data Protection Agency approved the protocol. (protocol number H-15000346).

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Inclusion flow chart. DANISH [15] Centre 1 and 2: Rigshospitalet and Gentofte Hospital, Copenhagen, Denmark. COPD chronic obstructive pulmonary disease
Fig. 2
Fig. 2
Myocardial flow reserve as a function of end-systolic volume/body surface area (a) and end-diastolic volume/body surface area (b) with 95% confidence bands of the best-fit line
Fig. 3
Fig. 3
Coronary vascular resistance (CVR) as a function of end-systolic volume/body surface area at rest (a) and during stress (b) and as a function of end-diastolic volume/body surface area at rest (c) and during stress (d) with 95% confidence bands of the best-fit line

References

    1. Saraste A, Kajander S, Han C, Nesterov SV, Knuuti J. PET: is myocardial flow quantification a clinical reality? J Nucl Cardiol. 2012;19:1044–1059. doi: 10.1007/s12350-012-9588-8.
    1. Johnson NP, Gould KL, Di Carli MF, Taqueti VR. Invasive FFR and noninvasive CFR in?The?Evaluation of ischemia. J Am Coll Cardiol. 2016;67:2772–2788. doi: 10.1016/j.jacc.2016.03.584.
    1. Schindler TH, Schelbert HR, Quercioli A, Dilsizian V. Cardiac PET imaging for the detection and monitoring of coronary artery disease and microvascular health. JACC Cardiovasc Imaging. 2010;3:623–640. doi: 10.1016/j.jcmg.2010.04.007.
    1. Neglia D, Michelassi C, Trivieri MG, Sambuceti G, Giorgetti A, Pratali L, et al. Prognostic role of myocardial blood flow impairment in idiopathic left ventricular dysfunction. Circulation. 2002;105:186–193. doi: 10.1161/hc0202.102119.
    1. Majmudar MD, Murthy VL, Shah RV, Kolli S, Mousavi N, Foster CR, et al. Quantification of coronary flow reserve in patients with ischaemic and non-ischaemic cardiomyopathy and its association with clinical outcomes. Eur Heart J Cardiovasc Imaging. 2015;16:900–909. doi: 10.1093/ehjci/jev012.
    1. Camici PG, Crea F. Coronary microvascular dysfunction. N Engl J Med. 2007;356:830–840. doi: 10.1056/NEJMra061889.
    1. De Boer RA, Pinto YM, Van Veldhuisen DJ. The imbalance between oxygen demand and supply as a potential mechanism in the pathophysiology of heart failure: the role of microvascular growth and abnormalities. Microcirculation. 2003;10:113–126. doi: 10.1080/713773607.
    1. Ylä-Herttuala S, Bridges C, Katz MG, Korpisalo P. Angiogenic gene therapy in cardiovascular diseases: dream or vision? Eur Heart J. 2017;38:1365–1371.
    1. Saraste A, Knuuti J. PET imaging in heart failure: the role of new tracers. Heart Fail Rev. 2017;22:501–511. doi: 10.1007/s10741-017-9620-9.
    1. Lortie M, Beanlands RSB, Yoshinaga K, Klein R, DaSilva JN, deKemp RA. Quantification of myocardial blood flow with 82Rb dynamic PET imaging. Eur J Nucl Med Mol Imaging. 2007;34:1765–1774. doi: 10.1007/s00259-007-0478-2.
    1. Diaz RA, Obasohan A, Oakley CM. Prediction of outcome in dilated cardiomyopathy. Br Heart J. 1987;58:393–399. doi: 10.1136/hrt.58.4.393.
    1. Inoue T, Sakai Y, Morooka S, Hayashi T, Takayanagi K, Yamanaka T, et al. Coronary flow reserve in patients with dilated cardiomyopathy. Am Heart J. 1993;125:93–98. doi: 10.1016/0002-8703(93)90061-D.
    1. Santagata P, Rigo F, Gherardi S, Pratali L, Drozdz J, Varga A, et al. Clinical and functional determinants of coronary flow reserve in non-ischemic dilated cardiomyopathy. Int J Cardiol. 2005;105:46–52. doi: 10.1016/j.ijcard.2004.11.013.
    1. Shiroodi MK, Shafiei B, Baharfard N, Gheidari ME, Nazari B, Pirayesh E, et al. 99 mTc-MIBI washout as a complementary factor in the evaluation of idiopathic dilated cardiomyopathy (IDCM) using myocardial perfusion imaging. Int J Cardiovasc Imaging. 2012;28:211–217. doi: 10.1007/s10554-010-9770-5.
    1. Køber L, Thune JJ, Nielsen JC, Haarbo J, Videbæk L, Korup E, et al. Defibrillator implantation in patients with nonischemic systolic heart failure. N Engl J Med. 2016. 10.1056/NEJMoa1608029.
    1. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990;15:827–832. doi: 10.1016/0735-1097(90)90282-T.
    1. Armstrong IS, Tonge CM, Arumugam P. Impact of point spread function modeling and time-of-flight on myocardial blood flow and myocardial flow reserve measurements for rubidium-82 cardiac PET. J Nucl Cardiol. 2014;21:467–474. doi: 10.1007/s12350-014-9858-8.
    1. Czernin J, Muller P, Chan S, Brunken RC, Porenta G, Krivokapich J, et al. Influence of age and hemodynamics on myocardial blood flow and flow reserve. Circulation. 1993;88:62–69. doi: 10.1161/01.CIR.88.1.62.
    1. Renaud JM, DaSilva JN, Beanlands RSB, deKemp RA. Characterizing the normal range of myocardial blood flow with 82rubidium and 13N-ammonia PET imaging. J Nucl Cardiol. 2013;20:578–591. doi: 10.1007/s12350-013-9721-3.
    1. Cerqueira MD. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the cardiac imaging Committee of the Council on clinical cardiology of the American Heart Association. Circulation. 2002;105:539–542. doi: 10.1161/hc0402.102975.
    1. Dilsizian V, Bacharach SL, Beanlands RS, Bergmann SR, Delbeke D, Dorbala S, et al. ASNC imaging guidelines/SNMMI procedure standard for positron emission tomography (PET) nuclear cardiology procedures. J Nucl Cardiol. 2016;23:1187–1226. doi: 10.1007/s12350-016-0522-3.
    1. Bravo PE, Chien D, Javadi M, Merrill J, Bengel FM. Reference ranges for LVEF and LV volumes from electrocardiographically gated 82Rb cardiac PET/CT using commercially available software. J Nucl Med. 2010;51:898–905. doi: 10.2967/jnumed.109.073858.
    1. Chander A, Brenner M, Lautamaki R, Voicu C, Merrill J, Bengel FM. Comparison of measures of left ventricular function from electrocardiographically gated 82Rb PET with contrast-enhanced CT Ventriculography: a hybrid PET/CT analysis. J Nucl Med. 2008;49:1643–1650. doi: 10.2967/jnumed.108.053819.
    1. Tsagalou EP, Anastasiou-Nana M, Agapitos E, Gika A, Drakos SG, Terrovitis JV, et al. Depressed coronary flow reserve is associated with decreased myocardial capillary density in patients with heart failure due to idiopathic dilated cardiomyopathy. J Am Coll Cardiol. 2008;52:1391–1398. doi: 10.1016/j.jacc.2008.05.064.
    1. Parodi O, De Maria R, Oltrona L, Testa R, Sambuceti G, Roghi A, et al. Myocardial blood flow distribution in patients with ischemic heart disease or dilated cardiomyopathy undergoing heart transplantation. Circulation. 1993;88:509–522. doi: 10.1161/01.CIR.88.2.509.
    1. Knaapen P, Götte MJW, Paulus WJ, Zwanenburg JJM, Dijkmans PA, Boellaard R, et al. Does myocardial fibrosis hinder contractile function and perfusion in idiopathic dilated cardiomyopathy? PET and MR imaging study. Radiology. 2006;240:380–388. doi: 10.1148/radiol.2402051038.
    1. Linzbach AJ. Heart failure from the point of view of quantitative anatomy. Am J Cardiol. 1960;5:370–382. doi: 10.1016/0002-9149(60)90084-9.
    1. Kuo L, Chilian WM, Davis MJ. Coronary arteriolar myogenic response is independent of endothelium. Circ Res. 1990;66:860–866. doi: 10.1161/01.RES.66.3.860.
    1. Hoffman JI. Determinants and prediction of transmural myocardial perfusion. Circulation. 1978;58(3 Pt 1):381–391. doi: 10.1161/01.CIR.58.3.381.
    1. Kim J, Bravo PE, Gholamrezanezhad A, Sohn S, Rafique A, Travis A, et al. Coronary artery and thoracic aorta calcification is inversely related to coronary flow reserve as measured by 82Rb PET/CT in intermediate risk patients. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol. 2013;20:375–384. doi: 10.1007/s12350-013-9675-5.
    1. Wang L, Jerosch-Herold M, Jacobs DR, Shahar E, Detrano R, Folsom AR. Coronary artery calcification and myocardial perfusion in asymptomatic adults. J Am Coll Cardiol. 2006;48:1018–1026. doi: 10.1016/j.jacc.2006.04.089.

Source: PubMed

3
Se inscrever